Gaussian Quadrature Involving Einstein and Fermi Functions With an Application to Summation of Series*

Size: px
Start display at page:

Download "Gaussian Quadrature Involving Einstein and Fermi Functions With an Application to Summation of Series*"

Transcription

1 MATHEMATICS OF COMPUTATION VOLUME 44, NUMBER 169 JANUARY 1985, PAGES Gaussian Quadrature Involving Einstein and Fermi Functions With an Application to Summation of Series* By Walter Gautschi and Gradimir V. Milovanovic Abstract. Polynomials trk() = trk(; d\), k = 0,1,2,..., are constructed which are orthogonal with respect to the weight distributions d\(t) = (t/(e' - l))r dt and d\(t) = (I/O' + V)Y dt, r = 1,2, on (0, oo). Moment-related methods being inadequate, a discretized Stieltjes procedure is used to generate the coefficients ak, ßk in the recursion formula " t+i(0 = (' - «*K(0 - /V*-i(0. * - 0,1,2,..., ir0(f) = 1, «_!(<) - 0. The discretization is effected by the Gauss-Laguerre and a composite Fejér quadrature rule, respectively. Numerical values of ak, ßk, as well as associated error constants, are provided for 0 < k ^ 39. These allow the construction of Gaussian quadrature formulae, including error terms, with up to 40 points. Examples of n-point formulae, n = 5(5)40, are provided in the supplements section at the end of this issue. Such quadrature formulae may prove useful in solid state physics calculations and can also be applied to sum slowly convergent series. 1. Introduction. We are interested in Gaussian quadrature on [0, oo] relative to the weight functions er(t) = (t/(e' - l))r and <pr(f) = (l/(e' + l))r. These functions arise, for example, in solid state physics and are referred to, when r = 1, as Einstein and Fermi functions, respectively. Integrals with respect to the measure dx(t) = er(t) dt, r = 1 and 2, are widely used in phonon statistics and lattice specific heats [7, 10], [1, 2.4], and occur also in the study of radiative recombination processes [9, 9.2]. Specifically, the average energy of a quantum harmonic oscillator of frequency «at temperature T (representing thermal vibrations of crystal lattice atoms) is given by h< (1.1) u = exp(hu/kt) - 1 ' where h = h/2m (h is the Planck constant) and k is the Boltzmann constant. Therefore, U = ktex(hu/kt), where ex is Einstein's function. Letting g(u) denote the phonon density of states function, and integrating (1.1) over the entire frequency range, the total energy of thermal vibration of the crystal lattice becomes Received April 11, 1983; revised November 14, 1983 and April 3, Mathematics Subject Classification. Primary 33A65, 65D32; Secondary 65A05, 65B10. * The work of the first author was sponsored in part by the National Science Foundation under grant MCS A American Mathematical Society /85 $ $.25 per page

2 178 WALTER GAUTSCHI AND GRADIMIR V. MILOVANOVIC Furthermore, differentiating U with respect to temperature T, yields the crystal lattice heat capacity at constant volume, - = f (hu/kt)2 ;kg(o>) exp(hu/kt) 0 (exp(r2w//cr) - 1) du, that is, (1.3) C = k2t / <» / CO / e2(t)f(t) dt where f(t) = e'g((kt/h)t). Similarly, integrals of the type /0 q>x(t)f(t) dt (in fact, more generally /o <Pi(* ~ to)f(t) dt, for some parameter t0) are encountered in the dynamics of electrons in metals, where they express the specific heat of the electron gas [8, 9.17]. For an application to heavy doped semiconductors, see also [10]. It will be shown in Section 4 that integration with respect to dx(t) = ex(t) dt and dx(t) = <px(t) dt is also useful in summing slowly convergent series whose general term is expressible in terms of a Laplace transform or its derivative. Gaussian quadrature relative to the weight functions er and <pr will be particularly attractive in the case r = 1, since both weight functions then have poles with nonzero residues, the former at 2mri, n = ±1, ±2,..., the latter at (2n + l)wi, n = 0, +1, ±2,_Classical integration, even based on Gauss-Laguerre quadrature, will often be too slow, but will be used to generate the desired quadrature rules, at least in the case of the weight function er; see (2.3) below. The problem, basically, amounts to generating the coefficients ak, ßk in the recursion formula «*+i(0 - ('- «*K(0 - rv*-i(')> k = 0,1,2,..., n_x(t) = 0, *0(0 = 1 for the (monic) orthogonal polynomials trk(-) = irk(-; dx), k = 0,1,2, (/?0 is arbitrary, but will be defined as ß0 = /0 dx(t).) Once the first n of these coefficients, ak, ßk, k = 0,1,...,n - 1, and ßn, are known, the w-point Gaussian quadrature formula (1.4) / CO / f(t)dx(t)= V(t ) + *m(/)> ^0,1-1 Rjf) = yj(2m)(r), o<t<^, including the error constant ym, can easily be obtained for any m with 1 < m < n. The nodes tm = r m), indeed, are the eigenvalues of the (symmetric tridiagonal) Jacobi matrix /_.= Wi «1 {K 0 ypm-l am-\

3 GAUSSIAN QUADRATURE INVOLVING EINSTEIN AND FERMI FUNCTIONS 179 while the weights X^ = X^"1' are given by X^ = ß0v2x in terms of the first components v^ of the corresponding normalized eigenvectors; see, e.g., [3, 5.1]. Moreover, /Vi ft, (2m)! 1,2,...,«. A number of methods are available, and have been analyzed in [4], for computing the recursion coefficients ak, ßk. They are either based on the moments (or modified moments) of the weight distribution dx(t), or else use a suitable discretization of the inner product / OO (u,v)=f u(t)v(t) dx(t), u,v Jn P. where u, v are polynomials. In the next section we discuss the relative merits of these methods for constructing the particular orthogonal polynomials at hand. 2. Generation of the Recursion Coefficients. We consider first the weight function er. The classical approach (for example, the Chebyshev algorithm; see [4, 2.3]) departs from the moments of the weight function, which, in the case at hand, can be expressed in terms of the Riemann zeta function f(z), / OO M* = / Jo t\(t) dt (2.1) (k + 1)! (* + 2), r=l, (* + 2)![?(* + 2)- (* + 3)], r = 2, Jfc = 0,1,2,. It is well-known, however, that the moments pk define the recursion coefficients <xk, ßk and the associated Gaussian quadrature formulae poorly in a numerical sense. The map Gn from the first 2«moments pk,k = 0,\,2,...,2n - 1, to the weights X'J1' and nodes T (n) of the «-point Gaussian formula, in fact becomes progressively more ill-conditioned as n increases. This is illustrated in Table 2.1, where in the second and third column the condition number of this map (in the sense of [4, Eq. (3.1 l)f]) is shown as a function of «for r = 1 and r = 2, respectively. (Numbers in parentheses indicate decimal exponents.) Table 2.1 The numerical condition of various maps relating to the construction of orthogonal polynomials irk( ; erdt), r = 1, cond Gn r= (2) 1.288(5) 9.092(7) 6.334(10) 4.409(13) 3.076(16) cond Gn r = (1) 7.171(4) 5.820(7) 4.471(10) 3.344(13) 2.465(16) cond G r= (1) 2.934(3) 9.795(5) 4.039(8) 1.878(11) 9.441(13) cond Hn r= (0) 2.163(1) 3.299(1) 4.256(1) 6.761(1) 8.531(1) cond Hn r = (0) 2.161(1) 3.356(1) 4.244(1) 6.783(1) 8.556(1)

4 180 WALTER GAUTSCHI AND GRADIMIR V. MILOVANOVIC Sometimes the condition can be improved by employing modified moments vk = j pk(t)er(t) dt, where {pk} is a system of (monic) polynomials suitably chosen. If the support interval is infinite, however, as in the case at hand, the improvement is often not sufficient to make this a viable alternative. The fourth column of Table 2.1 indeed confirms this. Here, r = 1, and ex(t) ~ te'' as t -» oo, so that the monic Laguerre polynomials with parameter a 1, pk(t) = (-1)**!L >(/), k- 0,1,2,..., appear to be the most natural choices for the polynomials pk. The corresponding modified moments can be shown to be expressible in terms of the (forward) differences, with unit step, of the Riemann zeta function at z = 2, / OO (2.2) vk= "o pk(t)ex(t)dt=(k + \)\Akï(z)\^2, k = 0,1,2,... The map Gn in Table 2.1 is the map from the first 2«normalized modified moments *k = vk\\opk\t)ie'tdt]'x/2, k «0,1,...,2«- 1, to the weights X<;> and nodes t,(b) of the «-point Gaussian quadrature formula (1.4) (with dx(t) = ex(t) dt). The entries in the fourth column exhibit the estimate derived in [4, Eq. (3.15)] for the condition of G. It can be seen that cond G, while somewhat smaller than cond Gn, is still growing unacceptably fast. The modified Chebyshev algorithm (cf. [4, 2.4]), run in single precision on the CDC 6500 (machine precision: ca. 15 significant decimal digits), with the modified moments (2.2) computed in double precision, indeed loses accuracy very much in accordance with the growth of cond Gn; the number of correct decimal digits observed in ak, ßk, k = 3(3)18, is 14, 11, 10, 6,2,0, respectively, not a single digit being correct for k = 18, not even the sign of ßxs. An additional complication arises in connection with the high-order differences in (2.2), which are subject to considerable cancellation errors. For k = 40, for example, one must expect a loss of approx. 12 decimal digits. In contrast, methods based on discretization appear to be incomparably more effective, particularly if one uses the natural discretization based on the Gauss- Laguerre quadrature rule, (2.3) " fc-1 \l-e-rt/rj Here, rk are the zeros of the Laguerre polynomial of degree N, and XLk the associated Christoffel numbers. The discretized Stieltjes procedure (cf. [4, 2.2]), based on (2.3), then converges fairly rapidly as N -» oo. For example, to obtain the first 12 recursion coefficients («= 12) to 12 correct decimals [25 correct decimals] requires N = 49 [N = 127], when r = 1, and N = 41 [N = 85], when r = 2. The first 40 coefficients («= 40) can be obtained accurately to 25 decimal digits with N = 281 for r = 1 and N = 201 for r = 2. Also the numerical stability of the procedure,

