# ASYMPTOTIC DISTRIBUTION OF THE MAXIMUM CUMULATIVE SUM OF INDEPENDENT RANDOM VARIABLES

Size: px
Start display at page:

Download "ASYMPTOTIC DISTRIBUTION OF THE MAXIMUM CUMULATIVE SUM OF INDEPENDENT RANDOM VARIABLES"

Transcription

1 ASYMPTOTIC DISTRIBUTION OF THE MAXIMUM CUMULATIVE SUM OF INDEPENDENT RANDOM VARIABLES KAI LAI CHUNG The limiting distribution of the maximum cumulative sum 1 of a sequence of independent random variables has been discussed recently by Erdös-Kac 2 and Wald. 3 Erdös and Kac treated the case where each random variables has zero mean, while Wald considered more general cases. We shall show that the problem can be treated by a uniform method starting with a classical combinatorial formula due to De Moivre. 4 A careful application of Stirling's formula does the trick in all cases, but it is interesting that quite different transformations are needed in different cases. It is also to be noted that this is the usual method of arriving at the normal approximation to the binomial distribution given in elementary textbooks (frequently without rigor). By this method we obtain easily a remainder term to the approximation. In the Bernoullian case this is the best possible order of magnitude. In this general case we have to use a recent theorem of H. Bergström 5 concerning the remainder term in the ^-dimensional central limit theorem. Although it was A. C. Berry and Esseen (independently of each other) who first obtained this result in the one-dimensional case and their methods can be extended to higher dimensions, Bergström's result is more precise in the determination of the dependence on k. For the sake of simplicity we assume that each variable has unit variance. It is easy to remove this restriction but it is cumbersome to do so. Presented to the Society, April 17, 1948; received by the editors January 28, We use the term "maximum cumulative sum" for max 5*; we have used the term "maximum partial sum" for max Sk\ (On the maximum partial sums of sequences of independent random variables, Trans. Amer. Math. Soc. vol. 64 (1948) pp ). 1 P. Erdös and M. Kac, On certain limit theorems of the theory of probability. Bull. Amer. Math. Soc. vol. 52 (1946) pp A. Wald, Limit distribution of the maximum and minimum of successive cumulative sums of random variables, Bull. Amer. Math. Soc. vol. 53 (1947) pp See, for example, Uspensky, Introduction to mathematical probability, New York, McGraw-Hill, 1937, p H. Bergström, On the central limit theorem in the space Rk, k>l, Skandinavisk Aktuarietidskrift vol. (1945) pp The result there was stated for random variables having the same distribution, but no change is needed to carry over into the present case. I owe to Dr. Bergström the present form of his result. 1162

2 ASYMPTOTIC DISTRIBUTION OF SUM OF VARIABLES 1163 We state our results as follows. Let Xi 9, X n be a sequence of independent random variables with Let E(X k ) «/**. E(X\) «1 + ML ( X*-/i*h -7**0(1). n 5 n = X/ ^fc» &» = max S*. Then the asymptotic distributions of S n as n tends to infinity are given below : Case (i): /ifc==0, ^==1,, w. Pr (3» < aw 1 / 2 ) = ( \ f e~**ihx + Ofa- 1 '" log»). Case (ii):/xifc = ^- 1/2 (i?*0), * = 1,,». ƒ ' cdead g-**i**-i x + 0{jr l ' u log»). d2/2 2T 1I2 X SIÎ Case (in): fik= ft>0, k 1,, n. Pr (S n <n/x + an 1 '*) = f «r^/»j* + OC»" 1 ' 26 log»). In the Bernoullian case the remainder term in each case is to be replaced by 0(»~ 1/2 ). 1. The Bernoullian case. Let each X v > *> = 1,. w, be distributed as follows: where x = i + g with p robabikt y * ~ ^^ + l"- g with probability (2) g* M 2. Then (X,) = /i, E(X, - M) 2-1. ^ # = 2"* 1 (1 n/g), For definitiveness we assume that n and b are both even. From a classical formula 8 we have 6 See Uspensky, op. cit. p. 151, formula (12), p and q being interchanged.

3 1164 K. L. CHUNG [December <«=»/*ft(& + 2r - 1)! (3) Pr (5. fc ft«) = #'2,/, M (**>" Since lim Pr (3, èi«)-l we have _ b(b + 2r-l)l (4) Pr (S n < b g ) = p> J: (p q y. r>(n-b)/2 f!(i + f)l Using Stirling's formula we have H rb(b + 2r- 1)1 I (>+,) <*>'* ] = log b + (b + 2r - ) log (b + 2r - 1) (5) 1 - (r + \log r - (b + r + -\ log (b + r) + I - log 2ir + r log pq + b log p + 0[ ). 2 \ô + rf Assuming b o(r), ju=*o(l), we can write (5) as / 1 \ r ô 1 (5 l) 2 / J 3 \"l -(r + l)logr (6) log 2x - r(log 4 + M 2 + 0(M 4 )) Ô log 2 + i T- + 0(M 2 )] + O (^~) Now let 5 b 2 bu 27r 1/2 r 8/2 4r g V 2 r /

