Statistical significance p-value. (also important for combining or comparing motifs)

Size: px
Start display at page:

Download "Statistical significance p-value. (also important for combining or comparing motifs)"

Transcription

1 Statistical significance p-value (als imprtant fr cmbining r cmparing mtifs)

2 This image cannt currently be displayed. Wrd cunting statistics Statistical measures fr significance: O E Z-scre: Z = Var p-value: prb( O k, N) p-value is difficult t calculate, cmmn mistake in many publicatins assumes Var = E

3 Bernulli text (i.i.d. case, E=N/a w ) Var( W ) = Nσ (a:alphabet size; w: wrd size, N: text size) 2 = N a w (2K WW (1/ a) 1 2w a 1 ) w where Crrelatin plynmial K AB ( t) = c c1t c w 1 t w 1 is related t the crrelatin (Cnway s leading number ) AB ( c0, c1,..., c 1) = w Var( AA) Var( AT ) = Var( AAA) Var( ATG) = Ignring the verlapping wrd paradx leads t 200% mistake! Var( RR) Var( RY ) = 5 1 Fr 2-letter alphabet, the verlapping wrd paradx leads t 500% mistake!

4 Bernulli text (general, E=NP W ) Var( W ) = Nσ 2 = NP W (2C WW (1) 1 (2w 1) P W ) where Crrelatin plynmial C AB ω ( z) = P( ω) z i. i. d. K AB ( z / a) ω H AB P W = w i= 1 p w i H AB crrelatin set: (H WW aut-crrelatin set) A ω B Example: W=GCTGGTGG (the Chi mtif in E. cli). The crrelatin set is H W,W ={ε, CTGGTGG}. C WW (z)=1+p CTGGTGG z 7.

5 Exact p-value fr wrd cunt Exact Var: M00 (i.i.d.): Pevzner, Brdwsky & Mirnv 1989; Mk: Kleffe & Bradvsky Extend t a set f IUPAC wrds and duble-strands: Sinha When E=NP W <<1, Z-scres are nt accurate Exact wrd cunt distributin: Guibase & Odlysk Exact waiting time (First ccurrence, between tw successive ccurrences) distributin: M0: Blm 1982; M1: Rbin & Daudin 1999) Duality relatin: Wrd cunts and waiting times (Reinert, Schbath and Waterman, 2000).

6 Shrt sequences The p-value is the prbability that r sequences ut f n cntain W: pval( W ) n r P O O r n r = ( ( 1) (1 ( 1)) P Sig = lg 10 [ P( O r)* D] (van Helden et al. 1998) D is the number f pssible wrd cunt depending n a single r n bth strands. Mtif O Binm LD Ex TGATGA GATGAT ATGATG GATGAG Upstream 800bp f YGR022C

7 Staden89 (i.i.d mdel) If V takes values in 0,1, T with prbabilities g 0 g 1 g T, the generating functin is G(x)=g 0 +g 1 x+g 2 x 2 + +g T x T. Prb(V=n) = g n. If V 1 V 2 V m, are independent, the generating functin f the sum F(x) = G 1 (x)g 2 (x) G m (x). The generating functin f an integer PWM {0 w bj T}: F(x) = Π G j (x) where the generating functin fr clumn j, G j (x) = Σ f b x^w bj

8 Wrked example (Staden) A C G T There are nly three scre pssible fr j=1, namely 9,1 and 0, with prbabilities f A, f G and f C +f G respectively: g 0 = f C +f G, g 1 =f G, g 9 =f A. G 1 (x) = (f C +f T ) x 0 + f G x 1 + f A x 9 G 2 (x) = (f C +f T ) x 0 + f A x 1 + f G x 9 G 3 (x) = (f A +f G +f T ) x 1 + f C x 7. Frm first tw clumns, prbabilities Scre = 0 : f C f C + f C f T + f T f C + f T f T Scre = 1 : f C f A + f T f A + f G f C + f G f T Scre = 2 : f G f A Scre = 9 : f A f C + f A f T + f C f G + f T f G Scre =10: f A f A + f G f G Scre =18: f A f G Stepping thrugh the Algrithm (plynmial multiplicatin) fr the first tw clumns: i j i+j plya(i) plyb(j) plyc(i+j) Sum f C +f T f C +f T (f C +f T )(f C +f T ) S f C +f T f A (f C +f T )f A f C +f T f G (f C +f T )f G f G f C +f T (f C +f T )f A +f G (f C +f T ) S f G f A f G f A S f G f G f G f G f A f C +f T (f C +f T )f A +f G (f C +f T ) S f A f A f G f G + f A f A S f A f G f A f G S18

9 Expected number (Staden) AND : Suppse 3 mtifs A, B, and C with prbabilities P A, P B and P C, and ranges R A, R B and R C. E A =P A R A, E(ABC)=P A P B P C R A R B R C =Π P m R m. OR : E = Σ P m R m. NOT : E = ( 1 P m ) ^ R m. Genral patterns use apprpriate cmbinatins. (Simulatin: A=33%,C=17%,G=17%,T=33%, L=100,000) Mtif Class Mtif Scre Expected Observed Exact match AAAATTTT Exact match ATATATAT Exact match CGCG Exact match GGCC Percentage match AAAATTTT Percentage match ATATATAT Match t given sequence using Matrix, cutff TGACACGT Matrix, cutff Heatshck Matrix, cutff Sp Matrix, cutff TGGCA

10 Other frmulatins Claverie1994. The expected best matching scre fr lng sequence fllws the extreme value distributin. Huang et al 2004 extensin t lcal Markv mdel. Hertzberg et al 2005 algrithm extensin f Staden t nn-i.i.d using Branch and Bund. CONSENSUS (Hertz&Strm1999): I seq =ΣΣ f bj ln (f bj / f b0 ), largedeviatin apprximatin f multinmial distributin. MEME (Bailey&Gribskv1998): Mixture, MLM. Apprximate the distributin f the prduct f mtif scre p-values by the distributin f the prduct f the p-values, as tw independent, unifrm variables. Gibbs sampler (Liu, Neuwald&Lawrence1999) Bayesian, Maximum A Psteriri (MAP); r Frequentist null hypthesis Mnte Carl simulatin.