5 GAUSSIAN QUADRATURE INVOLVING EINSTEIN AND FERMI FUNCTIONS 181 which is roughly determined (cf. [4, 3.4]) by the condition of the map Hn: (Xx,...,Xn,Tx,...,Tn) -» (a0,...,an_x,ß0,...,ß _x), is rather good. This can be seen from the last two columns of Table 2.1, which display the condition number of Hn in the sense of [4, Eq. (3.8)f]. One might expect that a discretization analogous to the one in (2.3) works well also for the weight function <pr. This, however, is not the case, at least not if r = 1. Convergence turns out to be slow on account of the poles at ± iir, which are twice as close to the real axis as in the case of ex. For example, to obtain 20 correct decimal digits (in the case r 1 and for «= 40), requires N = 361. We used instead a discretization procedure based on the composite Fejér quadrature rule, decomposing the interval of integration into four subintervals, [0, oo] = [0,10] U [10,100] U [100,500] U [500, oo]. Using A* = 201 for r = 1, and N = 281 for r = 2, on each subinterval, then yields the first «= 40 recursion coefficients accurately to 25 decimal digits. The same procedure (with n = 50 and A* = 251) was also used to check the computation based on (2.3) for er, r = 1,2. The maximum discrepancy observed was 1 unit in the 25th digit. 3. Numerical Results. Using the procedures outlined in the last two paragraphs of Section 2, we obtained the results shown in Tables 1-4 of the Appendix. The coefficients ft0 = f(2) = ir2/6 in Table 1 and ft0 = 2[f(2) - f(3)] in Table 2 (cf. Eq. (2.1)), agree to all 25 decimal digits with the values obtained from the 41S-table of the Riemann zeta function in [6]. Similarly, one checks the values ft0 = In 2 in Table 3 and ft, = In 2 - \ in Table 4. Corresponding «-point Gaussian quadrature formulae, «= 5(5)40, for r = 1 and r = 2, can be found to 25 significant decimal digits in Tables 5-8 in the supplements section at the end of this issue. We illustrate these formulae by computing the integrals /i-/"«-'t7*-ï(2)-l, Jo e 1 h = jt e'\^h\\dt = 2^2>2) - 2f(3'2)]> r00. dt I3= I e'-= 1 -ln2, 3 h e'+l f dt 3 h= e-> -" 2 = -21n2, Jo (e'+l)2 2 where f(z, a) is the generalized zeta function. Table 3.1 shows the «-point approximations /,(«) to I, i = 1,2, together with the relative errors r (n), for n = 5(5)25. Similarly, /,(«) and r,(«), / = 3,4, are shown in Table 3.2. In each entry the first digit in error is underlined. The error term in (1.4) yields the bounds 7 //,, / = 1,2,3,4, for the relative error, which can be computed with the help of Tables 1-4 of the Appendix and the limit values in Tables 3.1, 3.2; they are summarized in Table 3.3 for «= 5(5)25. The bounds for I2,14 are seen to be considerably sharper than those for IX,I3.

6 182 WALTER GAUTSCHI AND GRADIMIR V. MILOVANOVIC Table 3.1 Gaussian approximations of the integrals Ix and I2 and relative errors. /,(«) r,(n) I2(n) r2(n) (-4) l.l(-8) (-13) (-18) (-22) (-6) (-12) (-19) l.l(-25) Table 3.2 Gaussian approximations of the integrals I3 and I4 and relative errors. I3(n) r3(«) 74(«) r4(n) l-2(-4) (-9) (-14) (-18) (-23) (-7) (-13) (-20) (-26) Table 3.3 Relative error bounds for I (n),i = 1,2,3,4. 7n/h(") Y A(«) y /h(n) y /h(") 4.8(-2) 8.3(-5) 1.2(-2) 1.3(-5) l.l(-4) 3.0(-10) 1.6(-5) 1.9(-11) 1.9(-7) 6.7(-16) 2.0(-8) 2.3(-17) 2.7(-10) 1.2(-21) 2.3(-ll) 2.5(-23) 3.6(-13) 1.8(-27) 2.5(-14) 2.7(-29) 4. Summation of Series. As an application of Gaussian integration with weight functions e, and <px, we consider the summation of series whose general term is expressible in terms of the derivative of a Laplace transform, or in terms of the Laplace transform itself. Suppose, for example, that ak = -F'(k), where (4.1) Then JfOO e-p'f(t)dt, n Re/7>1. that is, (4.2a) 00 r o r t Lak=L te-k'f(t)dt= -^ f(t)dt, :=i k-ij J e'-l k- ÎF'(k)=rf(t)ex(t)dt.,. 'n fc-1 'o Similarly, for "alternating" series, one obtains (4.2b) -t(-l)k-1f'(k)=ff(t)t<px(t) dt k = l

7 and (4.2c) GAUSSIAN QUADRATURE INVOLVING EINSTEIN AND FERMI FUNCTIONS 183 l(-l)k-1f(k)=rf(t)<px(t)dt. k-i Jo If the series on the left are slowly convergent and the respective function / on the right is smooth, then low-order Gaussian quadrature applied to the integrals on the right provides one (among many other) possible summation procedure. If / exhibits singularities, then the weight function may have to be modified if the effectiveness of the procedure is to be preserved (cf. Example 4.4). In the following examples, "(a)", "(b)", "(c)" refers to a, b, c of Eq. (4.2). Example 4.1. (a)!**_,(*: + l)"2 = 7r2/6-1. Here, -F'(p) = (p + l)-2, and F(p) = (P + I)-1) the integration constant being zero on account of F(p) -» 0 as p -» oo. Thus, f(t) = e'1, and the second column of Table 3.1 shows the rapid convergence of Gaussian quadrature in this case. For example, 15-point quadrature already yields 12 correct decimal digits. In contrast, terms of the series would give only 3-digit accuracy. (b) L"_1(-l)*~1(/c + l)"2 = 1 - tt2/12. Applying Gaussian quadrature to the integral in (4.2b) yields the results shown in Table 4.1. To guarantee, on the basis of Leibniz' convergence criterion, the same accuracy as the one achieved for n = 15 would require the summation of approximately terms. (c) Zf-x(-l)k~l(k + l)"1 = 1 - ln2. The convergence behavior of Gaussian quadrature applied to the integral in (4.2c) is evident from the second column of Table 3.2. Table 4.1 Gaussian approximations K(n) of the integral i"00 \-i K=j e~'t(e' + 1) dt and relative errors. n K(n) r(n) L2(-3) (-8) (-12) (-17) (-21) (-25) Example 4.2. F(p) = p-lcxp(-l/p), -F'(p) = (p - l)p~3 exp(-l/p). The original function is here /(f) = J0(2<JJ). This being an entire function, we expect Gaussian quadrature in (4.2) to converge rapidly. This is confirmed in Table 4.2, which shows the relative errors for the «-point formula, «= 2(2)12. The exact sums (to 24 significant digits), as determined by Gaussian quadrature, are, respectively, OO (k - l)k-3exp(-l/k) = , k = l oo (-l)k~\k - l)fc-3exp(-la) = , fc-i 00 E (-l)/c_1/i"1exp(-l/a:)= *: =!

8 184 WALTER GAUTSCHI AND GRADIMIR V. MILOVANOVIC The first terms of the series yield, respectively, 3,7 and 4 correct decimal digits. The Bessel function J0 was evaluated by means of the rational approximations in [5] indexed 5852, 6553 and Table 4.2 Relative errors in Gaussian approximation of the integrals in (4.2, a-c), wheref(p) _n_(a)_(b)_(c) = p~lexp(-\/p) (-2) 8.95(-l) 1.77(-2) (-6) 2.39(-4) 9.65(-7) (-ll) 3.71(-9) 6.32(-12) (-17) 1.13(-14) 1.05(-17) (-23) 1.08(-20) 1.27(-23) (-23) Example 4.3. F(p) = (1 + p2y1/2, -F'(p) = p(l + p2)~3/2. Here, f(t) = J0(t) again an entire function. Convergence of Gaussian quadrature in (4.2), while still satisfactory, is not quite as fast as in Example 4.2, presumably since the argument of JQ is now essentially squared. The relative errors are shown in Table 4.3. For reference, we list the exact values of the respective sums: 00 A:(l + k2)~3/2 = , *=i (-1) k(l + k2) ' = , k = l oo (-1) (1 + k2)\ ' = k = l The first terms yield 3,8 and 4 correct decimal digits, respectively. Table 4.3 Relative errors in Gaussian approximation of the integrals in (4.2, a-c), where F(p) _n_(a)_(b)_(c) = (l + p2)~l/ (-3) 8.15(-3) 1.99(-4) (-7) 4.75(-6) 2.11(-7) (-10) 2.99(-9) 9.01(-12) (-13) 7.61(-13) 2.26(-14) (-17) 5.64(-16) 2.52(-19) (-20) 8.25(-20) 2.33(-21) (-24) 8.01(-23) 3.88(-25)

9 GAUSSIAN QUADRATURE INVOLVING EINSTEIN AND FERMI FUNCTIONS 185 Example 4.4. F(p) = 2p'\p + 1)"1/2, -F'(p) = (3p + 2)p-2(p + l)"3/2. Here we have an example in which the original function, f(t) = 2 erf \ft, is no longer smooth, having a square root singularity at t = 0. Table 4.4 Relative errors in Gaussian approximation of the integrals in (4.2, a-c), where F(p) = 2p~x(p + 1)~1/2, using weight functions t1/2ex(t) andtl/2<px(t). n (a)_(b)_(c) (-5) 4.69(-5) 9.20(-6) (-10) 1.54(-9) 1.58(-10) (-14) 3.88(-14) 2.70(-15) (-19) 8.78(-19) 4.61(-20) (-24) 1.85(-23) 4.91(-25) This severely retards convergence of Gaussian quadrature in (4.2). When «= 40, for example, the relative errors are still 4.29(-4), 7.19(-6) and 4.80(-4), respectively. Better results can be obtained by integrating with respect to the measures t1/2ex(t) dt and ti/2(px(t) dt. The recursion coefficients for the corresponding orthogonal polynomials have been computed by a discretized Stieltjes procedure [4, 2.2] involving two different discretizations, one on the interval [0,10], where a Gauss-Jacobi quadrature with parameters a = 0, ft = \ (to account for the r1/2-singularity at t = 0) was used, and one on the interval [10, oo], where we used Gauss-Laguerre quadrature as before. With the special Gaussian quadrature rules thus obtained, convergence of the summation process is very satisfactory; see Table 4.4. The exact values of the sums are: oo (3A: + 2)k~2(k + l)~3/2 = , k = l oo (-l)*_1(3jfe + 2)k'2(k + \)'3/2 = , /c=l oo (-1)*"12*-1(A: + 1)"1/2 = fc-i The error function was evaluated by a double precison version of the incomplete gamma function routine in [2], observing that erf ]ft - g*(\, t)\n the notation of [2]. Acknowledgment. The authors are indebted to Professors R. Colella and N. D. Stqjadinovic for discussions of solid state physics applications and for the references [1], [7]-[10].