4 1948] ASYMPTOTIC DISTRIBUTION OF SUM OF VARIABLES 1165 fi = dnr 1/2 f b = <m 1/2, where a and d are constants, a>0. Then if 2'~ l n *r?>n z/2 1 (6) gives b(b + 2r - 1)! r\(b + r)\ If r>»»/ 2, (6) gives an 112 a 2 n ad's exp ( 2 n d 2 r ad\ ).(!+0(n-u*)) 4gV n g 1 / an 1 ' 2 / a 2» d*r \ exp ( - + ad ) (1 + OC»- 1 ' 2 )). 27ri/2 r 3/ 2 * \ 4g2 r n g 2 b(b + 2r- 1)! rl(b + r)\ where A, as later, is a positive constant which need not be the same each time it appears. Therefore we obtain from (7) and (8) (9) r>(n-6)/2 If d?*0, letting we can write (9) as f\(b + r)\ ^ b(b + 2r-l)\ /bn 1 ' 2 \ B/2SrS»'«rl(b + r)l \«3 ' 2 / + Z exp (- i4rw») _ an 112 / a 2 n d 2 r \ = ^7n7ï ex P(-7 + ad)+ <>(*-*") r n/2 27T 1/2 f 3 ' 2 \ 4f tt / J»00 aw 1 ' 2 / a 2 n d 2 y \, /,i? 5^^( ^)^+0( "-, " ) - exp ( it» d 2 y/n x, d2 /2 2TT 1 /V/ 2 * \ 4* / If d = 0, letting a 2 w/2r = y 2 x)dx + 0(fr x '«) = 1(a) + Oitr 1 ' 2 ).

5 1166 K. L. CHUNG [December we can write (9) as ( 2 \i/2 /» e J j e-*i*dy + 0(n-v*). 2. The method of Erdös-Kac. Let X v=*l t. n, be independent, and E(X V ) = M * dn~v\ E{X V - M) 2 =1, E(\X,-v ') «7,. We also assume that Let We shall take y, «0(1). n ',== \~k v y = 1,, *. k = k(n) ~ n 1 ' 13, 'log» y' 2 (log») 1 ' 2 /log» y wl/26 According to the method of Erdös-Kac, we have (12) Pr (S n < an 1 ' 2 ) è Pr( maxs n,- < (a - i)n l * ) W *- ' + max max Pr ( S n{+1-5 r è ^n 1 ' 2 ). Let»,'<^w» + i. Let B B n be a function of w to be determined later. If n»+i r^b, then (13),.»i +1 r + (w t+ i r)v 2 Pr ( S n<+1 - S r è «w 1 ") ^ i- 1 If «<+i r>5, then (14) Pr ( 5,. +I -AU **) - ^ { ƒ "+ J_>^4 + 0((«,+i - f)" 1 ' 2 )

6 1948] ASYMPTOTIC DISTRIBUTION OF SUM OF VARIABLES 1167 where en 112 (tii+i r)n en (wt+i r)jx Vi = ) V2 = : (ifc+i - r) 1 ' 2 (n i+1 - r)" 2 If n>n 0, a fixed constant, we have hence w»+i ~ r â»*-+i -" w» < 2n/k, ke > 4J; 02 > 01 > [ 1 (m+i r)<t en J r 2dr\ e L ke] 2 en 1 ' 2 k l ' 2 e /\ogn\ 1 ' 2 2(2nk~ i y> 2 ~ 2 3 ' 2 (/." + x.rv"''* =o ( esp (- J^))- ( """" ) - Now we choose B so that Then B 1 c 2 w *' 2 J5 = c 4 ' 8» 2 ' 3. + V ÎL = 0(rr l i*), B-" 2 = Ofa- 1 ' 4 ). 2 W Thus combining (13) and (14) we obtain (15) Pr ( S nt+l - S r en" 2 ) = O^1' 16 ). Hence from (12) (16) Pr (S n < an 1 ' 2 ) ^Vr(max S nj < (a - ew 2 ) + Ofa- 1 ' 16 ). 3. The estimate of Bergström. Write v\ p) «Xi j asp (mod ni),/a n< and consider the ^-dimensional vector

7 1168 K. L. CHUNG [December we have V (P) = (vl P \...,Vy); (17) E F<»> = (S nv, 5 nt ). Now E( F, <rt - E(V?) 8 ) ssi»' E Ei\X t - ft j33 p (mod ni), ;»n t * ƒ s p(mod ni),jûn{ Let J^(^i,, Xk) be the distribution of (17) and let0(#i,, Xk) be that of the fe-dimensional normal distribution having the same first and second order moments as F. According to the result of Bergström, 4 we have C(k) ^ E{\VI P) - E{VI P) )\*) {F _,, < ma X g (T?f)_ E(Fni2) < Ï-Akw max T; < A The C(Jfe) in this result can be taken to be Ak 7li,, & 6 log k log n (18) \ F-4>\ A A «1/2 «1/2» Remembering that F( *,,#) = Pr I max S nj ^ x), we obtain from (16) and (18) the following inequality log k, hence Pr (S n < an 1 / 2 ) è *((a - *V 2,, (a - e)» 1 ' 2 ) + ^4»"" 1/26 log». On the other hand, we have Pr (S n < an 1 ' 2 ) g Pr ( max S n. < an 1 (20) \i j * ' / = 4>(an 112,, aw 1 / 2 ) + An-" 2 * log», A