11 Cmparisn & assessment

12 Mtif Discvery Assessment Tmpa et al (2005)

13 Crrelatin cefficient (ncc) fr all pairs f tls

14 Classificatin & Discriminant mtifs

15 DWE: Discriminate Wrd Enumeratr (Sumazin et al. Biinfrmatics, 2004) Fregrund: n 1 ut f N 1 Backgrund: n 2 ut N = n n N N n N n N p One can use degenerate/cnsensus wrds (TATART) r spaced wrds (CCGNNCGG) Fisher s exact test = / / lg N n N n L

16 DME: Discriminate Matrix Enumeratr (Smith et al. PNAS, 2005) Mtif-Centric Detectin: DME enumerates mtifs t detect ccurrences in a predefined discrete space, and then uses lcal search t refine tp mtifs Benefits f DME s mtif-centric apprach: Guaranteed accuracy (bunded errr) Imprved mtif evaluatin speed Natural integratin f backgrund sets fr discriminant mtif discvery prblems

17 Enumerative apprach Test mtifs that unifrmly cver space f matrices: Strategy f enumerating matrices frm a predefined set des nt restrict the type f bjective functin we can use. A predefined set f matrices means mre can be tested since less time is required t generate them. By using specific sets f clumn types we can define a set f matrices s that at least ne matrix frm the set shuld be clse t the ptimal matrix.

18 Matrix discretizatin Idea: Select a set f clumn types, and generate all pssible matrices built frm clumns in the set. Example set f clumn types: Example matrices built frm thse clumns:

19 The DME algrithm Enumerate matrices (with minimum infrmatin cntent) built frm clumns in the selected set f clumn types. Scre each candidate accrding t the lglikelihd rati (bjective functin). Run lcal imprvement (Grid-refinement) n the best candidate. It is designed t ptimize ur bjective functin starting frm a specific matrix. Output the resulting mtif. Erase ccurrences f that mtif frm the sequence data. Repeat the prcedure t identify next discriminant mtif.

20 Regressin

21 Regressin Apprach t Mtif Discvery (MARSMtif) (Das et al. PNAS, 2004) Assumptins: Crrect parameters: binding affinities & prtein (TF) cncentratins E g = f(b 1,B 2, ) Binding affinities are unknwn Use mtif cunt r weight matrix mdel scres instead E g f (C 1,C 2, ) r E g f (W 1,W 2, )

22 REDUCE * Regulatry element detectin using crrelatin with expressin (ther example: Regressr by Liu et al. 2003) Multivariate Linear Regressin lg(e g /E gc ) = C + Σ μ F μ n μ g n μ g = n f mtif μ in the regulatry regin f gene g y N bsvns (y i,n i ) Fit Eqn: Y = a + b n Minimize: Σ i (y i Y i ) 2 n Several knwn mtifs crrectly predicted Explains nly ~10% f the data (yeast cell cycle; nise 50%) Cperative interactins nt accunted fr Nn-linearities in the data * Bussemaker et. al. Nat. Gen. (2001)

23 MARS: Multivariate Adaptive Regressin Splines (J. Friedman, Annals f Stat. 1991) Multivariate extensin f ne dimensinal splines (x-ξ) + Linear splines are made f piecewise linear functins (ξ-x) + ξ ξ knt x x Basis functins [h 1 (x)]: (x-ξ) + = max(0,x-ξ) = x-ξ, x > ξ = 0, therwise (ξ-x) + = max(0, ξ-x) = 0, x > ξ = ξ-x, therwise lg(e g /E gc ) = β 0 + Σ m=1m β m h m ({n μg })

24 MARS: Mdel building strategy Start frm a cnstant term Stepwise Frward Additin: add basis functins and their prducts Keep terms that minimize residual sum f squares (RSS) Backward Eliminatin: Prune the mdel t avid ver fitting Delete term(s) frm the mdel that causes least increase in RSS Minimize the Generalized Crss Validatin scre t btain the final mdel N GCV ( λ) = = g 1 [ lg( E / E ) f ({ n })] µ g gc λ ( 1 M ( λ) / N ) 2 g 2 M(λ) = effective n f parameters = r + ck r = # linearly independent basis functins K = # f knts; c = cnstant btained by CV

25 Extensive simulatins F g = A 0 + Σ μ A μ n g μ + Σ μ<α B μα n g μ n g α + s*є(g), F g = A 0 + s*є(g), (fregrund genes) (backgrund genes) є ~ N(0,1) {A}, {B} fixed fr each run 0 n μ g 3 (fg) #fg = 1000 n μ g = 0 (bg) #bg = 4000 Effects t nnlinear, int, nise, backgrund; Rbustness. Mars with interactins cnsistently had much better accuracy than the linear r nn-interacting case Crrect predictin except fr the nise Resistant t ver-fitting (when setting int=3 r reducing data) Initial test using 77 experiments,~100 REDUCE mtifs, reductin in variance ~10% -> ~30% in average (3 fld imprvement! The best case ~ 51%, clse t maximum pssible)

26 Set f candidate mtifs Check fr assciatin w/ expressin (Klmgrv Smirnv Test) Pairs f mtifs frm tp 100 mtifs Check fr assciatin w/ expressin (Klmgrv Smirnv Test) Tp 100 significant mtifs Tp 200 significant mtif pairs Run MARS with int=1 (n interactins) Significant mtifs MARSMtif FLOW CHART Run MARS with int > 1 (WITH interactins) Significant mtif and mtif pairs Run MARS with int > 1 (WITH interactins) Significant mtif and mtif pairs

27 Summary f MARSMtif results REDUCE~10% Algrithm Data Set Mtif Discvery methd Average Reductin in Variance %Cases that have imprvement with interactins ver int=1 Average imprvement fr cases in previus clumn ver int=1 MARS MARS Mtif cunts frm Pilpel et. al. Gibbs Sampling 24.7% 77.8% (14/18) 58.7% MARS Mtif scres frm Pilpel et. al. Gibbs Sampling 23.2% 88.9% (16/18) 68.4% MARS MARS MARS 5-7 mer nucletides Mtif cunts frm Kellis et. al. cunts f 5-7 mers clustered using mtifs frm Kellis et. al. Wrd Cunt 39.4% 27.8% (5/18) 64.4% Crss species cnservatin Wrd cunt + Crss species cnservatin 18.0% 77.8% (14/18) 54.0% (median) 31.7% 72.2% (13/18) 68.8% Identify which interacting pairs are imprtant at what time r under what experimental cnditins!