10 186 WALTER GAUTSCHI AND GRADIMIR V. MILOVANOVIC Appendix AI: Recursion coefficients ak, ßk and error constants yk for orthogonal polynomials irk(-\ erdt), r = 1,2. Table 1 Recursion coefficients and error constants in the case r = 1 alpha(k) beta(k) gamma(k) d+0 0, d d d d d d d+01, d d d d d d+01, d+01, d+01, d+01, d+01, d+01, d+01, d+01, d+01, d+01, d+01, d+01, d d+01, d+01, d+01, lld+01, d+01, d+01, d d+01, d+01, d+01, d d+01, d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d-ll 2609d-ll 3531d d d d d d d d d d d d d d d d d-21

11 GAUSSIAN QUADRATURE INVOLVING EINSTEIN AND FERMI FUNCTIONS 187 Table 2 Recursion coefficients and error constants in the case r alpha (k) beta(k) gamma (k) d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d+01 1, d d+01 1, d d+01 2, lld d+01 2, d d+01 2, d d+01 2, d d+01 2, d d+01 2, d d+01 3, d d d+01 3, d d d d d d d d d d d d d d d d d d d d-ll d d d d d d d d d d d d d d d d d d d d d d d d d d d d-44

12 188 WALTER GAUTSCHI AND GRADIMIR V. MILOVANOVIC Appendix A2: Recursion coefficients ak, ßk and error constants yk for orthogonal polynomials Trk(-;<prdt),r = 1,2. Table 3 Recursion coefficients and error constants in the case r = 1 alpha(k) beta(k) gamma(k) d+0O O97d d d d d d d d d d d O3O90O O524d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d ld d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d-ll d d d d d d d d d d d d d d d d d d d d-23

13 GAUSSIAN QUADRATURE INVOLVING EINSTEIN AND FERMI FUNCTIONS 189 Table 4 Recursion coefficients and error constants in the case r alpha(k) beta(k) gamma(k) d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d O d d d d d d d d d d d d d d d d d d d d d d d d d d d d-ll d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d-47

14 190 WALTER GAUTSCHI AND GRADIMIR V. MILOVANOVIC Department of Computer Sciences Purdue University West Lafayette, Indiana Faculty of Electronic Engineering Department of Mathematics University of Ni NiS, Yugoslavia 1. J. S. Blakemore, Solid State Physics, 2nd ed., Saunders, Philadelphia, Pa., W. Gautschi, "Algorithm 542 Incomplete gamma functions," ACM Trans. Math. Software, v. 5, 1979, pp W. Gautschi, "A survey of Gauss-Christoffel quadrature formulae," in E. B. Christoffel The Influence of his Work in Mathematics and the Physical Sciences (P. L. Butzer and F. Fehér, eds.), Birkhäuser Verlag, Basel, 1981, pp W. Gautschi, "On generating orthogonal polynomials," SI AM J. Sei. Statist. Comput., v. 3, 1982, pp J. F. Hart et al., Computer Approximations, Wiley, New York-London-Sydney, A. McLellan IV, "Tables of the Riemann zeta function and related functions," Math. Comp., v. 22,1968, Review 69, pp S. S. Mitra & N. E. Massa, "Lattice vibrations in semiconductors," Chapter 3 in: Band Theory and Transport Properties (W. Paul, ed.), pp Handbook on Semiconductors (T. S. Moss, ed.), Vol. 1. North-Holland, Amsterdam, F. Reif, Fundamentals of Statistical and Thermal Physics, McGraw-Hill, New York, R. A. Smith, Semiconductors, 2nd ed., Cambridge Univ. Press, Cambridge, R. J. Van Overstraeten, H. J. DeMan & R. P. Mertens, "Transport equations in heavy doped silicon," IEEE Trans. Electron Dev., v. ED-20, 1973, pp

15 mathematics of computation volume 44, number 169 JANUARY 1985, PAGES Sl-Sll Supplement to Gaussian Quadrature Involving Einstein and Fermi Functions with an Application to Summation of Series By Walter Gautschi and Gradimir V. Milovanovic TABLE 5. Nodes and weights for n-point Gaussian quadrature with respect to the weight function e,(t)=t/(e -1) on (0,»), n=5(s)40. zero(n) weight(n) O6d d+û d d d d d d d d-05 zerotn) weight(n) d d d d O d d d d d d d d d d d O O99d d d d d-12 zerotn) weight(n) d d d+O d d d d d d d d d d d d d d d d d d d d d d d d d d d-19 SI 1985 American Mathematical Society /85 $ $.25 per page

16 SUPPLEMENT CO O h r\i <f i p~ o f co co o o o CN CN CN co co co -cr I I I I l i i I I I I 1 i i i i t TJ TJ TJ *D TJ TJ TJ TJ TJ TJ TJ TJ r TJ TJ TJ TJ TJ TJ TJ Tí TJ TJ TJ TJ TJ TJ TJ TJ TJ O COin cm 10 OrtH if m en o CN CN en <-i cmcn if n en co i~i m m ^ co o m cm co cn co rn 10 -H C nj *T m en m --h r*. m o r~ O ro en v0 m cn m i-t io (N r* ro M i0 O r> r- ci r^ < ^r m LO CO (N p* en en m o CN m m co i0 CN r- lo Oí lo io <N oí O <T 0 co -H 10 c r- en co en O O 10 cn m en ^ i0 co io \o O O cji CNr* en io f 01 en CN c en en m H HO» 10 CN o r-* co co cn if if en en cm r- t CO CN l in i0 if T if rh H ^ en co en cncn O Oí r-i (N r-h CN m en lo r^ enm fm CN CO CO r m cn 01 CMm en oo i m co m en m r^ -n ^" en p- MflO CN H O* CM C CN ^ ^ roen ro en p- m < O CO CJt m rh <f co CN CTi -H niño -h m co *r c 10 o en cn en en en in CN r^ cn r"» O ^ CN r^ ro en CM CM 10 >H m i -h en n CO r-t C ch en H O en r-t mtjif m en r^- r*- i0 m r- if m co m o en ^ cn T co m in c CN r-t r- * m m co O r-t 10 O O i cn m n* m nt o 10 Tf ih C0 r-i ^r 0» m if en c <-H CO1 en CN 10 1 CO CO 00 -H COrH co CO CN tn 10 CTi 10 ID r- < >mh CTir- cn co m in O m en en cn ^ r- m O r-t m i0 i0 CO cjl CO en *T in r- c io r* en co co 00 tt CN en o m r*- en --H ro 10 ID O eo (N T*n CO CMCN r* c r> cm(n o o n CNm i0 o o r^ r^ (N m cmr> p- en <-i»0 p P~ CO r --4 en H^O o en T if rh ^f en co r^ r- in p» co en co cn CN m CN co * f*l CMCO m r-t m in i0 en o 00 CO CM CN (N T 10 CO O 10 ^r p* cn 0 10 in m <f en O en m n* <n n if *r co cn ro o m CO <N rh en 10 co en to r*- en c CD CNJCN m m co co cn oo ^r o rn <h en co co ^" fo -H don vo en co V en m r- ' O H r- m co en o 10 <* o m i0 -h co co 10 ro rh in mon u3 t cn m r- ^r c r- io -h en CN rh CO r*- ro m co - co m en co»n r- en ntnin 01 p* CN 10 i r- o p- m v0 m r*- r-i O CO CO P- in co p~ cn id un iû t in r O m CN 10 rh co in r*- en if m m J T <H H O CN m H en f H ^r en en en m r^ cn m icnencicnmcororhror*! HtvjHHConHniruDinrnHHH^nH h O O O OOHHHrlHHH r-{ r-t r-i CN o o o o o o o o ooooooooo o o o ) O O O o o o O i i I J.4.J.J.J. TJ TJ Tî TJ TJ O TJ TJ TJ TJ TJ TJ TJ T) TJ TJ ' TJ TJ TJ J TJ TJ TJ TJ TJ TJ TJ en rn en i0 en m r^ co ko co co en r^ t m m cm ) T CN rh CM (N co in en en m p- m -i en r CO CO i0 o o ^r m o ' OO«) - m r-h en CO CD rh CN co co O 10 o en r i en r co en en r-t r- ' CO <D CN CN 00 rh 10 rh r- rh ^ "40 X» i0 m (N oo m TJ 00 Tf CM 10 C0 cm m o ro en ( en o co rh m en co m en co *j O rh r- r-i *t m en co en o en 10 CN NT" ro o c [^ P- rh to m cmen in o co en ^" o en en m. i en loo't *f r~ co rh 10 co *ï r- c i0 m i 10 ^T 00 Tf o i0 O if CN rh «3 * o m en P-- t o en i0 co en ro rn P^ ro i i0 ^r r- r- r^ i o p- en lo^oo en en cm en cn m m en en r^ i* o o en en co t o p- r- en io cm10 r co en in in r-t r-l ^ r- r* ro v0 r^ cm10 10 co v0 en r rh en en en id cmco en -h en cn ^ \o r- o en i0 cn O T T m m cm i co r-t m r-~ in m m m r^ cm^0 m en 10 CO rh 00 cn m T CM T eo en r- O r- co ro cn en < o h en (N o en CN co o cn oo V$ t0 ^* ^" m y) en co en i0 m cm en cm «p- m en r- co en r-- m ñ* o co H OlOH en en en m co i o o o > m en cnoo co o \û in i0 co o T 10 r* en ro en rn 10 o