8 1948] ASYMPTOTIC DISTRIBUTION OF SUM OF VARIABLES 1169 where the last equation follows from (18). 4. The final result. As before let k~n l / n. Let <f> k (x) denote <(>(xu,**) with Then we have obtained in (19) and (20) (21) A log w _ **((«- e)»»/ 2 ) - - ^ Pr (S, < a» 1 ' 2 ) ^1/26 ^4 log w g Man"*) ^1/26 Applying these inequalities to the Bernoullian case in 1, and considering the case d^o for the sake of definitiveness, we obtain A log n / 1 \ Consequently we have g ^(cm 1 ' 2 ) + v ' -4 log n ^ wi/2«^4 log w _ ^4 log n (22) ƒ(«- e) -^ Pr (S n < an*») g /(<* + «) + -~~ n 112 * tir' Since it is easy to see that /(log n) 1/2 \ (23) 7(a) - I(a ± c) - 0(e) = 0^ ^^ j, we obtain from (22) and (23) _ / log n \ P, (5. <«,««)-7(a)+0^). 5. The case fx k /JL^0. We have left out this case in order not to interrupt the argument. We shall now briefly indicate the transformations needed here. Instead of making the variance one in this case we shall follow the more usual way and assume that where (+1 ^+1 with probability p, X v l-l with probability q p - q = i*.

9 1170 K, L. CHUNG (24) Then In formula (3) we write E(X P ) «/i f E(X, - ju) 2 = 4#. «m + a(4pqn) 1/2, f = wg + 5 = nq + t(pqn) 112 where <\is a constant and 2 varies between (p^qn) 112 and a. We find, upon using Stirling's formula, that if / = 0(w 1/4 ) b{b + 2r - 1)! / p^ V' 2 / fat - 2aa) 2 (p q yp r\(b + r)l XlTrqn/ \2*W exp \ 2 / and if»w«-0(i), 0 +o fâ) 6(0 + 2r- 1)! (pq) r p b = 0(exp (- An 1 '*)). rl(b + r)\ Thus we can write, t running through the values denned by (24) as r runs through integers, c-m/i j(j + 2r - 1)! S -SffTor^''' -E + E- E (^.Y', -,(-«!t^\ rsn 8 ' 4 r> " 4 - n i'"<«-a \2irÇW/ \ 2 / ) J + 0(» exp (- ^w 1 ' 2 )) V V /2. f e-*i*dx + o( Y 0 1/2 Ja V'V (2*. PRINCETON UNIVERSITY

### ON THE NUMBER OF POSITIVE SUMS OF INDEPENDENT RANDOM VARIABLES

ON THE NUMBER OF POSITIVE SUMS OF INDEPENDENT RANDOM VARIABLES P. ERDÖS AND M. KAC 1 1. Introduction. In a recent paper 2 the authors have introduced a method for proving certain limit theorems of the

### J2 e-*= (27T)- 1 / 2 f V* 1 '»' 1 *»

THE NORMAL APPROXIMATION TO THE POISSON DISTRIBUTION AND A PROOF OF A CONJECTURE OF RAMANUJAN 1 TSENG TUNG CHENG 1. Summary. The Poisson distribution with parameter X is given by (1.1) F(x) = 23 p r where

### n

p l p bl t n t t f Fl r d, D p rt nt f N t r l R r, D v n f nt r r R r, B r f l. n.24 80 T ll h, Fl. : Fl r d D p rt nt f N t r l R r, B r f l, 86. http://hdl.handle.net/2027/mdp.39015007497111 r t v n

### A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

### 176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

### ON THE DENSITY OF SOME SEQUENCES OF INTEGERS P. ERDOS

ON THE DENSITY OF SOME SEQUENCES OF INTEGERS P. ERDOS Let ai

### ,. *â â > V>V. â ND * 828.

BL D,. *â â > V>V Z V L. XX. J N R â J N, 828. LL BL D, D NB R H â ND T. D LL, TR ND, L ND N. * 828. n r t d n 20 2 2 0 : 0 T http: hdl.h ndl.n t 202 dp. 0 02802 68 Th N : l nd r.. N > R, L X. Fn r f,

### SMOOTHNESS OF FUNCTIONS GENERATED BY RIESZ PRODUCTS

SMOOTHNESS OF FUNCTIONS GENERATED BY RIESZ PRODUCTS PETER L. DUREN Riesz products are a useful apparatus for constructing singular functions with special properties. They have been an important source

### PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n

R P RT F TH PR D NT N N TR T F R N V R T F NN T V D 0 0 : R PR P R JT..P.. D 2 PR L 8 8 J PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D.. 20 00 D r r. Pr d nt: n J n r f th r d t r v th

### 22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f

n r t d n 20 2 : 6 T P bl D n, l d t z d http:.h th tr t. r pd l 22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r

### THE MAXIMUM OF SUMS OF STABLE RANDOM VARIABLES

THE MAXIMUM OF SUMS OF STABLE RANDOM VARIABLES BY D. A. DARLING(') 1. Introduction. Let Xu X2, be identically distributed independent random variables and set Sn=Xi+ +X. In this paper we obtain the limiting

### ON THE AVERAGE NUMBER OF REAL ROOTS OF A RANDOM ALGEBRAIC EQUATION

ON THE AVERAGE NUMBER OF REAL ROOTS OF A RANDOM ALGEBRAIC EQUATION M. KAC 1. Introduction. Consider the algebraic equation (1) Xo + X x x + X 2 x 2 + + In-i^" 1 = 0, where the X's are independent random

### ON THE CONVERGENCE OF DOUBLE SERIES

ON THE CONVERGENCE OF DOUBLE SERIES ALBERT WILANSKY 1. Introduction. We consider three convergence definitions for double series, denoted by (p), (