28 %Reductin in Variance fr MCM1-SFF (Linear) %Reductin in Variance Time %Reductin in Variance fr MCM1-SFF (MARS) %Reductin in Variance Time

29 Large-scale systematic identificatin f tissue-specific cis-regulatry mdules Tissue-specific expressin data Knwn TF lcalizatin data DME FG(+), FG( ) DME FG(+), FG( ) Tissue-specific mtif and mtif pairs MARSMtif Regressin n expressin data Ptential functinal tissue-specific mtif and mtif pairs

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification COMP 551 Applied Machine Learning Lecture 5: Generative mdels fr linear classificatin Instructr: Herke van Hf (herke.vanhf@mail.mcgill.ca) Slides mstly by: Jelle Pineau Class web page: www.cs.mcgill.ca/~hvanh2/cmp551

More information

Resampling Methods. Chapter 5. Chapter 5 1 / 52

Resampling Methods. Chapter 5. Chapter 5 1 / 52 Resampling Methds Chapter 5 Chapter 5 1 / 52 1 51 Validatin set apprach 2 52 Crss validatin 3 53 Btstrap Chapter 5 2 / 52 Abut Resampling An imprtant statistical tl Pretending the data as ppulatin and

More information

SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis

SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical mdel fr micrarray data analysis David Rssell Department f Bistatistics M.D. Andersn Cancer Center, Hustn, TX 77030, USA rsselldavid@gmail.cm

More information

Simple Linear Regression (single variable)

Simple Linear Regression (single variable) Simple Linear Regressin (single variable) Intrductin t Machine Learning Marek Petrik January 31, 2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins

More information

COMP 551 Applied Machine Learning Lecture 4: Linear classification

COMP 551 Applied Machine Learning Lecture 4: Linear classification COMP 551 Applied Machine Learning Lecture 4: Linear classificatin Instructr: Jelle Pineau (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted

More information

k-nearest Neighbor How to choose k Average of k points more reliable when: Large k: noise in attributes +o o noise in class labels

k-nearest Neighbor How to choose k Average of k points more reliable when: Large k: noise in attributes +o o noise in class labels Mtivating Example Memry-Based Learning Instance-Based Learning K-earest eighbr Inductive Assumptin Similar inputs map t similar utputs If nt true => learning is impssible If true => learning reduces t

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

COMP 551 Applied Machine Learning Lecture 9: Support Vector Machines (cont d)

COMP 551 Applied Machine Learning Lecture 9: Support Vector Machines (cont d) COMP 551 Applied Machine Learning Lecture 9: Supprt Vectr Machines (cnt d) Instructr: Herke van Hf (herke.vanhf@mail.mcgill.ca) Slides mstly by: Class web page: www.cs.mcgill.ca/~hvanh2/cmp551 Unless therwise

More information

CN700 Additive Models and Trees Chapter 9: Hastie et al. (2001)

CN700 Additive Models and Trees Chapter 9: Hastie et al. (2001) CN700 Additive Mdels and Trees Chapter 9: Hastie et al. (2001) Madhusudana Shashanka Department f Cgnitive and Neural Systems Bstn University CN700 - Additive Mdels and Trees March 02, 2004 p.1/34 Overview

More information

, which yields. where z1. and z2

, which yields. where z1. and z2 The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin

More information

The general linear model and Statistical Parametric Mapping I: Introduction to the GLM

The general linear model and Statistical Parametric Mapping I: Introduction to the GLM The general linear mdel and Statistical Parametric Mapping I: Intrductin t the GLM Alexa Mrcm and Stefan Kiebel, Rik Hensn, Andrew Hlmes & J-B J Pline Overview Intrductin Essential cncepts Mdelling Design

More information

PSU GISPOPSCI June 2011 Ordinary Least Squares & Spatial Linear Regression in GeoDa

PSU GISPOPSCI June 2011 Ordinary Least Squares & Spatial Linear Regression in GeoDa There are tw parts t this lab. The first is intended t demnstrate hw t request and interpret the spatial diagnstics f a standard OLS regressin mdel using GeDa. The diagnstics prvide infrmatin abut the

More information

1 The limitations of Hartree Fock approximation

1 The limitations of Hartree Fock approximation Chapter: Pst-Hartree Fck Methds - I The limitatins f Hartree Fck apprximatin The n electrn single determinant Hartree Fck wave functin is the variatinal best amng all pssible n electrn single determinants

More information

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) >

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) > Btstrap Methd > # Purpse: understand hw btstrap methd wrks > bs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(bs) > mean(bs) [1] 21.64625 > # estimate f lambda > lambda = 1/mean(bs);

More information

Comparing Several Means: ANOVA. Group Means and Grand Mean

Comparing Several Means: ANOVA. Group Means and Grand Mean STAT 511 ANOVA and Regressin 1 Cmparing Several Means: ANOVA Slide 1 Blue Lake snap beans were grwn in 12 pen-tp chambers which are subject t 4 treatments 3 each with O 3 and SO 2 present/absent. The ttal

More information

BLAST / HIDDEN MARKOV MODELS

BLAST / HIDDEN MARKOV MODELS CS262 (Winter 2015) Lecture 5 (January 20) Scribe: Kat Gregry BLAST / HIDDEN MARKOV MODELS BLAST CONTINUED HEURISTIC LOCAL ALIGNMENT Use Cmmnly used t search vast bilgical databases (n the rder f terabases/tetrabases)