CMC0 if ^f» cn en ( (N CN rh CM C0 rh en r C0 tj- m *r r^- CN en r^ co co ^* co m. m m t rh V0 00 co r- en00 10 CN CO O CN O <N CO O r^ co rn 10 cm co i co en ' i0 i0 O en ^" m CD tn rh o en cn en CN o en m i0 > r- *r co r- c I O 10 i CN OO <r id <r O CO C0 rh co m ^r m n Cn CM rh r-\ r-t r-t l I 10 CM l m rh rh Hlflf (N in vd en o if co co r- i <-{ r- m m o 10 r-t r- ( ) O C0 ( en en vo P- O O m O cmr^ oo p^ m cn io m i. en co ^T 10 P- r-t co t cm n r-\ CM 10 O O co r^ CO CM CO rh CN T ^r i0 r-i m IN CN O CO ( O <N 10 C0 F cm r- r- en en co cm co r- i0 r- co CM NT CM C *f O r-* r-\ (N 10 oo ^r en en en m co oo m co co m O CM CM C 10 CN rh CN r-* 10 en m cm m en cn o en o ro COI'OI CO CM 10 m rh r^ A1 n n o mcnl0rhlncmirini0co' irhcncn<ncnen^,ij,'ïini0i0r-cocn. jen^ini0r^ajc^ohrsicn^ini0r^cdcno'-icnrnntini0p--cocno rh-hrhrhrhrhrhrhrhrhcncmcmcmcmcncmcncncmm -i m vd r o o o c ) O o o o o TJ I TJ I i i i l l l TJ TJ TJ TJ TJ TJ TJ TJ 3TJTJTJTJTJTJTJ m cm \Û CM C0 "linrsicncn m^nr» in *f m C0 CMCO O O t en o o en lo io en r- T ID > J P- o o en in - iû r-»r oo O cm r» en m en m O C0 en r- 1 m - I CMP- 10 r- r- en «T co tnlûo oo en rh m iû CO tn P- rh 10 L v0 en \ > en rn CO it kd if vd O eo in *r if if J en CM T i co in p- C0 r co 00 if rh CMCJl 10 r. O m i0 m m m vo co m m en cm co o m r* if CO CO o t r^ to en m en id t cm tn cn rh > m r^ cm in m ^(Np> m m co O O rn r» o t-- 1 TT V0 cn *r r- cm en m eo cn O if O CN C0 10 if m rh r^ r^co «r m id if 00 CN m -t i0 \0 en if r- i0 CN rh rh r\ t0 co o en r» i m j en m i p- en ro cm T (NCfilD X) -H T if 10 o m o i vo CNo co co if CN en r- co CM rh m CM t io o - oo co O en o oo co m -h r^ O i0 \o m p~ o r» en m i (^ en (N r- <n o en en -h co en o m t CN T j r- *r o o m 10 r i p- p- m co en rj CM co m O o en t C0 CN rh -T rh o 00 m O 10 \0 r- i > ñ" en p- en CO 00 en co co 10 (NH en O 10 if en m o <-ten r- if m.-i en en 00 P- cm m en co co en co r- i o o r- <n o o en o co m h m en cm cm m t iocn-fvocncnr- JHHHHHOjrg I I I I I 1 I I co r-t r- CN l CO CO P- e r-t m *? m n t CM rh O O O O O O O O o o o o o o o o o o o o o I TJ TJ TJ TJ TJ T) TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ CO if O if -tf m en rh if C0 m in O 'D 10 p- en m o --h O 10 co P- rh m m o r- p- (MuIhNiO o o o en en m m in en CN 10 O r-t m co m cm m cn m f i0 in h if p* CM O r- o en enco if o O en en o iû m <H P- Cn rh r- m en p- O 10 O r- i0 in t o CN 10 Cn rh co m en if O CO o en en m t (N O O T P» o rh en en i0 rn en p* CN CN m o i-h en en i0 o m m ^" r- f r-t CD ^* m o rn cn en ^> m if rn m co en O CO rh if r-t P* P- 00 if -H CO if o co tn to o en in h i0 io tn 10 P* CN O C0 co en rh m (N en co m P~ en rn if en p* to i0 m* m CU rh en i0 cm oo en rh O O O P- O m CM P^ rh MOO C0 CN m en r-t O ri cn co en en en in ^" oo co en en o if o en if <f m co in o m m co r-t m if o to m t if rh co o en i0 cm r^ O 00 if 10 C0 CMcn en cm r- io r* co 10 co 10 C0 10 r-t P- *f erj o o r^ o en m m id co en 10 CO oo m en m P* if r^ m ro in if co en co i0 en co en -H en en tn h io <n co m r-- m «r cm co T rh m co 10 CO m - Hiflin r^ r-t rf m m co ^* en r> cm CM rh C0 O co co r> en r- io en rn r-t m co o cm co en en en co en 1 CO tc0 CMen co r- oo»o p- en en ñt co CO 10 en (M CM CMo cm en cmñ* en r-t cm rn if o en co en co n? [^ O r- (n ~> cm r> if CM VO(N ^" in r-h [^ en f r-t o cn rh m 10 > o 10 O CO 00 p* en m io rh en CN -H nf cn m en o t m r-t m 00 CM 10 rh yo cn en r^ co COifrHr-HCnTflOCOr ) cm en en if im* CN CN en if if in»o oo en o cmif 10 co o o o o c O O O O O o O O O rh rh r-t r-t r-t CM TJ I TJ 1 TJ I r> I I I f I I I I I I I I I I I I I I l TJ TJ TJ TJ T) TJ TJ TJ T) TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ CD 10 CO if (N i if O m vo en co tn cm v en i0 o»o m en en m vo «-n O in J COiDf co p- P- en m m 10 CO if 10 rh cm p- co m \o en \û m CM O 00 - en en if en en to en to io rh p» IDIOOT OHifin in in if c co P- P- ñ* m m oo i en o p"* co vo co m en cm en if m m -h r O P- o m p- rh O r- O rh r- co io en co m m vo rn o m 1 if CO 10 cn o p- r- oo co o r~ C0 CM if 00 p- en en r- cm in en m if i en cmcm ( C0 en cn o m <n en i0 en tn p- p~ o P- en en ro en en r m o ^0 r- o rh if cm tn r- r^ id p- in en.-h 10 p^ en en oo p- cm r- h o r- i* r- if (N p* rn eo en <ï cn p» if co o o e o m en ^ cn p- cm en m o oo o 10 rh o cm r-t rh cm co r oo o o if r-t Tf en p* co cm en in rh cm co 00 O ^ lo o en co m m e if O cm ^" 10 p^ i0 co p- o en en ^" n io r-t en en 10 CN o en m r m m o 00 co o en m en p^ m ij* m lo o enif m 10» ^f r^ cn m rn en en io co r-t o vo en cm cmm cm en en co r-t m en r i0 o m if 10 p- HVtMl/IH O 10 if CM-n tt o en en en r-t if en e if en en r-t r-t en cn en m o m en ^" cm m cn cm lo en rn en CO if P- r en co en p* en en ^ o en en rh m p- m co lo en m cm p- if en en co io»r p- cn co en p- m <3> o lo en co en C0 en if c P~ CN CN if m if rh if m en if i O en io co if n m m m > r- rh o cm cm en en rn lo p- en if p- en CM -n en p- cm h n o cm 1 in if m cm en en cm o p- m en en m en m en \o p* p~ r p- m cm t 00 m rh en en co i0 cm p~ o en en en m p- m cn en p* 0 m en en r- p- O m rh en <-t cm en r-t io if p- p~ m co m O cm u co en en c r-t 10 CN rn cm en cn en p* en <-irh en m ' p* o i en m en cm iirihi'cohhhmnhfnininnh. O O o O O o c o o O OOOOOOOOOOOOOOOO I I TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ CM CM O CMm en O en m r-h if co m r-t P- if CM CN ^" O F> r-t m 10 CO en en ^ i0 «m p- O rh r-t 00 r-t m io en io m r- cm m rn m cm en cm r-t m if P- in en m en i0 co <n en cm CM rh p- o m m i0 en co en en lo o cm ^ tn n? cm en ^" CO CN rh 00 rh 10 m f o m eo cn cm if en m m. i en en if en io m P- 10 O CM io r*- cmr-t tn o en if ^ oo 10 o m in en m en en o en co en i0 h C0 i en m rh p* 00 CM P* r-t <f en lo en oo cn <f io -aen en io io co en CMr* o en cm to ^ in en en t ^ o if p- m cm o o CM CM en o H [S en in en co cm m 10 O P* r-t o if en CO (N 10 cm -n m m m ^> rm C0 ij o r~ cn o en <j o co o cn r- o CM O CN m n* cm m if r- en 10 i0 O m cm O rh ^* co r*- en m cm co iû oo en en cm m en rn m o i en. rh rh m co o o en o -h eo r-t o to co co p*. en co co o en m if en en MOH en o r- co p* o m cn if en co en cm O P- CM 00 m en _ h m ^coo m Ni* 10 rh if en cmh- en io en en tn p* m m «HCN CN o vo en \o p- en p^ o m en en ^o en iio h rn m* en o co r-t en co p- if oo o "* "» P~ P* r-t rh en io p* f m ^* CJl rh oo en m p- co m if en m cm rn o en cn en m O 10 P- cn cm r- cm m en o co co r-t m P~ CO if r- cm if m rn m r-t r-t 00 r-t -tf 10 «n cm en en CO CMp- p-- en p~ o en r- if o r- O lo 00 r-t in P- C0 p- r-t m o o o co oo p* P^ n m en if m if co O en \0 en co o co m <r CM 10 CM 00 O r-, O h en loorji 00 CM CM CMm co if en n* io «n en eo o *r en if CN OJ i0 co m 10 P- r-t cm rn en en t co r- p* oo m en ps en co m m r- en r-t *r en H m COifiinp- ro en 10 T r- io " o i en m n? ñ* m if m en if -n O CM if P~ O en p- rh in O m h co io m io 10 1 CO rh CM en if 10 CO ' rh cn cm c encnififininiop^co rhcmcoifiniop-cocno'