### (1) 0 á per(a) Í f[ U, <=i

ON LOWER BOUNDS FOR PERMANENTS OF (, 1) MATRICES1 HENRYK MINC 1. Introduction. The permanent of an «-square matrix A = (a^) is defined by veria) = cesn n II «"( j. If A is a (, 1) matrix, i.e. a matrix

### AN ARCSINE LAW FOR MARKOV CHAINS

AN ARCSINE LAW FOR MARKOV CHAINS DAVID A. FREEDMAN1 1. Introduction. Suppose {xn} is a sequence of independent, identically distributed random variables with mean 0. Under certain mild assumptions [4],

### 4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

n r t d n 20 2 :24 T P bl D n, l d t z d http:.h th tr t. r pd l 4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n

### and ttuu ee 2 (logn loglogn) 1 J

282 ON THE DENSITY OF THE ABUNDANT NUMBEBS. But, by Lemma 3, b v a(6 M )^ 2 which is a contradiction. Thus the theorem is established. 4. It will be seen that the method used in this paper leads immediately

### 0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r

n r t d n 20 22 0: T P bl D n, l d t z d http:.h th tr t. r pd l 0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n.

### 4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

n r t d n 20 20 0 : 0 T P bl D n, l d t z d http:.h th tr t. r pd l 4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n,

### lim Prob. < «_ - arc sin «1 / 2, 0 <_ «< 1.

ON THE NUMBER OF POSITIVE SUMS OF INDEPENDENT RANDOM VARIABLES P. ERDÖS AND M. KAC 1 1. Introduction. In a recent paper' the authors have introduced a method for proving certain limit theorems of the theory

### (1.2) Nim {t; AN ax.f (nxt) C w}=e212 2 du,

A GAP SEQUENCE WITH GAPS BIGGER THAN THE HADAMARD'S SHIGERU TAKAHASHI (Received July 3, 1960) 1. Introduction. In the present note let f(t) be a measurable function satisfying the conditions; (1.1) f(t+1)=f(t),

### COMPOSITIONS AND FIBONACCI NUMBERS

COMPOSITIONS AND FIBONACCI NUMBERS V. E. HOGGATT, JR., and D. A. LIND San Jose State College, San Jose, California and University of Cambridge, England 1, INTRODUCTION A composition of n is an ordered

### 828.^ 2 F r, Br n, nd t h. n, v n lth h th n l nd h d n r d t n v l l n th f v r x t p th l ft. n ll n n n f lt ll th t p n nt r f d pp nt nt nd, th t

2Â F b. Th h ph rd l nd r. l X. TH H PH RD L ND R. L X. F r, Br n, nd t h. B th ttr h ph rd. n th l f p t r l l nd, t t d t, n n t n, nt r rl r th n th n r l t f th f th th r l, nd d r b t t f nn r r pr

### 46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

n r t d n 20 0 : T P bl D n, l d t z d http:.h th tr t. r pd l 46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l

### N V R T F L F RN P BL T N B ll t n f th D p rt nt f l V l., N., pp NDR. L N, d t r T N P F F L T RTL FR R N. B. P. H. Th t t d n t r n h r d r

n r t d n 20 2 04 2 :0 T http: hdl.h ndl.n t 202 dp. 0 02 000 N V R T F L F RN P BL T N B ll t n f th D p rt nt f l V l., N., pp. 2 24. NDR. L N, d t r T N P F F L T RTL FR R N. B. P. H. Th t t d n t r

### A GENERALIZATION OF STIRLING NUMBERS

Hongquan Yu Institute of Mathematical Sciences, Dalian University of Technology, Dalian 6024, China (Submitted September 996-Final Revision December 996). INTRODUCTION Let W(x), fix), g(x) be formal power

### Supplementary Information

If f - - x R f z (F ) w () () f F >, f E jj E, V G >, G >, E G,, f ff f FILY f jj ff LO_ N_ j:rer_ N_ Y_ fg LO_; LO_ N_; N_ j:rer_; j:rer_ N_ Y_ f LO_ N_ j:rer_; j:rer_; N_ j:rer_ Y_ fn LO_ N_ - N_ Y_

### Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v

Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v ll f x, h v nd d pr v n t fr tf l t th f nt r n r

### APPH 4200 Physics of Fluids

APPH 42 Physics of Fluids Problem Solving and Vorticity (Ch. 5) 1.!! Quick Review 2.! Vorticity 3.! Kelvin s Theorem 4.! Examples 1 How to solve fluid problems? (Like those in textbook) Ç"Tt=l I \$T1P#(

### n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

n r t d n 20 20 :4 T P bl D n, l d t z d http:.h th tr t. r pd l 2 0 x pt n f t v t, f f d, b th n nd th P r n h h, th r h v n t b n p d f r nt r. Th t v v d pr n, h v r, p n th pl v t r, d b p t r b R

### ON THE ERDOS-STONE THEOREM

ON THE ERDOS-STONE THEOREM V. CHVATAL AND E. SZEMEREDI In 1946, Erdos and Stone [3] proved that every graph with n vertices and at least edges contains a large K d+l (t), a complete (d + l)-partite graph

### 'NOTAS"CRITICAS PARA UNA TEDRIA DE M BUROCRACIA ESTATAL * Oscar Oszlak

OVí "^Ox^ OqAÍ"^ Dcument SD-11 \ 'NOTAS"CRTCAS PARA UNA TEDRA DE M BUROCRACA ESTATAL * Oscr Oszlk * El presente dcument que se reprduce pr us exclusv de ls prtcpntes de curss de Prrms de Cpctcón, se h