More information

Kinetic Model Completeness

Kinetic Model Completeness 5.68J/10.652J Spring 2003 Lecture Ntes Tuesday April 15, 2003 Kinetic Mdel Cmpleteness We say a chemical kinetic mdel is cmplete fr a particular reactin cnditin when it cntains all the species and reactins

More information

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017 Resampling Methds Crss-validatin, Btstrapping Marek Petrik 2/21/2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins in R (Springer, 2013) with

More information

Lecture 13: Markov Chain Monte Carlo. Gibbs sampling

Lecture 13: Markov Chain Monte Carlo. Gibbs sampling Lecture 13: Markv hain Mnte arl Gibbs sampling Gibbs sampling Markv chains 1 Recall: Apprximate inference using samples Main idea: we generate samples frm ur Bayes net, then cmpute prbabilities using (weighted)

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 4: Mdel checing fr ODE mdels In Petre Department f IT, Åb Aademi http://www.users.ab.fi/ipetre/cmpmd/ Cntent Stichimetric matrix Calculating the mass cnservatin relatins

More information

Linear Classification

Linear Classification Linear Classificatin CS 54: Machine Learning Slides adapted frm Lee Cper, Jydeep Ghsh, and Sham Kakade Review: Linear Regressin CS 54 [Spring 07] - H Regressin Given an input vectr x T = (x, x,, xp), we

More information

The blessing of dimensionality for kernel methods

The blessing of dimensionality for kernel methods fr kernel methds Building classifiers in high dimensinal space Pierre Dupnt Pierre.Dupnt@ucluvain.be Classifiers define decisin surfaces in sme feature space where the data is either initially represented

More information

Distributions, spatial statistics and a Bayesian perspective

Distributions, spatial statistics and a Bayesian perspective Distributins, spatial statistics and a Bayesian perspective Dug Nychka Natinal Center fr Atmspheric Research Distributins and densities Cnditinal distributins and Bayes Thm Bivariate nrmal Spatial statistics

More information

Testing Groups of Genes

Testing Groups of Genes Testing Grups f Genes Part II: Scring Gene Ontlgy Terms Manuela Hummel, LMU München Adrian Alexa, MPI Saarbrücken NGFN-Curses in Practical DNA Micrarray Analysis Heidelberg, March 6, 2008 Bilgical questins

More information

Inference in the Multiple-Regression

Inference in the Multiple-Regression Sectin 5 Mdel Inference in the Multiple-Regressin Kinds f hypthesis tests in a multiple regressin There are several distinct kinds f hypthesis tests we can run in a multiple regressin. Suppse that amng

More information

Biplots in Practice MICHAEL GREENACRE. Professor of Statistics at the Pompeu Fabra University. Chapter 13 Offprint

Biplots in Practice MICHAEL GREENACRE. Professor of Statistics at the Pompeu Fabra University. Chapter 13 Offprint Biplts in Practice MICHAEL GREENACRE Prfessr f Statistics at the Pmpeu Fabra University Chapter 13 Offprint CASE STUDY BIOMEDICINE Cmparing Cancer Types Accrding t Gene Epressin Arrays First published:

More information

Internal vs. external validity. External validity. This section is based on Stock and Watson s Chapter 9.

Internal vs. external validity. External validity. This section is based on Stock and Watson s Chapter 9. Sectin 7 Mdel Assessment This sectin is based n Stck and Watsn s Chapter 9. Internal vs. external validity Internal validity refers t whether the analysis is valid fr the ppulatin and sample being studied.

More information

Midwest Big Data Summer School: Machine Learning I: Introduction. Kris De Brabanter

Midwest Big Data Summer School: Machine Learning I: Introduction. Kris De Brabanter Midwest Big Data Summer Schl: Machine Learning I: Intrductin Kris De Brabanter kbrabant@iastate.edu Iwa State University Department f Statistics Department f Cmputer Science June 24, 2016 1/24 Outline

More information

MATCHING TECHNIQUES. Technical Track Session VI. Emanuela Galasso. The World Bank

MATCHING TECHNIQUES. Technical Track Session VI. Emanuela Galasso. The World Bank MATCHING TECHNIQUES Technical Track Sessin VI Emanuela Galass The Wrld Bank These slides were develped by Christel Vermeersch and mdified by Emanuela Galass fr the purpse f this wrkshp When can we use

More information

More Tutorial at

More Tutorial at Answer each questin in the space prvided; use back f page if extra space is needed. Answer questins s the grader can READILY understand yur wrk; nly wrk n the exam sheet will be cnsidered. Write answers,

More information

Part 3 Introduction to statistical classification techniques

Part 3 Introduction to statistical classification techniques Part 3 Intrductin t statistical classificatin techniques Machine Learning, Part 3, March 07 Fabi Rli Preamble ØIn Part we have seen that if we knw: Psterir prbabilities P(ω i / ) Or the equivalent terms

More information

Pattern Recognition 2014 Support Vector Machines

Pattern Recognition 2014 Support Vector Machines Pattern Recgnitin 2014 Supprt Vectr Machines Ad Feelders Universiteit Utrecht Ad Feelders ( Universiteit Utrecht ) Pattern Recgnitin 1 / 55 Overview 1 Separable Case 2 Kernel Functins 3 Allwing Errrs (Sft

More information

You need to be able to define the following terms and answer basic questions about them:

You need to be able to define the following terms and answer basic questions about them: CS440/ECE448 Sectin Q Fall 2017 Midterm Review Yu need t be able t define the fllwing terms and answer basic questins abut them: Intr t AI, agents and envirnments Pssible definitins f AI, prs and cns f

More information

Physical Layer: Outline

Physical Layer: Outline 18-: Intrductin t Telecmmunicatin Netwrks Lectures : Physical Layer Peter Steenkiste Spring 01 www.cs.cmu.edu/~prs/nets-ece Physical Layer: Outline Digital Representatin f Infrmatin Characterizatin f Cmmunicatin

More information

Modelling of Clock Behaviour. Don Percival. Applied Physics Laboratory University of Washington Seattle, Washington, USA

Modelling of Clock Behaviour. Don Percival. Applied Physics Laboratory University of Washington Seattle, Washington, USA Mdelling f Clck Behaviur Dn Percival Applied Physics Labratry University f Washingtn Seattle, Washingtn, USA verheads and paper fr talk available at http://faculty.washingtn.edu/dbp/talks.html 1 Overview

More information

Data Mining: Concepts and Techniques. Classification and Prediction. Chapter February 8, 2007 CSE-4412: Data Mining 1

Data Mining: Concepts and Techniques. Classification and Prediction. Chapter February 8, 2007 CSE-4412: Data Mining 1 Data Mining: Cncepts and Techniques Classificatin and Predictin Chapter 6.4-6 February 8, 2007 CSE-4412: Data Mining 1 Chapter 6 Classificatin and Predictin 1. What is classificatin? What is predictin?

