Rational Chebyshev Approximations for the Bickley Functions Kin(x)

Size: px
Start display at page:

Download "Rational Chebyshev Approximations for the Bickley Functions Kin(x)"

Transcription

1 MATHEMATICS OF COMPUTATION, VOLUME, NUMBER JULY, PAGES - Rational Chebyshev Approximations for the Bickley Functions Kin(x) By J. M. Blair, C. A. Edwards and J. H. Johnson Abstract. This report presents near-minimax rational approximations for the Bickley functions Kix(x) for x > 0, KU(x) and Ki(x) for 0 < x <, and Ki$(x), Ki^(x) and KíXq(x) for x >, with relative errors ranging down to. The approximations, combined with the recurrence relation, yield a stable method of computing Kin(x), n =,,...,, for the complete range of the argument.. Introduction. The Bessel function integrals defined by () Kin(x) = rkin_x(t)dt, n=,,,..., J X with Ki0(x) = KQ(x), were first introduced by Bickley [] in connection with the solution of heat convection problems. They arise in neutron transport calculations, and are widely used in nuclear reactor computer codes. Taylor series and asymptotic expansions for Kin(x) are developed in [], [] and [], and [] contains a discussion of the numerical stability of the four-term recurrence relation. Chebyshev series and rational approximations to the Kin(x) have been published in a number of reports. [] gives S rational approximations to Ki and Ki^; [] gives S, S and S rational approximations to Kix, Ki and Ki, respectively; [] gives S rational approximations to Kix ; [] gives S rational approximations to Kix Ki; [] gives 0D Chebyshev series approximations to Kix; and [] gives S rational approximations to Kiv Ki and Ki for 0 < x <, and to Ki, Kix and Kix for x >. A number of the approximations in [] [] suffer from significant digit cancellation. This report gives rational minimax approximations to Kix (x) for x > 0, to Kix, Ki and Ki for 0 < x <, and to Ki, Ki and Kix0 for x >, with relative errors ranging down to -. The approximations, combined with the recurrence relation, yield a stable method of computing Kin(x), n =,,...,, for the complete range of the argument. The results in [] may be used to determine the accuracy of the Kin when the recurrence relation is extended to higher orders.. Functional Properties. Most of the results of this section are given in more general terms in []. Alternative definitions of Kin(x) axe Received February,. AMS (MOS) subject classifications (0). Primary D0; Secondary A0, AS0. Key words and phrases. Rational Chebyshev approximations, Bickley functions, Bessel function integrals. Copyright, American Mathematical Society

2 CHEBYSHEV APPROXIMATIONS FOR THE BICKLEY FUNCTIONS () Kin(x) = f g xcosh t 0 cosh" t dt o) = r e du J l u"iu - I)* () = fr/v*mc,'cos,,-üdi;. J 0 The derivative of Kin is given by Ki' ix) =-Kin_xix), and higher derivatives may be computed recursively from the formulae Ki^ix) = -Kifjj >(*), k =,,.n = 0,,,..., () Ki<* (x) = - «L*f (*) - * o*-!)(*) -^-AT/(0k->(x), fc =,,,... The latter equation is obtained by repeated differentiation of the formula K'xix) = ~Kxix)-K0ix), where K0 and ATt are the modified Bessel functions, and Ki0 = K0, Ki_x = Kx. By integrating () by parts we can derive the recurrence relation () (- lakijx) = x[kin_ix) -Kin_xix)] + (- )Kin_ix). From () and () it follows that -/, =, () ^ (0)= ' n = ' Ascending series for the Kin can be developed by repeated integration of the ascending series for KQix). The resulting formula is Kinix)=pnix) + i-iy X,+- + '*'H-Y-ln-! \ ', wr (+U-q+: *=i(*!)^.(*+/) fc Â:+- -L + _i_ H-, In * k + ' where is Euler's constant, and Pnix) is defined recursively, starting with P0ix) = 0, by

3 J. M. BLAIR, C. A. EDWARDS AND J. H. JOHNSON P ix) = KiniO)-fxo P _xit)dt, =,,,... Asymptotic expansions for large arguments can be developed by writing () in the form and expanding the integrand binomially. The resulting asymptotic formula is () Kinix)~e-*ffi io(-»m n'm Y m where, = 0, (") tt- ~~ j (m - ) «jk)\jn + m - k - l)\ The alternative formula min - l)\ k=o ^ Skikl)im nk(ku(m - k)\,"' () ( + l)am + = (m + H){(w + Vi + n)am - im - Yi)(m - tt + n)am_x} is derived in []. The change of variable» = v in () gives the formula () «L,«= (/*)*e-* f~ e- (l + )"" (l + g )"* dv, which proves to be useful for computations.. Stability of Recurrence Relation. If () is used for forward recursion, the growth of the absolute error in Kinix) is determined by the factor x/(t - ). Since Kin is a slowly decreasing function of, the relative error is comparable to the absolute error, and forward recursion over a short range is stable provided x/(«- ) is not large. As a check of this result, Ki, Ki,...,KiX0 were computed by forward recursion on Kix,Ki and for x = 0(0.0).0. The greatest loss of accuracy noted was one digit, which occurred near x =. In general, the accuracy loss was less than one digit. If () is used for backward recursion, the main factor determining the growth of the absolute error is (tj - l)/x. Since the relative error grows more slowly than the absolute error, backward recursion is stable provided ( - l)/x is not large. A numerical test consisted of computing Kin, Ki,..., Kix by backward recursion on Ki%, Kig and Kï, for x>. The greatest loss of accuracy noted was less than one digit, and occurred near x =. In general, the accuracy loss was very small. [] contains a more detailed discussion of the stability of the recurrence relation, and tables of values of the relative error from forward recursion for < 0 and x < 00.