### ON THE MAXIMUM OF A NORMAL STATIONARY STOCHASTIC PROCESS 1 BY HARALD CRAMER. Communicated by W. Feller, May 1, 1962

ON THE MAXIMUM OF A NORMAL STATIONARY STOCHASTIC PROCESS 1 BY HARALD CRAMER Communicated by W. Feller, May 1, 1962 1. Let x(t) with oo

H NT Z N RT L 0 4 n f lt r h v d lt n r n, h p l," "Fl d nd fl d " ( n l d n l tr l t nt r t t n t nt t nt n fr n nl, th t l n r tr t nt. r d n f d rd n t th nd r nt r d t n th t th n r lth h v b n f

### ON THE EQUATION Xa=7X+/3 OVER AN ALGEBRAIC DIVISION RING

ON THE EQUATION Xa=7X+/3 OVER AN ALGEBRAIC DIVISION RING R. E. JOHNSON 1. Introduction and notation. The main purpose of this paper is to give necessary and sufficient conditions in order that the equation

### On lower and upper bounds for probabilities of unions and the Borel Cantelli lemma

arxiv:4083755v [mathpr] 6 Aug 204 On lower and upper bounds for probabilities of unions and the Borel Cantelli lemma Andrei N Frolov Dept of Mathematics and Mechanics St Petersburg State University St

### Asymptotics of generating the symmetric and alternating groups

Asymptotics of generating the symmetric and alternating groups John D. Dixon School of Mathematics and Statistics Carleton University, Ottawa, Ontario K2G 0E2 Canada jdixon@math.carleton.ca October 20,

### MULTIPLICATIVE FIBRE MAPS

MULTIPLICATIVE FIBRE MAPS BY LARRY SMITH 1 Communicated by John Milnor, January 9, 1967 In this note we shall outline a result concerning the cohomology of a multiplicative fibre map. To fix our notation

### Labor and Capital Before the Law

University of Michigan Law School University of Michigan Law School Scholarship Repository Articles Faculty Scholarship 1884 Labor and Capital Before the Law Thomas M. Cooley University of Michigan Law

### Yunhi Cho and Young-One Kim

Bull. Korean Math. Soc. 41 (2004), No. 1, pp. 27 43 ANALYTIC PROPERTIES OF THE LIMITS OF THE EVEN AND ODD HYPERPOWER SEQUENCES Yunhi Cho Young-One Kim Dedicated to the memory of the late professor Eulyong

### A Common Fixed Point Theorem for a Sequence of Multivalued Mappings

Publ. RIMS, Kyoto Univ. 15 (1979), 47-52 A Common Fixed Point Theorem for a Sequence of Multivalued Mappings By Kenjiro YANAGI* 1. introduction Recently, fixed point theorems for multivalued contraction

D t r l f r th n t d t t pr p r d b th t ff f th l t tt n N tr t n nd H n N d, n t d t t n t. n t d t t. h n t n :.. vt. Pr nt. ff.,. http://hdl.handle.net/2027/uiug.30112023368936 P bl D n, l d t z d

### Calculation of the Ramanujan t-dirichlet. By Robert Spira

MATHEMATICS OF COMPUTATION, VOLUME 27, NUMBER 122, APRIL, 1973 Calculation of the Ramanujan t-dirichlet Series By Robert Spira Abstract. A method is found for calculating the Ramanujan T-Dirichlet series

### Colby College Catalogue

Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1872 Colby College Catalogue 1872-1873 Colby College Follow this and additional works at: http://digitalcommonscolbyedu/catalogs

### A CONVEXITY CONDITION IN BANACH SPACES AND THE STRONG LAW OF LARGE NUMBERS1

A CONVEXITY CONDITION IN BANACH SPACES AND THE STRONG LAW OF LARGE NUMBERS1 ANATOLE BECK Introduction. The strong law of large numbers can be shown under certain hypotheses for random variables which take

### SOME THEOREMS ON MEROMORPHIC FUNCTIONS

SOME THEOREMS ON MEROMORPHIC FUNCTIONS s. m. shah 1. Introduction. In a recent paper [l]1 Yoshitomo Okada proved the following two theorems. A. If for any meromorphic function (1) F(z) = f(z)/g(z), where

### / dr/>(t)=co, I TT^Ti =cf' ; = l,2,...,» = l,...,p.

PROCEEDINGS of the AMERICAN MATHEMATICAL SOCIETY Volume 02, Number, January 988 UNIQUE SOLVABILITY OF AN EXTENDED STIELTJES MOMENT PROBLEM OLAV NJÂSTAD (Communicated by Paul S. Muhly) ABSTRACT. Let ai,...,ap

### z E z *" I»! HI UJ LU Q t i G < Q UJ > UJ >- C/J o> o C/) X X UJ 5 UJ 0) te : < C/) < 2 H CD O O) </> UJ Ü QC < 4* P? K ll I I <% "fei 'Q f

I % 4*? ll I - ü z /) I J (5 /) 2 - / J z Q. J X X J 5 G Q J s J J /J z *" J - LL L Q t-i ' '," ; i-'i S": t : i ) Q "fi 'Q f I»! t i TIS NT IS BST QALITY AVAILABL. T Y FRNIS T TI NTAIN A SIGNIFIANT NBR