17 SUPPLEMENT S3 cn cm cn en «a- m in vo p* co en o r-t cn nt in p- co o cm m 10 co 0 m m co rn m en if o ) O o oooooooo o o o o o o O O rh CM CM (N CN CN en en cn en a1 if ^r m vo I I l III i i i i i i i i i I l l l I l I I I I I till I i i i i J TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ T) TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ T if en in cn O 10 r-t rh en en in if rh CO P* r-t rh O O m en r- en cm en eo m 1 CO o o en rh in oo co in r-t en m 10 T r-t cm rn en o tn eo m cm tn if m m if cm tn en cn io p- en co o un o o en r» r» i* en MJieo in cm en en rn cn m O rh -t o m co o oo m o if in r* r^ m m -h cn p* 10 *f cn o m O 00 rh CN VO 10 P* CM CM10 CM en 10 p- p* m oo m en m p- m if p» vo en en OOlDCDI1 1 in r-t CN 10 T CM if O r-t 10 O O ID CM P- r-t if O en p* en en r-t r-t itl co f co CN C0 en io o en O en C0 cm O. co en 10 O en co en HOlfl io cn r- tn vo p- O O CMen io eo p- o m rh 10 rh if P- vo cn p- CM CM P* r-t r-t ) 10 P* H I o CN if m rn cn O lu CMCO P* P- o cn m m m o 1 CM P- en p* en CD COco m ^ en m p- co co en t io en io m h cm en 0 <f m CN if O r-t p> m r-t r- eo if o en cn p. p- p- en co co en p- co io m en cn io p* en 1 rh CM co eo m m m cn en co if o m r-. en if en oo r-t vo p» p. io io en CO 1D rh rh if m m *r en rn rh m en J if CO 10 o m r 01 f^ m en if io m o O C0 r-t o r- en O if CMif p- io cn m en oo CM o CO in CN -cf rh i oo m P- r-t en r CM eo if co if h P- NT CN H en en m h en cn m co m en r en i CN en m oo p. eo m cm co r-t t en ID io <n \ m r-t 00 co O O o r* en in en in o m io m* m CN 10 o co co in en en cn ^ m *r m io p~ *f *=f i io en rn 10> en en en en ij r- co co io r- if if co 10 p- m if nt m p- r- o io O <tf H P- en cm m if co ) m io in r-h en m en io io m m o m T en m en p- io tn o <no co eo O r-t 10 P- O en io cn en io cn p~ eo p- r o en en p- io en co O if H CMen f 00 r-t p* m r-t t I 10 0 m cn en eo r-t co en cm r-t p* in p- *f cn m rn t cm cn m mi tn p* en 10 r in m if en rn rn co oo oo en io oo cm r- O o r*- en 10 if OM^in CN rh p- o *f l en co io io» r-t O 10 cm en r-t un m id m if r-t m en co oo co m C0 if if p- p- m p- en m co en io m r-t p* io m I CO io mi CM T r-t cn p- p- 00 if 1 o en cn <t.p- to in o cmco P- o m o en rh m cn oo r-t CN r-t m CN o i0 if nt eno o cn p- (N if O o r- eo m m p- r*- p* lo if co p- o o en en m rn o en ) 1 en if Ht p~ in vo r-t 10 ro O 00 rh io cm m co p o co if m io m cmio en r-t io tn cm m m en m en m 1 if 10 en o > en o en co cn eo O tn i m p- p- en cm p* CN if P- io io enif 10 CM en m vo io to m cm en o in ioi co m m o oo oo io 10 r-t «T 10 O CN r-t m p- if 1 o cm cm co?? o if i** en P"- T P* en en t co j f if m cm oo m r- r- cn r-t p- en rh CJl P^ tn in in O O rh m cm o h m cn en r-t r-t co cm vo OrHcoOiootnm V0 T CMtn o O p* r- oo m i p- io m m OMCÍ rh cm o oo p~ p- en cm m o en ^ jcmencmcnrhr^tnrhinrhicnhtmtnit^enenrhr^enencminoorheniûcmco J O O o o o o o o o o o O o o o O o ( o o o O O O o o o O O O i J TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ ' TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ T O f CMco in co m m oo cm io en tn C0 rh r-t 00 t 1 10 o m cm10 10 CMif io en if 10 P O if O 10 O h io en co m cm oo 10 CN P- p- r» en m r-- en if en eo en en o r- 00 rh CMo o o rh en en en p- p~ co cn lof IN Cn rh r-t r-t 00 CMp- p- co if en io 10 CN p- m en eo p* if en P- -tf 10 m CN rh CM 10 if ih en m p- <f - co en oo m r^ if r-t r-t 10 oo p- m CN r f CN C0 10 cn en p* m io O CM if if cm m co p- en r-t tn j r*- cn cn to rh p- cm m cmio co o en io cn 10 en CO if o CM O C0 p- if m rh T C0 en p- cn HOMOCO J P- VO CN CN O -H 0 cm cn oo en cn p* io m p- io if CN io m io m io -t p- en CM O CN o vo en <n cn en if tn r n o r-t O r-t 00 en oo cmrh m CMif CM co m vo en rh o en en p- cm r* en H CM CMCfO en rh m m rn j en if rn o o O P* P- rh ^MD P- rh m io io rf m o p» O r-t 00 P- rh CD 00 rh if <N cn en vo.h o vo r co eo m if C0 10 VO P- CMm io r- <í MN en f 10 en h <r 10 O en if cn m P- rh 00 en m m m r* p* o vo j ^ r-t m cn ^ m 1 P- o en m en en m oo 10 CN o m r-h 10 if CN O mm^ r- cm en O -H O r- ^ oo cn co J r-t cm ^ nt o 10 en ^f cn vo en en en r-t if en m rn r* en O cn cmrh IO 10 m if cm if m H CM <D 10 io m en ri ID eo rh 10 rh ^ vo 0 O co if e if OO VOm p- vo CM h m co cm m oo en rn en en J co 10 ^f rn io p- en vo h en p- en o o o p- CM ) U0 r-t r-t r-t r-t 0> O O rh oo r- en en p- o vo cm en if f t en en if m io h r-- en M* r-t CN co cn m rn lû io en co en 10 r- COif en en oo p* en o <r en cm p* Is- CN P* i en m en en - co en m m if en r» m en p* 1 o O ip m p- m o -h -i r- en 10 cm o 10 if rh m io m m oo j i en o m p* en oo en o r* o VO rh 10 O m p» CM CN CO 10 rh O 10 CMoo m m CN rh o p- ih nt" in co g f MN cm en co co en if r-t if VO p- p m cn m io en o p» o cm en O CO 10 CM CO rh m p- io o m n? m cn > Tf IO if en r-t co p- m eo en rh co eo en en 1 m O if f m H in o r- en if o m oo CO O CN io if t> o 'T 3 o en o io oo co m >* r> r-t rh CO p- en m r- p- -i 10 o co en m i en < m 10 CM P^ en if en CO rh r rh o r> 10 r-t C0 nt P-Pif io m io if if 00 r-t P- rh en co rn -rf O CM rh CM cn o r-t m rh cm m en en en en en r- m mu 10 co en r co en en if vo p- vo en if rh P- eo if cmio r^ co Tf en j m en cn rh CM P^ o en en o en if ^, «n m en m co cmo CN O CM rh m f> p- m m rh r-t ^ CM p- rn r*- en h en rn oo cm p* en o i co en m cm m oo co r-t 00 tû NT" en m in en p«p- en p- o m if m o o en co en n* HHinif) cm o o O CM 10 o o CNiT 10 CO m eo rh if en f eo en co i OOHCSif 1lNlno^HNn^ln^o^cJiHHHHHr^lr^lNM^^nm1"^^lnlnlOlO^a]c0WHHHHH r-t cm rn -r m io ^ajc10hn^^^ln<o^coljloh^rovull0^cd*ohc^i^nt'lnl0^co!jlo rhrhrhhrhihrhrhrhrhcn<ncncncncnincncncn cnencnmcncntntncnmn? rh rh CM CN en m if tt m io p- co en o c >ifi0cooenifi0cno o o o o O O O O 0 o O o o O O O O rh r I CN t J CN ( I I 1111 i i I I I i i i i i I I I I I i I TJ TJ TJ TJ TJ TJ TJ TJ T) TJ TJ TJ TJ TJ TJ TJ TJ TJ i TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ i ^ en en co m 1 10 n? T O p- m co io -h o en if e 10 -T O en m in m O m O m rn m o co t en m o ^r rh rh CM O io cm io en rh P- O -H 1 r co en en cm co o O o CO o f rf en co P* en if in CM CM 00 O io m co en -h p~ m en o eo ' en m io h o cn oo r- io nt en p- m en co I en 10 r- m O O co m 1 cm en en r- <H rn p- if e en m cn m co if en m rn o eo m p- en o ) eo en r> if 10 CM 10 en en m if co en co i co en m i CO rh (^ m rh if CN m eo CN 00 if > if rh r- ce m CN CM \0 h ^r m m tn CN CM rh co en in -H in en m -h o m -h r-t io m en m en ) P- CMO co rn r-t i co C0-5T io en r- O m io o --t c f 10 if CO rh CO O co m m o -h if VO rh \ io r* CN 10 p- en o m co m i0 io if if en en en cm r CN rh CM 10 P- CN rn m en en oo m co if t eo m if en if m co en O in O en O -H i CN to 10 e tn m m m cn P- nt rsi en nt en vo if en io ) r- -h en cn o o <f r» m m m m p- iot h h t cm en io O 10 P- Tf ^ if r- rh "" oo o 1 00 rh en cn cm ^f en rn p- m -h r- 1 en en io p- m - m <r if CM co cm m en cn r vo p* en m > m io en io o m V i> co CNen co cmp- co io en rh c CM CM rh io id to eo CI m m o en j in t rn p- * o rh Tf cm p* O rh Mnn co r- vo io r- t 10 CN 10 ^" co m if cm en rh 10 CO J 10 CN o 10 rh ^ m cn if m rh o r^ if T en if tn i io cm en r- m (-» vo en ^ en if i ) co o O cn oo in en en CN if P^ 10 rh p- >h eo en m t en p- -n oo r- id vo vo rn i m en t O 00 co t m m ^" rn m en en eo P- O r- co co f c T P' if if m o en vo vo rh in m i rn fm m <f p* io m cn p- m if cn r- if rh o m p- i O CM 10 rh if CM vo co co co P- O O io en en ^ cm0 rn in io vo en -n io cn t 10 1 CM P- co m en i en p* in p» en p^ oo cmr- if o cn m io en co en o ' in cm if io p~ en r- > if r-t en io en p- en io r-- en en m en i en r- cn cm [ -h o r- p- o en -h 1 p- p» p- en if en p- o m p» m cn if H) CM if CN P- ( COHOlO co co lo ) O en o r- p- co m en p- o en t m r^ co rh co if in rh o r- O CN CN poh m en r- CD 10 r- o co vo 1 t- en rh oo in O o p- en c cm en eo 0 in co i r- co if 10 1 co m p- r-h 10 CO rh if CM eo cm rr rh CD VO rh o en m < tn o p- 1 C0 CM rh o r- co ao in en co o rh cm en m e ihp-mhcsinr-coioncrihhcor rh O O O O O O O o o o O O O O o o > o o o o o ooooooooo I I TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ ) TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ rh * en en p~ if) P- Ol CO O in en f p- en 1 CN T if CM VOp- en o rn en o vo P- C0 m co r- m p- en m i if rh O CM rh O r-t P- if r- <f m rh en en vo en CO en rh co m en -h io r» if io m rh CM O co oo m -h p- en en cm if en h 10 (-. co r- en m en P- 10 en cm o 10 CN P- o en oo vo in if rh rh if if vo tn i* to en o co en ^r o en m i0 H en o cn o m <. _ (N en to m o en vo vo r- ^f m P- CM 10 cf cm en CO r-h CO CM co en CO CN if m r- OPT O en m en vo CM VO CO en vo en ^ 10 rh en o r-h m 1 CD i CO rh if o co O en m en - co eo r> en ^ cm10 VO CMrH m m VO in rh m if rh 1 m cn m rn m o r» r- *r rh CMcm en en rn -H r-- p^ in if p- cn cn 10 if o ^f rh r-t rn r CN r r- en en en in en nt en co m en CM O rh o vo cm en o t en i en co cmm in co CN VO CMcn o T if vo en O 10 -H r-t CO O m m rn O O 1 CD -H to if m co c en cm vo o rh co 10 m rh r-t m p- r-- en CD 10 en ^r rn en m vo oo o co en cn cn if CN p- m in m if cmv0 O en 00 o co io en «a* co cn CN CN p- if oo vo O ro eo cmm if cn vo en 10 if en en r- p- en O en rh H P- rh 10 CN ^ m io p- vo H 10 oo to en rf en en en if en m <* m n o H en cn p- m vo n* en en O vo en if ^ eo rn O ^" P- CM 10 «h m m O CN CMco cm en en en m io vo vo m cm cmv0 en cn cn m if en en vo u-l CM vo if en 10 O rh p- en m p- CM O en m en en cm p- 10 O V0 lo P- o if rh o rh CN i O VOen en m P-lOP O en m C0 rh O CN O nt C0 CM C0 loh cm p- Pinp CD if rn en if oo oo o o m cm ri rr VO 00 p- ^lat if en if if en cmo m en en o p- m co en co vo if m co P- en o co co CN VO rh Tf Tf co O f 00 rh CO O h en o "i rn < i en m m vo co COOP en m cmcn oo en rh m vo vo cm en oo tn rh <» en vo vo en m in cm tn i io m p- rh VO O if r^ co en if -n co p~ en i io co CN 10 P- cm tn i ) CM 10 m.. t j en - rh m o im n* m rh 10 P- io en P- 10 CM1 p- o eo en m co m io p- cm en V0 O ' I CM p- rh io en P- rh O, < en co en v0 o m en en 00 O if vo n* vo p- o rh vo p» m h *f [^ < ) P- O rh O rh co m p. -.-h o _ en en m en CN en m o m m en oo h (Jim <T CM CM^" co en 0 o ' o en O T rh rhvoinorhcnorhif 10 if en r-t r- tn ^" in oo -t p- O CM f 10 CO rh 1 p- t ) r- o m en nt en i o i itncn^rmp-corhr H rh CM C lencnroififirininvop-p-coenrhrhr if rh