4 CHEBYSHEV APPROXIMATIONS FOR THE BICKLEY FUNCTIONS. Generation of Approximations. Rational minimax approximations to Kinix) were computed in decimal arithmetic on a CDC 00 using a version of the second algorithm of Remes due to Ralston []. was levelled to three digits. The approximation forms and intervals are The relative error of the approximations Ki ix) - Rlmix) + x" In xs/m(x), 0 <x <, n -,., -x-*e-*/?/m(l/x), x>,«=, <x-*e-xrlm(llx), Kx<, = l,,, ^ x-'ae-xrlmillx), x>, =,,, where Rlmix) and Slm(x) axe rational functions of degree / in the numerator and in the denominator. For the range 0 < x <, Rlm is positive for n =,,, while Slm is positive for =, and negative for =, and so a loss of accuracy occurs for =, by subtraction. However, the amount of cancellation is small, being less than bit for =, and considerably less for =. The master routine for the range 0 < x < uses the power series expansions in (). For sufficiently large values of x, for which terms in the asymptotic series in () become less than -0 in magnitude, the master routine uses the series in (). For the intermediate range Kinix) is computed by a local Taylor series expansion of the form () Kinix0 +h) = Kinix0) + Z S *'"m)(*o)> m=l where Aïn(x0) is the closest of a set of reference values, and where the derivatives Kinm\x0) are computed by (). The table of reference values is constructed by using () at an appropriate large value, and then using () repeatedly with negative values of A. As a check of the master routine, the results of () and () were compared for a range of values of x between 0. and and for n = 0,,,...,. The relative difference was less than x - in every case. The values of KiAx) were compared to those in [], and showed agreement to at least digits. An independent check is provided by (), which was evaluated by a -point Gauss-Hermite integration formula. Agreement to digits was obtained for =,,...,, and x > x, where x increases slowly with n. Typical values of xn are Xj = and x =. The quadrature formula becomes progressively less accurate as x decreases. As a result of the tests, we conclude that the master routine is accurate to at least digits.. Results. The details of the approximations are given in Tables -, in a format similar to that used in []. Tables - summarize the best approximations in the ^ Walsh arrays of the functions, and Tables - give the coefficients of selected approximations. issue. Tables are included in the microfiche section of this

5 0 j. m. blair, c. a. edwards and j. h. johnson Table Kijfxj «PÄ(x)/Qm(xj txtnx S(x ) [0,] Table Ki(x) «R(x) + x Un x P^ (x)/qm(x) [0,] Table Ki(x)» P Cxj/Qm(Xj + x Un x S(xz) [0,]

6 CHEBYSHEV APPROXIMATIONS FOR THE BICKLEY FUNCTIONS Table Ki(x) «R(x) x Jin x PJl(x)/Qm(x) [0,] Table Ki(x) «PJl(x)/QniCx) + x S.n x S(x) [0,]., Table Ki(x) «R(x) + x Jin x P (x )/Qm(x ) [0,]

7 J. M. BLAIR, C. A. EDWARDS AND J. H. JOHNSON Table Kij(x) «x'h ex Pi(z)/Qm(z), z = /x [0,], S II 0 0 Table Kijfx) «x* e"x PJl(i/x)/Qm(l/x) [,]

8 CHEBYSHEV APPROXIMATIONS FOR THE BICKLEY FUNCTIONS Table Ki(x) «x"* e"x Pjl(l/x)/Qm(l/x) [,] Table Ki(x) «x"" e"x PÄ(l/x)/Qm(l/x) [,]

9 j. m. blair, c. a. edwards and j. h. johnson Table Kig(x) «x'h e'x PjL(z)/Qm(z), z = /x [0,/], Table Kiq(x) «x'h e"x P (z)/q fz), z = /x [0,/],