### P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

### Vr Vr

F rt l Pr nt t r : xt rn l ppl t n : Pr nt rv nd PD RDT V t : t t : p bl ( ll R lt: 00.00 L n : n L t pd t : 0 6 20 8 :06: 6 pt (p bl Vr.2 8.0 20 8.0. 6 TH N PD PPL T N N RL http : h b. x v t h. p V l

### GENERALIZATION OF A THEOREM OF CHUNG AND FELLER MIRIAM LIPSCHUTZ

GENERALIZATION OF A THEOREM OF CHUNG AND FELLER MIRIAM LIPSCHUTZ 1. Introduction. Chung and Feller [l] have obtained the following result on fluctuations in coin tossing. Let Xn be a sequence of independent

### THE LINDEBERG-LÉVY THEOREM FOR MARTINGALES1

THE LINDEBERG-LÉVY THEOREM FOR MARTINGALES1 PATRICK BILLINGSLEY The central limit theorem of Lindeberg [7] and Levy [3] states that if {mi, m2, } is an independent, identically distributed sequence of

### ON THE EVOLUTION OF ISLANDS

ISRAEL JOURNAL OF MATHEMATICS, Vol. 67, No. 1, 1989 ON THE EVOLUTION OF ISLANDS BY PETER G. DOYLE, Lb COLIN MALLOWS,* ALON ORLITSKY* AND LARRY SHEPP t MT&T Bell Laboratories, Murray Hill, NJ 07974, USA;

### NOTE ON A THEOREM OF KAKUTANI

NOTE ON A THEOREM OF KAKUTANI H. D. BRUNK 1. Introduction. Limit theorems of probability have attracted much attention for a number of years. For a wide class of limit theorems, the language and methods

### Hp(Bn) = {f: f e H(Bn),\\f\\p < œ},

proceedings of the american mathematical society Volume 103, Number 1, May 1988 THE SPACES Hp(Bn), 0 < p < 1, AND Bpq(Bn), 0 < p < q < 1, ARE NOT LOCALLY CONVEX SHI JI-HUAI (Communicated by Irwin Kra)

### ON THE OSCILLATION OF THE DERIVATIVES OF A PERIODIC FUNCTION

ON THE OSCILLATION OF THE DERIVATIVES OF A PERIODIC FUNCTION BY GEORGE PÖLYA AND NORBERT WIENER 1. Let f(x) be a real valued periodic function of period 2ir defined for all real values of x and possessing

### YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

fa it) On the Jacobi Polynomials PA ' Gregory Matviyenko Research Report YALETJ/DCS/RR-1076 June 13, 1995 DTI,* QUALITY DEFECTED 3 YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE & k.-. *,«.

Сборник 2 fhxn "HeHo, Dolty!" HAL LEONARD D/X/ELAND COMBO PAK 2 Music and Lyric by JERRY HERMÁN Arranged by PAUL SEVERSON CLARNET jy f t / / 6f /* t ü.. r 3 p i

### ON THE HURWITZ ZETA-FUNCTION

ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 2, Number 1, Winter 1972 ON THE HURWITZ ZETA-FUNCTION BRUCE C. BERNDT 1. Introduction. Briggs and Chowla [2] and Hardy [3] calculated the coefficients of the

### OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

### A SPECIAL INTEGRAL FUNCTION* R. E. A. C. PALEY

A SPECIAL ITEGRAL FUCTIO* BY R. E. A. C. PALEY 1. Some years ago Collingwood and Valironf proposed the problem of whether there could exist an integral function whose minimum modulus on every circle \z\=r

### 2. Linear recursions, different cases We discern amongst 5 different cases with respect to the behaviour of the series C(x) (see (. 3)). Let R be the

MATHEMATICS SOME LINEAR AND SOME QUADRATIC RECURSION FORMULAS. I BY N. G. DE BRUIJN AND P. ERDÖS (Communicated by Prow. H. D. KLOOSTERMAN at the meeting ow Novemver 24, 95). Introduction We shall mainly

### A NEW METHOD OF INVERSION OF THE LAPLACE TRANSFORM* ATHANASIOS PAPOULIS. Polytechnic Institute of Brooklyn

405 A NEW METHOD OF INVERSION OF THE LAPLACE TRANSFORM* BY ATHANASIOS PAPOULIS Polytechnic Institute of Brooklyn Introduction. In determining a function r(t) from its Laplace transform R(p) R(p) = [ e"'r(t)

### Upper Bounds for Partitions into k-th Powers Elementary Methods

Int. J. Contemp. Math. Sciences, Vol. 4, 2009, no. 9, 433-438 Upper Bounds for Partitions into -th Powers Elementary Methods Rafael Jaimczu División Matemática, Universidad Nacional de Luján Buenos Aires,

Th pr nt n f r n th f ft nth nt r b R b rt Pr t r. Pr t r, R b rt, b. 868. xf rd : Pr nt d f r th B bl r ph l t t th xf rd n v r t Pr, 00. http://hdl.handle.net/2027/nyp.33433006349173 P bl D n n th n

### P a g e 3 6 of R e p o r t P B 4 / 0 9

P a g e 3 6 of R e p o r t P B 4 / 0 9 p r o t e c t h um a n h e a l t h a n d p r o p e r t y fr om t h e d a n g e rs i n h e r e n t i n m i n i n g o p e r a t i o n s s u c h a s a q u a r r y. J

### 252 P. ERDÖS [December sequence of integers then for some m, g(m) >_ 1. Theorem 1 would follow from u,(n) = 0(n/(logn) 1/2 ). THEOREM 2. u 2 <<(n) < c

Reprinted from ISRAEL JOURNAL OF MATHEMATICS Vol. 2, No. 4, December 1964 Define ON THE MULTIPLICATIVE REPRESENTATION OF INTEGERS BY P. ERDÖS Dedicated to my friend A. D. Wallace on the occasion of his

### ::::l<r/ L- 1-1>(=-ft\ii--r(~1J~:::: Fo. l. AG -=(0,.2,L}> M - &-c ==- < ) I) ~..-.::.1 ( \ I 0. /:rf!:,-t- f1c =- <I _,, -2...