Summation of Series and Gaussian Quadratures

Summation of Series and Gaussian Quadratures Summation of Series Gaussian Quadratures GRADIMIR V. MILOVANOVIĆ Dedicated to Walter Gautschi on the occasion of his 65th birthday Abstract. In 985, Gautschi the author constructed Gaussian quadrature

More information

Part II NUMERICAL MATHEMATICS

Part II NUMERICAL MATHEMATICS Part II NUMERICAL MATHEMATICS BIT 31 (1991). 438-446. QUADRATURE FORMULAE ON HALF-INFINITE INTERVALS* WALTER GAUTSCHI Department of Computer Sciences, Purdue University, West Lafayette, IN 47907, USA Abstract.

More information

The Hardy-Littlewood Function: An Exercise in Slowly Convergent Series

The Hardy-Littlewood Function: An Exercise in Slowly Convergent Series The Hardy-Littlewood Function: An Exercise in Slowly Convergent Series Walter Gautschi Department of Computer Sciences Purdue University West Lafayette, IN 4797-66 U.S.A. Dedicated to Olav Njåstad on the

More information

Numerische MathemalJk

Numerische MathemalJk Numer. Math. 44, 53-6 (1984) Numerische MathemalJk 9 Springer-Verlag 1984 Discrete Approximations to Spherically Symmetric Distributions* Dedicated to Fritz Bauer on the occasion of his 6th birthday Walter

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

HOW AND HOW NOT TO CHECK GAUSSIAN QUADRATURE FORMULAE *

HOW AND HOW NOT TO CHECK GAUSSIAN QUADRATURE FORMULAE * BIT 23 (1983), 209--216 HOW AND HOW NOT TO CHECK GAUSSIAN QUADRATURE FORMULAE * WALTER GAUTSCHI Department of Computer Sciences, Purdue University, West Lafayette, Indiana 47907, U.S.A. Abstract. We discuss

More information

COMPUTATION OF BESSEL AND AIRY FUNCTIONS AND OF RELATED GAUSSIAN QUADRATURE FORMULAE

COMPUTATION OF BESSEL AND AIRY FUNCTIONS AND OF RELATED GAUSSIAN QUADRATURE FORMULAE BIT 6-85//41-11 $16., Vol. 4, No. 1, pp. 11 118 c Swets & Zeitlinger COMPUTATION OF BESSEL AND AIRY FUNCTIONS AND OF RELATED GAUSSIAN QUADRATURE FORMULAE WALTER GAUTSCHI Department of Computer Sciences,

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

Variable-precision recurrence coefficients for nonstandard orthogonal polynomials

Variable-precision recurrence coefficients for nonstandard orthogonal polynomials Numer Algor (29) 52:49 418 DOI 1.17/s1175-9-9283-2 ORIGINAL RESEARCH Variable-precision recurrence coefficients for nonstandard orthogonal polynomials Walter Gautschi Received: 6 January 29 / Accepted:

More information

h : sh +i F J a n W i m +i F D eh, 1 ; 5 i A cl m i n i sh» si N «q a : 1? ek ser P t r \. e a & im a n alaa p ( M Scanned by CamScanner

h : sh +i F J a n W i m +i F D eh, 1 ; 5 i A cl m i n i sh» si N «q a : 1? ek ser P t r \. e a & im a n alaa p ( M Scanned by CamScanner m m i s t r * j i ega>x I Bi 5 n ì r s w «s m I L nk r n A F o n n l 5 o 5 i n l D eh 1 ; 5 i A cl m i n i sh» si N «q a : 1? { D v i H R o s c q \ l o o m ( t 9 8 6) im a n alaa p ( M n h k Em l A ma

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

Trade Patterns, Production networks, and Trade and employment in the Asia-US region

Trade Patterns, Production networks, and Trade and employment in the Asia-US region Trade Patterns, Production networks, and Trade and employment in the Asia-U region atoshi Inomata Institute of Developing Economies ETRO Development of cross-national production linkages, 1985-2005 1985

More information

~,. :'lr. H ~ j. l' ", ...,~l. 0 '" ~ bl '!; 1'1. :<! f'~.., I,," r: t,... r':l G. t r,. 1'1 [<, ."" f'" 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'..

~,. :'lr. H ~ j. l' , ...,~l. 0 ' ~ bl '!; 1'1. :<! f'~.., I,, r: t,... r':l G. t r,. 1'1 [<, . f' 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'.. ,, 'l t (.) :;,/.I I n ri' ' r l ' rt ( n :' (I : d! n t, :?rj I),.. fl.),. f!..,,., til, ID f-i... j I. 't' r' t II!:t () (l r El,, (fl lj J4 ([) f., () :. -,,.,.I :i l:'!, :I J.A.. t,.. p, - ' I I I

More information

Executive Committee and Officers ( )

Executive Committee and Officers ( ) Gifted and Talented International V o l u m e 2 4, N u m b e r 2, D e c e m b e r, 2 0 0 9. G i f t e d a n d T a l e n t e d I n t e r n a t i o n a2 l 4 ( 2), D e c e m b e r, 2 0 0 9. 1 T h e W o r

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

ON THE NUMBER OF POSITIVE SUMS OF INDEPENDENT RANDOM VARIABLES

ON THE NUMBER OF POSITIVE SUMS OF INDEPENDENT RANDOM VARIABLES ON THE NUMBER OF POSITIVE SUMS OF INDEPENDENT RANDOM VARIABLES P. ERDÖS AND M. KAC 1 1. Introduction. In a recent paper 2 the authors have introduced a method for proving certain limit theorems of the

More information

On summation/integration methods for slowly convergent series

On summation/integration methods for slowly convergent series Stud. Univ. Babeş-Bolyai Math. 6(26), o. 3, 359 375 On summation/integration methods for slowly convergent series Gradimir V. Milovanović Dedicated to Professor Gheorghe Coman on the occasion of his 8th

More information

APPH 4200 Physics of Fluids

APPH 4200 Physics of Fluids APPH 42 Physics of Fluids Problem Solving and Vorticity (Ch. 5) 1.!! Quick Review 2.! Vorticity 3.! Kelvin s Theorem 4.! Examples 1 How to solve fluid problems? (Like those in textbook) Ç"Tt=l I $T1P#(

More information

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58. Physical Chemistry II Test Name: KEY CHEM 464 Spring 18 Chapters 7-11 Average = 1. / 16 6 questions worth a total of 16 points Planck's constant h = 6.63 1-34 J s Speed of light c = 3. 1 8 m/s ħ = h π

More information

A NEW METHOD OF INVERSION OF THE LAPLACE TRANSFORM* ATHANASIOS PAPOULIS. Polytechnic Institute of Brooklyn

A NEW METHOD OF INVERSION OF THE LAPLACE TRANSFORM* ATHANASIOS PAPOULIS. Polytechnic Institute of Brooklyn 405 A NEW METHOD OF INVERSION OF THE LAPLACE TRANSFORM* BY ATHANASIOS PAPOULIS Polytechnic Institute of Brooklyn Introduction. In determining a function r(t) from its Laplace transform R(p) R(p) = [ e"'r(t)

More information

Last 4 Digits of USC ID:

Last 4 Digits of USC ID: Chemistry 05 B Practice Exam Dr. Jessica Parr First Letter of last Name PLEASE PRINT YOUR NAME IN BLOCK LETTERS Name: Last 4 Digits of USC ID: Lab TA s Name: Question Points Score Grader 8 2 4 3 9 4 0

More information

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101. Physical Chemistry II Lab CHEM 4644 spring 2017 final exam KEY 5 questions, 3 points each, 15 points total possible h = 6.626 10-34 J s c = 3.00 10 8 m/s 1 GHz = 10 9 s -1. B= h 8π 2 I ν= 1 2 π k μ 6 P

More information

YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE fa it) On the Jacobi Polynomials PA ' Gregory Matviyenko Research Report YALETJ/DCS/RR-1076 June 13, 1995 DTI,* QUALITY DEFECTED 3 YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE & k.-. *,«.

More information

The Hardy-Littlewood Function

The Hardy-Littlewood Function Hardy-Littlewood p. 1/2 The Hardy-Littlewood Function An Exercise in Slowly Convergent Series Walter Gautschi wxg@cs.purdue.edu Purdue University Hardy-Littlewood p. 2/2 OUTLINE The Hardy-Littlewood (HL)

More information

GENERALIZED GAUSS RADAU AND GAUSS LOBATTO FORMULAE

GENERALIZED GAUSS RADAU AND GAUSS LOBATTO FORMULAE BIT 0006-3835/98/3804-0101 $12.00 2000, Vol., No., pp. 1 14 c Swets & Zeitlinger GENERALIZED GAUSS RADAU AND GAUSS LOBATTO FORMULAE WALTER GAUTSCHI 1 1 Department of Computer Sciences, Purdue University,

More information

EXPANSION OF ANALYTIC FUNCTIONS IN TERMS INVOLVING LUCAS NUMBERS OR SIMILAR NUMBER SEQUENCES

EXPANSION OF ANALYTIC FUNCTIONS IN TERMS INVOLVING LUCAS NUMBERS OR SIMILAR NUMBER SEQUENCES EXPANSION OF ANALYTIC FUNCTIONS IN TERMS INVOLVING LUCAS NUMBERS OR SIMILAR NUMBER SEQUENCES PAUL F. BYRD San Jose State College, San Jose, California 1. INTRODUCTION In a previous article [_ 1J, certain

More information

I N A C O M P L E X W O R L D

I N A C O M P L E X W O R L D IS L A M I C E C O N O M I C S I N A C O M P L E X W O R L D E x p l o r a t i o n s i n A g-b eanste d S i m u l a t i o n S a m i A l-s u w a i l e m 1 4 2 9 H 2 0 0 8 I s l a m i c D e v e l o p m e

More information

27r---./p. IR.(f)l<=,, l(o) max If(z)l. (1.2) o={z" z= 1/2(u + u-1), u p ei, O<- O <-- 2.a }

27r---./p. IR.(f)l<=,, l(o) max If(z)l. (1.2) o={z z= 1/2(u + u-1), u p ei, O<- O <-- 2.a } SIAM J. NUMER. ANAL. Vol. 27, No. 1, pp. 219-224, February 1990 1990 Society for Industrial and Applied Mathematics 015 A NOTE ON THE CONTOUR INTEGRAL REPRESENTATION OF THE REMAINDER TERM FOR A GAUSS-CHEBYSHEV

More information

fur \ \,,^N/ D7,,)d.s) 7. The champion and Runner up of the previous year shall be allowed to play directly in final Zone.

fur \ \,,^N/ D7,,)d.s) 7. The champion and Runner up of the previous year shall be allowed to play directly in final Zone. OUL O GR SODRY DUTO, ODS,RT,SMTUR,USWR.l ntuctin f cnuct f Kbi ( y/gil)tunent f 2L-Lg t. 2.. 4.. 6. Mtche hll be lye e K ule f ene f tie t tie Dutin f ech tch hll be - +0 (Rece)+ = M The ticint f ech Te

More information

(1-2) fx\-*f(x)dx = ^^ Z f(x[n)) + R (f), a > - 1,

(1-2) fx\-*f(x)dx = ^^ Z f(x[n)) + R (f), a > - 1, MATHEMATICS OF COMPUTATION, VOLUME 29, NUMBER 129 JANUARY 1975, PAGES 93-99 Nonexistence of Chebyshev-Type Quadratures on Infinite Intervals* By Walter Gautschi Dedicated to D. H. Lehmer on his 10th birthday

More information

Atomic Structure & Interatomic Bonding

Atomic Structure & Interatomic Bonding Atomic Structure & Interatomic Bonding Chapter Outline Review of Atomic Structure Atomic Bonding Atomic Structure Atoms are the smallest structural units of all solids, liquids & gases. Atom: The smallest

More information

Nucleus. Electron Cloud

Nucleus. Electron Cloud Atomic Structure I. Picture of an Atom Nucleus Electron Cloud II. Subatomic particles Particle Symbol Charge Relative Mass (amu) protons p + +1 1.0073 neutrons n 0 1.0087 electrons e - -1 0.00054858 Compare

More information

Scientific Computing

Scientific Computing 2301678 Scientific Computing Chapter 2 Interpolation and Approximation Paisan Nakmahachalasint Paisan.N@chula.ac.th Chapter 2 Interpolation and Approximation p. 1/66 Contents 1. Polynomial interpolation

More information

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o u l d a l w a y s b e t a k e n, i n c l u d f o l

More information

Recurrence Relations and Fast Algorithms

Recurrence Relations and Fast Algorithms Recurrence Relations and Fast Algorithms Mark Tygert Research Report YALEU/DCS/RR-343 December 29, 2005 Abstract We construct fast algorithms for decomposing into and reconstructing from linear combinations

More information

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n R P RT F TH PR D NT N N TR T F R N V R T F NN T V D 0 0 : R PR P R JT..P.. D 2 PR L 8 8 J PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D.. 20 00 D r r. Pr d nt: n J n r f th r d t r v th

More information

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9 OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

More information

Colby College Catalogue

Colby College Catalogue Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1866 Colby College Catalogue 1866-1867 Colby College Follow this and additional works at: http://digitalcommons.colby.edu/catalogs

More information

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode Unit 2 : Software Process O b j ec t i ve This unit introduces software systems engineering through a discussion of software processes and their principal characteristics. In order to achieve the desireable