More information

IAML: Support Vector Machines

IAML: Support Vector Machines 1 / 22 IAML: Supprt Vectr Machines Charles Suttn and Victr Lavrenk Schl f Infrmatics Semester 1 2 / 22 Outline Separating hyperplane with maimum margin Nn-separable training data Epanding the input int

More information

x 1 Outline IAML: Logistic Regression Decision Boundaries Example Data

x 1 Outline IAML: Logistic Regression Decision Boundaries Example Data Outline IAML: Lgistic Regressin Charles Suttn and Victr Lavrenk Schl f Infrmatics Semester Lgistic functin Lgistic regressin Learning lgistic regressin Optimizatin The pwer f nn-linear basis functins Least-squares

More information

What is Statistical Learning?

What is Statistical Learning? What is Statistical Learning? Sales 5 10 15 20 25 Sales 5 10 15 20 25 Sales 5 10 15 20 25 0 50 100 200 300 TV 0 10 20 30 40 50 Radi 0 20 40 60 80 100 Newspaper Shwn are Sales vs TV, Radi and Newspaper,

More information

Enhancing Performance of MLP/RBF Neural Classifiers via an Multivariate Data Distribution Scheme

Enhancing Performance of MLP/RBF Neural Classifiers via an Multivariate Data Distribution Scheme Enhancing Perfrmance f / Neural Classifiers via an Multivariate Data Distributin Scheme Halis Altun, Gökhan Gelen Nigde University, Electrical and Electrnics Engineering Department Nigde, Turkey haltun@nigde.edu.tr

More information

MODULE ONE. This module addresses the foundational concepts and skills that support all of the Elementary Algebra academic standards.

MODULE ONE. This module addresses the foundational concepts and skills that support all of the Elementary Algebra academic standards. Mdule Fundatinal Tpics MODULE ONE This mdule addresses the fundatinal cncepts and skills that supprt all f the Elementary Algebra academic standards. SC Academic Elementary Algebra Indicatrs included in

More information

Aerodynamic Separability in Tip Speed Ratio and Separability in Wind Speed- a Comparison

Aerodynamic Separability in Tip Speed Ratio and Separability in Wind Speed- a Comparison Jurnal f Physics: Cnference Series OPEN ACCESS Aerdynamic Separability in Tip Speed Rati and Separability in Wind Speed- a Cmparisn T cite this article: M L Gala Sants et al 14 J. Phys.: Cnf. Ser. 555

More information

Tree Structured Classifier

Tree Structured Classifier Tree Structured Classifier Reference: Classificatin and Regressin Trees by L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stne, Chapman & Hall, 98. A Medical Eample (CART): Predict high risk patients

More information

4th Indian Institute of Astrophysics - PennState Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur. Correlation and Regression

4th Indian Institute of Astrophysics - PennState Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur. Correlation and Regression 4th Indian Institute f Astrphysics - PennState Astrstatistics Schl July, 2013 Vainu Bappu Observatry, Kavalur Crrelatin and Regressin Rahul Ry Indian Statistical Institute, Delhi. Crrelatin Cnsider a tw

More information

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 11 (3/11/04) Neutron Diffusion

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 11 (3/11/04) Neutron Diffusion .54 Neutrn Interactins and Applicatins (Spring 004) Chapter (3//04) Neutrn Diffusin References -- J. R. Lamarsh, Intrductin t Nuclear Reactr Thery (Addisn-Wesley, Reading, 966) T study neutrn diffusin

More information

Multiple Source Multiple. using Network Coding

Multiple Source Multiple. using Network Coding Multiple Surce Multiple Destinatin Tplgy Inference using Netwrk Cding Pegah Sattari EECS, UC Irvine Jint wrk with Athina Markpulu, at UCI, Christina Fraguli, at EPFL, Lausanne Outline Netwrk Tmgraphy Gal,

More information

Preparation work for A2 Mathematics [2018]

Preparation work for A2 Mathematics [2018] Preparatin wrk fr A Mathematics [018] The wrk studied in Y1 will frm the fundatins n which will build upn in Year 13. It will nly be reviewed during Year 13, it will nt be retaught. This is t allw time

More information

Determining the Accuracy of Modal Parameter Estimation Methods

Determining the Accuracy of Modal Parameter Estimation Methods Determining the Accuracy f Mdal Parameter Estimatin Methds by Michael Lee Ph.D., P.E. & Mar Richardsn Ph.D. Structural Measurement Systems Milpitas, CA Abstract The mst cmmn type f mdal testing system

More information

AP Statistics Notes Unit Two: The Normal Distributions

AP Statistics Notes Unit Two: The Normal Distributions AP Statistics Ntes Unit Tw: The Nrmal Distributins Syllabus Objectives: 1.5 The student will summarize distributins f data measuring the psitin using quartiles, percentiles, and standardized scres (z-scres).