Math 3298 Exam 1 NAME: SCORE: l. Given three points A(I, l, 1), B(l,;2, 3), C(2, - l, 2). (a) Find vectors AD, AC, nc. (b) Find AB+ DC, AB - AC, and 2AD. -->,,. /:rf!:,-t- f1c =-

### Colby College Catalogue

Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1866 Colby College Catalogue 1866-1867 Colby College Follow this and additional works at: http://digitalcommons.colby.edu/catalogs

### NOTE ON THE BESSEL POLYNOMIALS

NOTE ON THE BESSEL POLYNOMIALS BY M. NASSIF 1. This note can be considered as an addendum to the comprehensive study of the class of Bessel polynomials carried on by H. L. Krall and O. Frink [l ]. In fact

### (4) cn = f f(x)ux)dx (n = 0, 1, 2, ).

ON APPROXIMATION BY WALSH FUNCTIONS SHIGEKI yano Let

### HoKyu Lee Department of Mathematics, Ewha Womans University, Seoul , Korea

HoKyu Lee Department of Mathematics, Ewha Womans University, Seoul 0-0, Korea SeungKyung Park Department of Mathematics, Yonsei University, Seoul 0-, Korea (Submitted May 00-Final Revision April 00). I

### THE CONTIGUOUS FUNCTION RELATIONS FOR pf q WITH APPLICATIONS TO BATEMAN'S ƒ»«and RICE'S # n (r, p, v)

THE CONTIGUOUS FUNCTION RELATIONS FOR pf q WITH APPLICATIONS TO BATEMAN'S ƒ»«and RICE'S # n (r, p, v) EARL D. RAIN VILLE 1. Introduction. If in the generalized 1 hypergeometric function n. a a Q. A («OnWn

### Edgeworth expansions for a sample sum from a finite set of independent random variables

E l e c t r o n i c J o u r n a l o f P r o b a b i l i t y Vol. 12 2007), Paper no. 52, pages 1402 1417. Journal URL http://www.math.washington.edu/~ejpecp/ Edgeworth expansions for a sample sum from

### The Degree of the Splitting Field of a Random Polynomial over a Finite Field

The Degree of the Splitting Field of a Random Polynomial over a Finite Field John D. Dixon and Daniel Panario School of Mathematics and Statistics Carleton University, Ottawa, Canada fjdixon,danielg@math.carleton.ca

### ON THE HARMONIC SUMMABILITY OF DOUBLE FOURIER SERIES P. L. SHARMA

ON THE HARMONIC SUMMABILITY OF DOUBLE FOURIER SERIES P. L. SHARMA 1. Suppose that the function f(u, v) is integrable in the sense of Lebesgue, over the square ( ir, ir; it, it) and is periodic with period

### C O M P L E X FACTORIZATIONS O F T H E F I B O N A C C I AND LUCAS NUMBERS

C O M P L E X FACTORIZATIONS O F T H E F I B O N A C C I AND LUCAS NUMBERS Nathan D. Cahill, John R. D'Errico, and John P* Spence Eastman Kodak Company, 343 State Street, Rochester, NY 4650 {natfaan. cahill,

### INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS

INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS By P. ERD0S, CHAO KO (Szechuan), and R. RADO {Reading) [Received 13 August 1961] 1. Introduction E. SPEBJOBIB (1) has proved that every system of subsets

### THE RESULTANT OF SEVERAL HOMOGENEOUS POLYNOMIALS IN TWO INDETERMINATES

PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 54, January 1976 THE RESULTANT OF SEVERAL HOMOGENEOUS POLYNOMIALS IN TWO INDETERMINATES KUNIO KAKIE Abstract. We give one method of determining the

### 1981] 209 Let A have property P 2 then [7(n) is the number of primes not exceeding r.] (1) Tr(n) + c l n 2/3 (log n) -2 < max k < ir(n) + c 2 n 2/3 (l

208 ~ A ~ 9 ' Note that, by (4.4) and (4.5), (7.6) holds for all nonnegatíve p. Substituting from (7.6) in (6.1) and (6.2) and evaluating coefficients of xm, we obtain the following two identities. (p

### The Degree of the Splitting Field of a Random Polynomial over a Finite Field

The Degree of the Splitting Field of a Random Polynomial over a Finite Field John D. Dixon and Daniel Panario School of Mathematics and Statistics Carleton University, Ottawa, Canada {jdixon,daniel}@math.carleton.ca

### COMBINATORIAL SUMS AND SERIES INVOLVING INVERSES OF BINOMIAL COEFFICIENTS

COMBINATORIAL SUMS AND SERIES INVOLVING INVERSES OF BINOMIAL COEFFICIENTS Tiberiu Trif Universitatea Babe -Bolyai, Facultatea de Matematica i Informatica Str. Kogalniceanu no. 1, 3400 Cluj-Napoca, Romania

### A Note on two inventory models

A Note on two inventory models J.Colpaert E.Omey Introduction In inventory models the major objective consists of minimizing the total inventory cost and to balance the economics of large orders or large

### I-1. rei. o & A ;l{ o v(l) o t. e 6rf, \o. afl. 6rt {'il l'i. S o S S. l"l. \o a S lrh S \ S s l'l {a ra \o r' tn \$ ra S \ S SG{ \$ao. \ S l"l. \ (?