More information

2 K cos nkx + K si" nkx) (1.1)

2 K cos nkx + K si nkx) (1.1) PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 71, Number 1, August 1978 ON THE ABSOLUTE CONVERGENCE OF LACUNARY FOURIER SERIES J. R. PATADIA Abstract. Let / G L[ it, -n\ be 27r-periodic. Noble

More information

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism Periodic Properties Atomic & Ionic Radius Energy Electron Affinity We want to understand the variations in these properties in terms of electron configurations. The Periodic Table Elements in a column

More information

02/05/09 Last 4 Digits of USC ID: Dr. Jessica Parr

02/05/09 Last 4 Digits of USC ID: Dr. Jessica Parr Chemistry 05 B First Letter of PLEASE PRINT YOUR NAME IN BLOCK LETTERS Exam last Name Name: 02/05/09 Last 4 Digits of USC ID: Dr. Jessica Parr Lab TA s Name: Question Points Score Grader 2 2 9 3 9 4 2

More information

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd n r t d n 20 20 0 : 0 T P bl D n, l d t z d http:.h th tr t. r pd l 4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n,

More information

Rational Chebyshev Approximations for the Bickley Functions Kin(x)

Rational Chebyshev Approximations for the Bickley Functions Kin(x) MATHEMATICS OF COMPUTATION, VOLUME, NUMBER JULY, PAGES - Rational Chebyshev Approximations for the Bickley Functions Kin(x) By J. M. Blair, C. A. Edwards and J. H. Johnson Abstract. This report presents

More information

H NT Z N RT L 0 4 n f lt r h v d lt n r n, h p l," "Fl d nd fl d " ( n l d n l tr l t nt r t t n t nt t nt n fr n nl, th t l n r tr t nt. r d n f d rd n t th nd r nt r d t n th t th n r lth h v b n f

More information

Solutions and Ions. Pure Substances

Solutions and Ions. Pure Substances Class #4 Solutions and Ions CHEM 107 L.S. Brown Texas A&M University Pure Substances Pure substance: described completely by a single chemical formula Fixed composition 1 Mixtures Combination of 2 or more

More information

ASYMPTOTIC DISTRIBUTION OF THE MAXIMUM CUMULATIVE SUM OF INDEPENDENT RANDOM VARIABLES

ASYMPTOTIC DISTRIBUTION OF THE MAXIMUM CUMULATIVE SUM OF INDEPENDENT RANDOM VARIABLES ASYMPTOTIC DISTRIBUTION OF THE MAXIMUM CUMULATIVE SUM OF INDEPENDENT RANDOM VARIABLES KAI LAI CHUNG The limiting distribution of the maximum cumulative sum 1 of a sequence of independent random variables

More information

Use precise language and domain-specific vocabulary to inform about or explain the topic. CCSS.ELA-LITERACY.WHST D

Use precise language and domain-specific vocabulary to inform about or explain the topic. CCSS.ELA-LITERACY.WHST D Lesson eight What are characteristics of chemical reactions? Science Constructing Explanations, Engaging in Argument and Obtaining, Evaluating, and Communicating Information ENGLISH LANGUAGE ARTS Reading

More information

Ranking accounting, banking and finance journals: A note

Ranking accounting, banking and finance journals: A note MPRA Munich Personal RePEc Archive Ranking accounting, banking and finance ournals: A note George Halkos and Nickolaos Tzeremes University of Thessaly, Department of Economics January 2012 Online at https://mpra.ub.uni-muenchen.de/36166/

More information

o C *$ go ! b», S AT? g (i * ^ fc fa fa U - S 8 += C fl o.2h 2 fl 'fl O ' 0> fl l-h cvo *, &! 5 a o3 a; O g 02 QJ 01 fls g! r«'-fl O fl s- ccco

o C *$ go ! b», S AT? g (i * ^ fc fa fa U - S 8 += C fl o.2h 2 fl 'fl O ' 0> fl l-h cvo *, &! 5 a o3 a; O g 02 QJ 01 fls g! r«'-fl O fl s- ccco > p >>>> ft^. 2 Tble f Generl rdnes. t^-t - +«0 -P k*ph? -- i t t i S i-h l -H i-h -d. *- e Stf H2 t s - ^ d - 'Ct? "fi p= + V t r & ^ C d Si d n. M. s - W ^ m» H ft ^.2. S'Sll-pl e Cl h /~v S s, -P s'l

More information

ON THE ERDOS-STONE THEOREM

ON THE ERDOS-STONE THEOREM ON THE ERDOS-STONE THEOREM V. CHVATAL AND E. SZEMEREDI In 1946, Erdos and Stone [3] proved that every graph with n vertices and at least edges contains a large K d+l (t), a complete (d + l)-partite graph

More information

P a g e 3 6 of R e p o r t P B 4 / 0 9

P a g e 3 6 of R e p o r t P B 4 / 0 9 P a g e 3 6 of R e p o r t P B 4 / 0 9 p r o t e c t h um a n h e a l t h a n d p r o p e r t y fr om t h e d a n g e rs i n h e r e n t i n m i n i n g o p e r a t i o n s s u c h a s a q u a r r y. J

More information

Numerical Quadrature over a Rectangular Domain in Two or More Dimensions

Numerical Quadrature over a Rectangular Domain in Two or More Dimensions Numerical Quadrature over a Rectangular Domain in Two or More Dimensions Part 2. Quadrature in several dimensions, using special points By J. C. P. Miller 1. Introduction. In Part 1 [1], several approximate

More information

C O M P L E X FACTORIZATIONS O F T H E F I B O N A C C I AND LUCAS NUMBERS

C O M P L E X FACTORIZATIONS O F T H E F I B O N A C C I AND LUCAS NUMBERS C O M P L E X FACTORIZATIONS O F T H E F I B O N A C C I AND LUCAS NUMBERS Nathan D. Cahill, John R. D'Errico, and John P* Spence Eastman Kodak Company, 343 State Street, Rochester, NY 4650 {natfaan. cahill,

More information

Use precise language and domain-specific vocabulary to inform about or explain the topic. CCSS.ELA-LITERACY.WHST D

Use precise language and domain-specific vocabulary to inform about or explain the topic. CCSS.ELA-LITERACY.WHST D Lesson seven What is a chemical reaction? Science Constructing Explanations, Engaging in Argument and Obtaining, Evaluating, and Communicating Information ENGLISH LANGUAGE ARTS Reading Informational Text,

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 7 Interpolation Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

30 Zn(s) 45 Rh. Pd(s) Ag(s) Cd(s) In(s) Sn(s) white. 77 Ir. Pt(s) Au. Hg(l) Tl. 109 Mt. 111 Uuu. 112 Uub. 110 Uun. 65 Tb. 62 Sm. 64 Gd. 63 Eu.

30 Zn(s) 45 Rh. Pd(s) Ag(s) Cd(s) In(s) Sn(s) white. 77 Ir. Pt(s) Au. Hg(l) Tl. 109 Mt. 111 Uuu. 112 Uub. 110 Uun. 65 Tb. 62 Sm. 64 Gd. 63 Eu. Enthalpy changes: experimentally it is much easier to measure heat flow at const pressure - this is enthalpy q p = )H : also nearly all chemical reactions are done at constant pressure. Enthalpy (heat)

More information

MANY ELECTRON ATOMS Chapter 15

MANY ELECTRON ATOMS Chapter 15 MANY ELECTRON ATOMS Chapter 15 Electron-Electron Repulsions (15.5-15.9) The hydrogen atom Schrödinger equation is exactly solvable yielding the wavefunctions and orbitals of chemistry. Howev er, the Schrödinger

More information

Faculty of Natural and Agricultural Sciences Chemistry Department. Semester Test 1. Analytical Chemistry CMY 283. Time: 120 min Marks: 100 Pages: 6

Faculty of Natural and Agricultural Sciences Chemistry Department. Semester Test 1. Analytical Chemistry CMY 283. Time: 120 min Marks: 100 Pages: 6 Faculty of Natural and Agricultural Sciences Chemistry Department Semester Test 1 Analytical Chemistry CMY 283 Date: 5 September 2016 Lecturers : Prof P Forbes, Dr Laurens, Mr SA Nsibande Time: 120 min

More information

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4.

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4. te SelfGi ZltAn Dbnyei Intdtin ; ) Q) 4 t? ) t _ 4 73 y S _ E _ p p 4 t t 4) 1_ ::_ J 1 `i () L VI O I4 " " 1 D 4 L e Q) 1 k) QJ 7 j ZS _Le t 1 ej!2 i1 L 77 7 G (4) 4 6 t (1 ;7 bb F) t f; n (i M Q) 7S

More information

Gaussian interval quadrature rule for exponential weights

Gaussian interval quadrature rule for exponential weights Gaussian interval quadrature rule for exponential weights Aleksandar S. Cvetković, a, Gradimir V. Milovanović b a Department of Mathematics, Faculty of Mechanical Engineering, University of Belgrade, Kraljice

More information

n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

n r t d n :4 T P bl D n, l d t z d   th tr t. r pd l n r t d n 20 20 :4 T P bl D n, l d t z d http:.h th tr t. r pd l 2 0 x pt n f t v t, f f d, b th n nd th P r n h h, th r h v n t b n p d f r nt r. Th t v v d pr n, h v r, p n th pl v t r, d b p t r b R

More information

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No xhibit 2-9/3/15 Invie Filing Pge 1841 f Pge 366 Dket. 44498 F u v 7? u ' 1 L ffi s xs L. s 91 S'.e q ; t w W yn S. s t = p '1 F? 5! 4 ` p V -', {} f6 3 j v > ; gl. li -. " F LL tfi = g us J 3 y 4 @" V)

More information

2. T H E , ( 7 ) 2 2 ij ij. p i s

2. T H E , ( 7 ) 2 2 ij ij. p i s M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X A N A L Y S I S O F T E M P E R A T U R E D I S T R I B U T I O N I N C O M P O S I T E P L A T E S D U R I N G T H E R M A

More information

9/20/2017. Elements are Pure Substances that cannot be broken down into simpler substances by chemical change (contain Only One Type of Atom)

9/20/2017. Elements are Pure Substances that cannot be broken down into simpler substances by chemical change (contain Only One Type of Atom) CAPTER 6: TE PERIODIC TABLE Elements are Pure Substances that cannot be broken down into simpler substances by chemical change (contain Only One Type of Atom) The Periodic Table (Mendeleev) In 1872, Dmitri

More information

necessita d'interrogare il cielo

necessita d'interrogare il cielo gigi nei necessia d'inegae i cie cic pe sax span s inuie a dispiegaa fma dea uce < affeandi ves i cen dea uce isnane " sienzi dei padi sie veic dei' anima 5 J i f H 5 f AL J) i ) L '3 J J "' U J J ö'

More information

Asymptotic Error Estimates for the Gauss Quadrature Formula

Asymptotic Error Estimates for the Gauss Quadrature Formula Asymptotic Error Estimates for the Gauss Quadrature Formula By M. M. Chawla and M. K. Jain 1. Introduction. Classical error estimates for the Gauss quadrature formula using derivatives can be used, but

More information

I n t e r n a t i o n a l E l e c t r o n i c J o u r n a l o f E l e m e n t a r y E.7 d u, c ai ts is ou n e, 1 V3 1o-2 l6, I n t h i s a r t

I n t e r n a t i o n a l E l e c t r o n i c J o u r n a l o f E l e m e n t a r y E.7 d u, c ai ts is ou n e, 1 V3 1o-2 l6, I n t h i s a r t I n t e r n a t i o n a l E l e c t r o n i c J o ue rlne am l e not fa r y E d u c a t i o n, 2 0 1 4, 1 37-2 ( 16 ). H o w R e a d i n g V o l u m e A f f e c t s b o t h R e a d i n g F l u e n c y

More information

Physical Chemistry I CHEM 4641 Final Exam 13 questions, 30 points

Physical Chemistry I CHEM 4641 Final Exam 13 questions, 30 points Physical Chemistry I CHEM 4641 Final Exam 13 questions, 30 points Name: KEY Gas constant: R = 8.314 J mol -1 K -1 = 0.008314 kj mol -1 K -1. Boltzmann constant k = 1.381 10-23 J/K = 0.6950 cm -1 /K h =

More information

Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v

Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v ll f x, h v nd d pr v n t fr tf l t th f nt r n r

More information

Faculty of Natural and Agricultural Sciences Chemistry Department. Semester Test 1 MEMO. Analytical Chemistry CMY 283

Faculty of Natural and Agricultural Sciences Chemistry Department. Semester Test 1 MEMO. Analytical Chemistry CMY 283 Faculty of Natural and Agricultural Sciences Chemistry Department Semester Test 1 MEMO Analytical Chemistry CMY 283 Date: 5 September 2016 Lecturers : Prof P Forbes, Dr Laurens, Mr SA Nsibande Time: 90

More information

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r n r t d n 20 22 0: T P bl D n, l d t z d http:.h th tr t. r pd l 0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n.