More information

A Matrix Representation of Panel Data

A Matrix Representation of Panel Data web Extensin 6 Appendix 6.A A Matrix Representatin f Panel Data Panel data mdels cme in tw brad varieties, distinct intercept DGPs and errr cmpnent DGPs. his appendix presents matrix algebra representatins

More information

Support-Vector Machines

Support-Vector Machines Supprt-Vectr Machines Intrductin Supprt vectr machine is a linear machine with sme very nice prperties. Haykin chapter 6. See Alpaydin chapter 13 fr similar cntent. Nte: Part f this lecture drew material

More information

Guide to Using the Rubric to Score the Klf4 PREBUILD Model for Science Olympiad National Competitions

Guide to Using the Rubric to Score the Klf4 PREBUILD Model for Science Olympiad National Competitions Guide t Using the Rubric t Scre the Klf4 PREBUILD Mdel fr Science Olympiad 2010-2011 Natinal Cmpetitins These instructins are t help the event supervisr and scring judges use the rubric develped by the

More information

INSTRUMENTAL VARIABLES

INSTRUMENTAL VARIABLES INSTRUMENTAL VARIABLES Technical Track Sessin IV Sergi Urzua University f Maryland Instrumental Variables and IE Tw main uses f IV in impact evaluatin: 1. Crrect fr difference between assignment f treatment

More information

Localized Model Selection for Regression

Localized Model Selection for Regression Lcalized Mdel Selectin fr Regressin Yuhng Yang Schl f Statistics University f Minnesta Church Street S.E. Minneaplis, MN 5555 May 7, 007 Abstract Research n mdel/prcedure selectin has fcused n selecting

More information

IN a recent article, Geary [1972] discussed the merit of taking first differences

IN a recent article, Geary [1972] discussed the merit of taking first differences The Efficiency f Taking First Differences in Regressin Analysis: A Nte J. A. TILLMAN IN a recent article, Geary [1972] discussed the merit f taking first differences t deal with the prblems that trends

More information

Module 3: Gaussian Process Parameter Estimation, Prediction Uncertainty, and Diagnostics

Module 3: Gaussian Process Parameter Estimation, Prediction Uncertainty, and Diagnostics Mdule 3: Gaussian Prcess Parameter Estimatin, Predictin Uncertainty, and Diagnstics Jerme Sacks and William J Welch Natinal Institute f Statistical Sciences and University f British Clumbia Adapted frm

More information

arxiv:hep-ph/ v1 2 Jun 1995

arxiv:hep-ph/ v1 2 Jun 1995 WIS-95//May-PH The rati F n /F p frm the analysis f data using a new scaling variable S. A. Gurvitz arxiv:hep-ph/95063v1 Jun 1995 Department f Particle Physics, Weizmann Institute f Science, Rehvt 76100,

More information

Support Vector Machines and Flexible Discriminants

Support Vector Machines and Flexible Discriminants 12 Supprt Vectr Machines and Flexible Discriminants This is page 417 Printer: Opaque this 12.1 Intrductin In this chapter we describe generalizatins f linear decisin bundaries fr classificatin. Optimal

More information

Eric Klein and Ning Sa

Eric Klein and Ning Sa Week 12. Statistical Appraches t Netwrks: p1 and p* Wasserman and Faust Chapter 15: Statistical Analysis f Single Relatinal Netwrks There are fur tasks in psitinal analysis: 1) Define Equivalence 2) Measure

More information

T Algorithmic methods for data mining. Slide set 6: dimensionality reduction

T Algorithmic methods for data mining. Slide set 6: dimensionality reduction T-61.5060 Algrithmic methds fr data mining Slide set 6: dimensinality reductin reading assignment LRU bk: 11.1 11.3 PCA tutrial in mycurses (ptinal) ptinal: An Elementary Prf f a Therem f Jhnsn and Lindenstrauss,

More information

In SMV I. IAML: Support Vector Machines II. This Time. The SVM optimization problem. We saw:

In SMV I. IAML: Support Vector Machines II. This Time. The SVM optimization problem. We saw: In SMV I IAML: Supprt Vectr Machines II Nigel Gddard Schl f Infrmatics Semester 1 We sa: Ma margin trick Gemetry f the margin and h t cmpute it Finding the ma margin hyperplane using a cnstrained ptimizatin

More information

Function notation & composite functions Factoring Dividing polynomials Remainder theorem & factor property

Function notation & composite functions Factoring Dividing polynomials Remainder theorem & factor property Functin ntatin & cmpsite functins Factring Dividing plynmials Remainder therem & factr prperty Can d s by gruping r by: Always lk fr a cmmn factr first 2 numbers that ADD t give yu middle term and MULTIPLY

More information

February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA

February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA Mental Experiment regarding 1D randm walk Cnsider a cntainer f gas in thermal

More information

2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS

2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS 2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS 6. An electrchemical cell is cnstructed with an pen switch, as shwn in the diagram abve. A strip f Sn and a strip f an unknwn metal, X, are used as electrdes.

More information

MODULE FOUR. This module addresses functions. SC Academic Elementary Algebra Standards:

MODULE FOUR. This module addresses functions. SC Academic Elementary Algebra Standards: MODULE FOUR This mdule addresses functins SC Academic Standards: EA-3.1 Classify a relatinship as being either a functin r nt a functin when given data as a table, set f rdered pairs, r graph. EA-3.2 Use

More information

Checking the resolved resonance region in EXFOR database

Checking the resolved resonance region in EXFOR database Checking the reslved resnance regin in EXFOR database Gttfried Bertn Sciété de Calcul Mathématique (SCM) Oscar Cabells OECD/NEA Data Bank JEFF Meetings - Sessin JEFF Experiments Nvember 0-4, 017 Bulgne-Billancurt,

More information

Evaluating enterprise support: state of the art and future challenges. Dirk Czarnitzki KU Leuven, Belgium, and ZEW Mannheim, Germany

Evaluating enterprise support: state of the art and future challenges. Dirk Czarnitzki KU Leuven, Belgium, and ZEW Mannheim, Germany Evaluating enterprise supprt: state f the art and future challenges Dirk Czarnitzki KU Leuven, Belgium, and ZEW Mannheim, Germany Intrductin During the last decade, mircecnmetric ecnmetric cunterfactual

More information

Chapter 3: Cluster Analysis

Chapter 3: Cluster Analysis Chapter 3: Cluster Analysis } 3.1 Basic Cncepts f Clustering 3.1.1 Cluster Analysis 3.1. Clustering Categries } 3. Partitining Methds 3..1 The principle 3.. K-Means Methd 3..3 K-Medids Methd 3..4 CLARA