>. 1! = * l >'r : ^, : - fr). ;1,!/!i ;(?= f: r*. fl J :!= J; J- >. Vf i - ) CJ ) ṯ,- ( r k : ( l i ( l 9 ) ( ;l fr i) rf,? l i =r, [l CB i.l.!.) -i l.l l.!. * (.1 (..i -.1.! r ).!,l l.r l ( i b i i '9,

### GENERALIZATIONS OF MIDPOINT RULES

ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 1, Number 4, Fall 1971 GENERALIZATIONS OF MIDPOINT RULES ROBERT E. BARNHILL ABSTRACT. A midpoint rule proposed by Jagermann and improved upon by Stetter is

### Colby College Catalogue

Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1871 Colby College Catalogue 1871-1872 Colby College Follow this and additional works at: http://digitalcommonscolbyedu/catalogs

### FORMULAE FOR G-FUNCTION

Revista de la Union Matematica Argentina Volumen 24, Numero 4, 1969. SOME FORMULAE FOR G-FUNCTION by B.L. Sharma 1. INTRODUCTION. In a recent paper {S} the author has defined the generalized function of

### ENUMERATION OF HAMILTONIAN CYCLES AND PATHS IN A GRAPH

proceedings of the american mathematical society Volume 111, Number 1, January 1991 ENUMERATION OF HAMILTONIAN CYCLES AND PATHS IN A GRAPH C. J. LIU (Communicated by Andrew Odlyzko) Abstract. First, we

### Colby College Catalogue

Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1870 Colby College Catalogue 1870-1871 Colby College Follow this and additional works at: http://digitalcommonscolbyedu/catalogs

### On Expected Gaussian Random Determinants

On Expected Gaussian Random Determinants Moo K. Chung 1 Department of Statistics University of Wisconsin-Madison 1210 West Dayton St. Madison, WI 53706 Abstract The expectation of random determinants whose

### Years. Marketing without a plan is like navigating a maze; the solution is unclear.

F Q 2018 E Mk l lk z; l l Mk El M C C 1995 O Y O S P R j lk q D C Dl Off P W H S P W Sl M Y Pl Cl El M Cl FIRST QUARTER 2018 E El M & D I C/O Jff P RGD S C D M Sl 57 G S Alx ON K0C 1A0 C Tl: 6134821159

### A HARNACK INEQUALITY FOR NONLINEAR EQUATIONS

A HARNACK INEQUALITY FOR NONLINEAR EQUATIONS BY JAMES SERRIN Communicated by Lawrence Markus, March 18, 1963 Recently Moser has obtained a Harnack inequality for linear divergence structure equations with

### SHARP BOUNDS FOR PROBABILITIES WITH GIVEN SHAPE INFORMATION

R u t c o r Research R e p o r t SHARP BOUNDS FOR PROBABILITIES WITH GIVEN SHAPE INFORMATION Ersoy Subasi a Mine Subasi b András Prékopa c RRR 4-006, MARCH, 006 RUTCOR Rutgers Center for Operations Research

### ON CHARACTERIZATION OF POWER SERIES DISTRIBUTIONS BY A MARGINAL DISTRIBUTION AND A REGRESSION FUNCTION

Ann. Inst. Statist. Math. Vol. 41, No. 4, 671-676 (1989) ON CHARACTERIZATION OF POWER SERIES DISTRIBUTIONS BY A MARGINAL DISTRIBUTION AND A REGRESSION FUNCTION A. KYRIAKOUSSIS 1 AND H. PAPAGEORGIOU 2 1Department

### THE NUMBER OF COPRIME CHAINS WITH LARGEST MEMBER n

THE NUMBER OF COPRIME CHAINS WITH LARGEST MEMBER n R. C. ENTRINGER 1. In a previous paper [l] a coprime chain was defined to be an increasing sequence {ai,, ak\ of integers greater than 1 which contains

### Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No

xhibit 2-9/3/15 Invie Filing Pge 1841 f Pge 366 Dket. 44498 F u v 7? u ' 1 L ffi s xs L. s 91 S'.e q ; t w W yn S. s t = p '1 F? 5! 4 ` p V -', {} f6 3 j v > ; gl. li -. " F LL tfi = g us J 3 y 4 @" V)

l f t n nd bj t nd x f r t l n nd rr n n th b nd p phl t f l br r. D, lv l, 8. h r t,., 8 6. http://hdl.handle.net/2027/miun.aey7382.0001.001 P bl D n http://www.hathitrust.org/access_use#pd Th r n th

### ON AN INEQUALITY OF KOLMOGOROV AND STEIN

BULL. AUSTRAL. MATH. SOC. VOL. 61 (2000) [153-159] 26B35, 26D10 ON AN INEQUALITY OF KOLMOGOROV AND STEIN HA HUY BANG AND HOANG MAI LE A.N. Kolmogorov showed that, if /,/',..., /'"' are bounded continuous