More information

CMSC 313 Lecture 17 Postulates & Theorems of Boolean Algebra Semiconductors CMOS Logic Gates

CMSC 313 Lecture 17 Postulates & Theorems of Boolean Algebra Semiconductors CMOS Logic Gates CMSC 313 Lecture 17 Postulates & Theorems of Boolean Algebra Semiconductors CMOS Logic Gates UMBC, CMSC313, Richard Chang Last Time Overview of second half of this course Logic gates &

More information

Outline. 1 Interpolation. 2 Polynomial Interpolation. 3 Piecewise Polynomial Interpolation

Outline. 1 Interpolation. 2 Polynomial Interpolation. 3 Piecewise Polynomial Interpolation Outline Interpolation 1 Interpolation 2 3 Michael T. Heath Scientific Computing 2 / 56 Interpolation Motivation Choosing Interpolant Existence and Uniqueness Basic interpolation problem: for given data

More information

CITY OF LOS ALAMITOS. Register of Major Expenditures. August 18, To Approve. To Ratify

CITY OF LOS ALAMITOS. Register of Major Expenditures. August 18, To Approve. To Ratify TEM. 7 CTY F LS ALAMTS Register of Mjor Ependitures August 18, 214 Pges: To Approve 1-3 53, 431. 2 Mjor rrnts 8/ 18/ 214 Subtotl 53, 431. 2 To Rtify Pges: 4-5 146, 476. 74 Advnce rrnts 7/ 28/ 214 6 217,

More information

ON THE DENSITY OF SOME SEQUENCES OF INTEGERS P. ERDOS

ON THE DENSITY OF SOME SEQUENCES OF INTEGERS P. ERDOS ON THE DENSITY OF SOME SEQUENCES OF INTEGERS P. ERDOS Let ai

More information

Marks for each question are as indicated in [] brackets.

Marks for each question are as indicated in [] brackets. Name Student Number CHEMISTRY 140 FINAL EXAM December 10, 2002 Numerical answers must be given with appropriate units and significant figures. Please place all answers in the space provided for the question.

More information

Years. Marketing without a plan is like navigating a maze; the solution is unclear.

Years. Marketing without a plan is like navigating a maze; the solution is unclear. F Q 2018 E Mk l lk z; l l Mk El M C C 1995 O Y O S P R j lk q D C Dl Off P W H S P W Sl M Y Pl Cl El M Cl FIRST QUARTER 2018 E El M & D I C/O Jff P RGD S C D M Sl 57 G S Alx ON K0C 1A0 C Tl: 6134821159

More information

Atoms and the Periodic Table

Atoms and the Periodic Table Atoms and the Periodic Table Parts of the Atom Proton Found in the nucleus Number of protons defines the element Charge +1, mass 1 Parts of the Atom Neutron Found in the nucleus Stabilizes the nucleus

More information

(2) * ; v(x,y)=r-j [p(x + ty)~ p(x-ty)]dt (r > 0)

(2) * ; v(x,y)=r-j [p(x + ty)~ p(x-ty)]dt (r > 0) proceedings of the american mathematical society Volume 100, Number 4, August 1987 ON THE DILATATION ESTIMATES FOR BEURLING-AHLFORS QUASICONFORMAL EXTENSION DELIN TAN ABSTRACT. Let ß(x) be a p-quasisymmetric

More information

Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. I. Review: Comparison of ionic and molecular compounds Molecular compounds Ionic

More information

Chemistry 2 Exam Roane State Academic Festival. Name (print neatly) School

Chemistry 2 Exam Roane State Academic Festival. Name (print neatly) School Name (print neatly) School There are fifteen question on this exam. Each question is weighted equally. n the answer sheet, write your name in the space provided and your answers in the blanks provided.

More information

1 4 which satisfies (2) identically in u for at least one value of the complex variable z then s c g.l.b. I ~m-1 y~~z cn, lar m- = 0 ( co < r, s < oo)

1 4 which satisfies (2) identically in u for at least one value of the complex variable z then s c g.l.b. I ~m-1 y~~z cn, lar m- = 0 ( co < r, s < oo) Nieuw Archief voor Wiskunde (3) III 13--19 (1955) FUNCTIONS WHICH ARE SYMMETRIC ABOUT SEVERAL POINTS BY PAUL ERDÖS and MICHAEL GOLOMB (Notre Dame University) (Purdue University) 1. Let 1(t) be a real-valued

More information

NAME: FIRST EXAMINATION

NAME: FIRST EXAMINATION 1 Chemistry 64 Winter 1994 NAME: FIRST EXAMINATION THIS EXAMINATION IS WORTH 100 POINTS AND CONTAINS 4 (FOUR) QUESTIONS THEY ARE NOT EQUALLY WEIGHTED! YOU SHOULD ATTEMPT ALL QUESTIONS AND ALLOCATE YOUR

More information

UNIVERSITY OF CALGARY FACULTY OF SCIENCE MIDTERM EXAMINATION CHEMISTRY 353 READ ALL THE INSTRUCTIONS CAREFULLY

UNIVERSITY OF CALGARY FACULTY OF SCIENCE MIDTERM EXAMINATION CHEMISTRY 353 READ ALL THE INSTRUCTIONS CAREFULLY WEDNESDAY MARCH 9th, 2016 UNIVERSITY OF CALGARY FACULTY OF SCIENCE MIDTERM EXAMINATION CHEMISTRY 353 Version 1 Time: 2 Hours READ ALL THE INSTRUCTIONS CAREFULLY PLEASE WRITE YOUR NAME, STUDENT I.D. NUMBER

More information

Guide to the Extended Step-Pyramid Periodic Table

Guide to the Extended Step-Pyramid Periodic Table Guide to the Extended Step-Pyramid Periodic Table William B. Jensen Department of Chemistry University of Cincinnati Cincinnati, OH 452201-0172 The extended step-pyramid table recognizes that elements

More information

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th n r t d n 20 2 :24 T P bl D n, l d t z d http:.h th tr t. r pd l 4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n

More information

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f n r t d n 20 2 : 6 T P bl D n, l d t z d http:.h th tr t. r pd l 22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r

More information

Chemistry 185 Exam #2 - A November 5, Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

Chemistry 185 Exam #2 - A November 5, Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start. Name: Lab Day and Time: Instructions 1. Do not open the exam until you are told to start. 2. This exam is closed note and closed book. You are not allowed to use any outside material while taking this

More information

THE CONTIGUOUS FUNCTION RELATIONS FOR pf q WITH APPLICATIONS TO BATEMAN'S ƒ»«and RICE'S # n (r, p, v)

THE CONTIGUOUS FUNCTION RELATIONS FOR pf q WITH APPLICATIONS TO BATEMAN'S ƒ»«and RICE'S # n (r, p, v) THE CONTIGUOUS FUNCTION RELATIONS FOR pf q WITH APPLICATIONS TO BATEMAN'S ƒ»«and RICE'S # n (r, p, v) EARL D. RAIN VILLE 1. Introduction. If in the generalized 1 hypergeometric function n. a a Q. A («OnWn

More information

Chem 102H Exam 2 - Spring 2005

Chem 102H Exam 2 - Spring 2005 Name I.D. # Chem 102H Exam 2 - Spring 2005 PHYSICAL CNSTANTS/CNVERSIN FACTRS Speed of light = 3.00! 10 8 m/s Planck!s const. = 6.63! 10-34 J s Avagadro!s Number = 6.02! 10 23 Electron charge = 1.602! 10-19

More information

(i) tn = f î {nk)tk(i - ty-\dx{t) (»>o).

(i) tn = f î {nk)tk(i - ty-\dx{t) (»>o). PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 102, Number 1, January 1988 A TAUBERIAN THEOREM FOR HAUSDORFF METHODS BRIAN KUTTNER AND MANGALAM R. PARAMESWARAN (Communicated by R. Daniel Mauldin)

More information

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th n r t d n 20 0 : T P bl D n, l d t z d http:.h th tr t. r pd l 46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l

More information

(C) Pavel Sedach and Prep101 1

(C) Pavel Sedach and Prep101 1 (C) Pavel Sedach and Prep101 1 (C) Pavel Sedach and Prep101 1 (C) Pavel Sedach and Prep101 2 (C) Pavel Sedach and Prep101 2 (C) Pavel Sedach and Prep101 3 (C) Pavel Sedach and Prep101 3 (C) Pavel Sedach

More information

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start. Name: Lab Day and Time: Instructions 1. Do not open the exam until you are told to start. 2. This exam is closed note and closed book. You are not allowed to use any outside material while taking this

More information

PART 1 Introduction to Theory of Solids

PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:1 Trim:165 240MM TS: Integra, India PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:2

More information

Chapter 30 Design and Analysis of

Chapter 30 Design and Analysis of Chapter 30 Design and Analysis of 2 k DOEs Introduction This chapter describes design alternatives and analysis techniques for conducting a DOE. Tables M1 to M5 in Appendix E can be used to create test

More information

Secondary Support Pack. be introduced to some of the different elements within the periodic table;

Secondary Support Pack. be introduced to some of the different elements within the periodic table; Secondary Support Pack INTRODUCTION The periodic table of the elements is central to chemistry as we know it today and the study of it is a key part of every student s chemical education. By playing the

More information

Beechwood Music Department Staff

Beechwood Music Department Staff Beechwood Music Department Staff MRS SARAH KERSHAW - HEAD OF MUSIC S a ra h K e rs h a w t r a i n e d a t t h e R oy a l We ls h C o l le g e of M u s i c a n d D ra m a w h e re s h e ob t a i n e d

More information

fl W12111 L5N

fl W12111 L5N fl 41@ W1111 471,1516In15 o (1@ ) Imn5o td&& -miet9cqi c, 1119- bdo&-).6)./ 'MI 9 tg&&d L5N li@wymut4lp51:nfrthnnhiict46n-m'imilimlingnywimtpuctvuivi iru o cinuniulviu 1:411.,IJJIMg11.7f1Y91 11?ITri nct

More information