More information

CHAPTER 4 DIAGNOSTICS FOR INFLUENTIAL OBSERVATIONS

CHAPTER 4 DIAGNOSTICS FOR INFLUENTIAL OBSERVATIONS CHAPTER 4 DIAGNOSTICS FOR INFLUENTIAL OBSERVATIONS 1 Influential bservatins are bservatins whse presence in the data can have a distrting effect n the parameter estimates and pssibly the entire analysis,

More information

SURVIVAL ANALYSIS WITH SUPPORT VECTOR MACHINES

SURVIVAL ANALYSIS WITH SUPPORT VECTOR MACHINES 1 SURVIVAL ANALYSIS WITH SUPPORT VECTOR MACHINES Wlfgang HÄRDLE Ruslan MORO Center fr Applied Statistics and Ecnmics (CASE), Humbldt-Universität zu Berlin Mtivatin 2 Applicatins in Medicine estimatin f

More information

Application of ILIUM to the estimation of the T eff [Fe/H] pair from BP/RP

Application of ILIUM to the estimation of the T eff [Fe/H] pair from BP/RP Applicatin f ILIUM t the estimatin f the T eff [Fe/H] pair frm BP/RP prepared by: apprved by: reference: issue: 1 revisin: 1 date: 2009-02-10 status: Issued Cryn A.L. Bailer-Jnes Max Planck Institute fr

More information

MATCHING TECHNIQUES Technical Track Session VI Céline Ferré The World Bank

MATCHING TECHNIQUES Technical Track Session VI Céline Ferré The World Bank MATCHING TECHNIQUES Technical Track Sessin VI Céline Ferré The Wrld Bank When can we use matching? What if the assignment t the treatment is nt dne randmly r based n an eligibility index, but n the basis

More information

STATS216v Introduction to Statistical Learning Stanford University, Summer Practice Final (Solutions) Duration: 3 hours

STATS216v Introduction to Statistical Learning Stanford University, Summer Practice Final (Solutions) Duration: 3 hours STATS216v Intrductin t Statistical Learning Stanfrd University, Summer 2016 Practice Final (Slutins) Duratin: 3 hurs Instructins: (This is a practice final and will nt be graded.) Remember the university

More information

CS 109 Lecture 23 May 18th, 2016

CS 109 Lecture 23 May 18th, 2016 CS 109 Lecture 23 May 18th, 2016 New Datasets Heart Ancestry Netflix Our Path Parameter Estimatin Machine Learning: Frmally Many different frms f Machine Learning We fcus n the prblem f predictin Want

More information

INFLUENCE OF SYSTEMATIC EXPERIMENTAL UNCERTAINTIES IN THE EVALUATION OF NUCLEAR DATA

INFLUENCE OF SYSTEMATIC EXPERIMENTAL UNCERTAINTIES IN THE EVALUATION OF NUCLEAR DATA INFLUENCE OF SYSTEMATIC EXPERIMENTAL UNCERTAINTIES IN THE EVALUATION OF NUCLEAR DATA Cyrille De Saint Jean, Pascal Archier, Gilles Nguere, Pierre Lecnte, D. Bernard, C. Carmuze and T. Nicl CEA/DEN/Cadarache

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

Lecture 24: Flory-Huggins Theory

Lecture 24: Flory-Huggins Theory Lecture 24: 12.07.05 Flry-Huggins Thery Tday: LAST TIME...2 Lattice Mdels f Slutins...2 ENTROPY OF MIXING IN THE FLORY-HUGGINS MODEL...3 CONFIGURATIONS OF A SINGLE CHAIN...3 COUNTING CONFIGURATIONS FOR

More information

ENSC Discrete Time Systems. Project Outline. Semester

ENSC Discrete Time Systems. Project Outline. Semester ENSC 49 - iscrete Time Systems Prject Outline Semester 006-1. Objectives The gal f the prject is t design a channel fading simulatr. Upn successful cmpletin f the prject, yu will reinfrce yur understanding

More information

Stats Classification Ji Zhu, Michigan Statistics 1. Classification. Ji Zhu 445C West Hall

Stats Classification Ji Zhu, Michigan Statistics 1. Classification. Ji Zhu 445C West Hall Stats 415 - Classificatin Ji Zhu, Michigan Statistics 1 Classificatin Ji Zhu 445C West Hall 734-936-2577 jizhu@umich.edu Stats 415 - Classificatin Ji Zhu, Michigan Statistics 2 Examples f Classificatin

More information

ChE 471: LECTURE 4 Fall 2003

ChE 471: LECTURE 4 Fall 2003 ChE 47: LECTURE 4 Fall 003 IDEL RECTORS One f the key gals f chemical reactin engineering is t quantify the relatinship between prductin rate, reactr size, reactin kinetics and selected perating cnditins.

More information

Maximum A Posteriori (MAP) CS 109 Lecture 22 May 16th, 2016

Maximum A Posteriori (MAP) CS 109 Lecture 22 May 16th, 2016 Maximum A Psteriri (MAP) CS 109 Lecture 22 May 16th, 2016 Previusly in CS109 Game f Estimatrs Maximum Likelihd Nn spiler: this didn t happen Side Plt argmax argmax f lg Mther f ptimizatins? Reviving an

More information

MATHEMATICS SYLLABUS SECONDARY 5th YEAR

MATHEMATICS SYLLABUS SECONDARY 5th YEAR Eurpean Schls Office f the Secretary-General Pedaggical Develpment Unit Ref. : 011-01-D-8-en- Orig. : EN MATHEMATICS SYLLABUS SECONDARY 5th YEAR 6 perid/week curse APPROVED BY THE JOINT TEACHING COMMITTEE

More information

FIELD QUALITY IN ACCELERATOR MAGNETS

FIELD QUALITY IN ACCELERATOR MAGNETS FIELD QUALITY IN ACCELERATOR MAGNETS S. Russenschuck CERN, 1211 Geneva 23, Switzerland Abstract The field quality in the supercnducting magnets is expressed in terms f the cefficients f the Furier series

More information

Section 11 Simultaneous Equations

Section 11 Simultaneous Equations Sectin 11 Simultaneus Equatins The mst crucial f ur OLS assumptins (which carry er t mst f the ther estimatrs that we hae studied) is that the regressrs be exgenus uncrrelated with the errr term This assumptin

More information

A Few Basic Facts About Isothermal Mass Transfer in a Binary Mixture

A Few Basic Facts About Isothermal Mass Transfer in a Binary Mixture Few asic Facts but Isthermal Mass Transfer in a inary Miture David Keffer Department f Chemical Engineering University f Tennessee first begun: pril 22, 2004 last updated: January 13, 2006 dkeffer@utk.edu

More information

Performance Bounds for Detect and Avoid Signal Sensing

Performance Bounds for Detect and Avoid Signal Sensing Perfrmance unds fr Detect and Avid Signal Sensing Sam Reisenfeld Real-ime Infrmatin etwrks, University f echnlgy, Sydney, radway, SW 007, Australia samr@uts.edu.au Abstract Detect and Avid (DAA) is a Cgnitive

More information

Methods for Determination of Mean Speckle Size in Simulated Speckle Pattern

Methods for Determination of Mean Speckle Size in Simulated Speckle Pattern 0.478/msr-04-004 MEASUREMENT SCENCE REVEW, Vlume 4, N. 3, 04 Methds fr Determinatin f Mean Speckle Size in Simulated Speckle Pattern. Hamarvá, P. Šmíd, P. Hrváth, M. Hrabvský nstitute f Physics f the Academy

More information

Statistics, Numerical Models and Ensembles

Statistics, Numerical Models and Ensembles Statistics, Numerical Mdels and Ensembles Duglas Nychka, Reinhard Furrer,, Dan Cley Claudia Tebaldi, Linda Mearns, Jerry Meehl and Richard Smith (UNC). Spatial predictin and data assimilatin Precipitatin

More information

[COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t o m a k e s u r e y o u a r e r e a d y )

[COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t o m a k e s u r e y o u a r e r e a d y ) (Abut the final) [COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t m a k e s u r e y u a r e r e a d y ) The department writes the final exam s I dn't really knw what's n it and I can't very well

More information

NUROP CONGRESS PAPER CHINESE PINYIN TO CHINESE CHARACTER CONVERSION

NUROP CONGRESS PAPER CHINESE PINYIN TO CHINESE CHARACTER CONVERSION NUROP Chinese Pinyin T Chinese Character Cnversin NUROP CONGRESS PAPER CHINESE PINYIN TO CHINESE CHARACTER CONVERSION CHIA LI SHI 1 AND LUA KIM TENG 2 Schl f Cmputing, Natinal University f Singapre 3 Science

More information

Snow avalanche runout from two Canadian mountain ranges

Snow avalanche runout from two Canadian mountain ranges Annals f Glacilgy 18 1993 Internati n al Glaciigicai Sciety Snw avalanche runut frm tw Canadian muntain ranges D.J. NIXON AND D. M. MCCLUNG Department f Civil Engineering, University f British Clumbia,

More information

initially lcated away frm the data set never win the cmpetitin, resulting in a nnptimal nal cdebk, [2] [3] [4] and [5]. Khnen's Self Organizing Featur

initially lcated away frm the data set never win the cmpetitin, resulting in a nnptimal nal cdebk, [2] [3] [4] and [5]. Khnen's Self Organizing Featur Cdewrd Distributin fr Frequency Sensitive Cmpetitive Learning with One Dimensinal Input Data Aristides S. Galanpuls and Stanley C. Ahalt Department f Electrical Engineering The Ohi State University Abstract

More information

EDA Engineering Design & Analysis Ltd

EDA Engineering Design & Analysis Ltd EDA Engineering Design & Analysis Ltd THE FINITE ELEMENT METHOD A shrt tutrial giving an verview f the histry, thery and applicatin f the finite element methd. Intrductin Value f FEM Applicatins Elements

More information

Hypothesis Tests for One Population Mean

Hypothesis Tests for One Population Mean Hypthesis Tests fr One Ppulatin Mean Chapter 9 Ala Abdelbaki Objective Objective: T estimate the value f ne ppulatin mean Inferential statistics using statistics in rder t estimate parameters We will be

More information

Turing Machines. Human-aware Robotics. 2017/10/17 & 19 Chapter 3.2 & 3.3 in Sipser Ø Announcement:

Turing Machines. Human-aware Robotics. 2017/10/17 & 19 Chapter 3.2 & 3.3 in Sipser Ø Announcement: Turing Machines Human-aware Rbtics 2017/10/17 & 19 Chapter 3.2 & 3.3 in Sipser Ø Annuncement: q q q q Slides fr this lecture are here: http://www.public.asu.edu/~yzhan442/teaching/cse355/lectures/tm-ii.pdf

More information

Physics 2010 Motion with Constant Acceleration Experiment 1

Physics 2010 Motion with Constant Acceleration Experiment 1 . Physics 00 Mtin with Cnstant Acceleratin Experiment In this lab, we will study the mtin f a glider as it accelerates dwnhill n a tilted air track. The glider is supprted ver the air track by a cushin

More information

LHS Mathematics Department Honors Pre-Calculus Final Exam 2002 Answers

LHS Mathematics Department Honors Pre-Calculus Final Exam 2002 Answers LHS Mathematics Department Hnrs Pre-alculus Final Eam nswers Part Shrt Prblems The table at the right gives the ppulatin f Massachusetts ver the past several decades Using an epnential mdel, predict the

More information

Tutorial 3: Building a spectral library in Skyline

Tutorial 3: Building a spectral library in Skyline SRM Curse 2013 Tutrial 3 Spectral Library Tutrial 3: Building a spectral library in Skyline Spectral libraries fr SRM methd design and fr data analysis can be either directly added t a Skyline dcument

More information

Smoothing, penalized least squares and splines

Smoothing, penalized least squares and splines Smthing, penalized least squares and splines Duglas Nychka, www.image.ucar.edu/~nychka Lcally weighted averages Penalized least squares smthers Prperties f smthers Splines and Reprducing Kernels The interplatin

More information