10 CHEBYSHEV APPROXIMATIONS FOR THE BICKLEY FUNCTIONS Table Ki(x) «x'h e~x PJ,(z)/Qm(z), z = /x [0,/], The precision is defined as log max f(x)-rlm(x) f(x) where f(x) is the function being approximated and the maximum is taken over the appropriate interval. For the range 0 < x < the first auxiliary function Rlm(x) is ill-conditioned, and loses up to two significant digits by cancellation. To eliminate the cancellation the numerator and denominator were converted to minimal Newton form [], and the resulting coefficients rounded off by an algorithm similar to that described in []. For the range 0 < x < the first auxiliary function R x for Ki(x) is almost degenerate, and the rational function could only be found by Cody's method of artificial poles []. The approximations in Tables - were verified by comparing them with the master routine for 000 pseudorandom values of the argument in each interval.. Use of Coefficients. The coefficients may be used to construct a subroutine to compute Kin(x) for =,,...,, and for all values of x. For x <, approximations to Kix, Ki and Ki, obtained from Tables - and -, may be extended to fl, Ki,..., Kix0 by forward recursion in () with the loss of at most one digit of accuracy. For x >, Tables - give Ki&, Ki and Kixo, and these may be extended to Kin, Ki,..., Kix by backward recursion in () with less than one digit loss of accuracy.

11 J. M. BLAIR, C. A. EDWARDS AND J. H. JOHNSON Full range approximations to Kix(x) axe given in Tables - and, since it is the most commonly occurring function.. Acknowledgement. We wish to thank the referee for a suggestion which reduced the size of the tables. Atomic Energy of Canada Limited Chalk River Nuclear Laboratories Mathematics and Computation Branch Chalk River, Ontario KOJ J0, Canada Atomic Energy of Canada Limited Chalk River Nuclear Laboratories Mathematics and Computation Branch Chalk River, Ontario KOJ J0, Canada Statistics Canada Business Survey Methods Division Coats Building Tunney's Pasture Ottawa, Ontario KA 0T, Canada. W. G. BICKLEY, "Some solutions of the problem of forced convection," Philos. Mag., v. 0, S, pp. -.. W. G. BICKLEY & J. NAYLER, "A short table of the functions Ki (x), from n = to n =," Philos. Mag., v. 0,, pp. -.. Y. L. LUKE, Integrals of Bessel Functions, McGraw-Hill, New York,.. D. DAVIERWALLA, Tschebyscheff Rational Approximations to Bickley Functions, EIR Report No.,.. A. J. CLAYTON, "Some rational approximations for the Kij and JC functions," /. Nuclear Energy, Parts A/B, v.,, pp. -.. I. GARGANTINI & T. POMENTALE, "Rational Chebyshev approximations to the Bessel function integrals Ki (x)," Comm. ACM, v.,, pp I. GARGANTINI, "On the application of the process of equalization of maxima to obtain rational approximations to certain modified Bessel functions," Comm. ACM, v.,, pp. -.. K. MAKINO, "Some rational approximations for the Bickley functions Kin (n =,,,, )," Nukleonik, v.,, pp. -.. Y. L. LUKE, Mathematical Functions and Their Approximations, Academic Press, New York,.. J. H. JOHNSON & J. M. BLAIR, REMES-A FORTRAN Program to Calculate Rational Minimax Approximations to a Given Function, Report AECL-, Atomic Energy of Canada Limited, Chalk River, Ontario,.. B. S. BERGER & H. McALLISTER, "A table of the modified Bessel functions Kn(x) and In(x) to at least 0S for n = 0, and x =,,..., 0," Math. Comp., v., 0, p., RMT.. J. F. HART, et al., Computer Approximations, Wiley, New York,.. C. MESZTENYI & C. WITZGALL, "Stable evaluation of polynomials," /. Res. Nat. Bur. Standards Sect. B, v. B,, pp. -.. W. J. CODY, "A survey of practical rational and polynomial approximation of functions," SIAM Rev., v., 0, pp. 00-.

PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES. Notes

PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES. Notes PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES Notes. x n+ = ax n has the general solution x n = x a n. 2. x n+ = x n + b has the general solution x n = x + (n )b. 3. x n+ = ax n + b (with a ) can be

More information

MATHEMATICS OF COMPUTATION, VOLUME 26, NUMBER 118, APRIL An Algorithm for Computing Logarithms. and Arctangents. By B. C.

MATHEMATICS OF COMPUTATION, VOLUME 26, NUMBER 118, APRIL An Algorithm for Computing Logarithms. and Arctangents. By B. C. MATHEMATICS OF COMPUTATION, VOLUME 26, NUMBER 118, APRIL 1972 An Algorithm for Computing Logarithms and Arctangents By B. C. Carlson Abstract. An iterative algorithm with fast convergence can be used to

More information

MATHEMATICAL FORMULAS AND INTEGRALS

MATHEMATICAL FORMULAS AND INTEGRALS MATHEMATICAL FORMULAS AND INTEGRALS ALAN JEFFREY Department of Engineering Mathematics University of Newcastle upon Tyne Newcastle upon Tyne United Kingdom Academic Press San Diego New York Boston London

More information

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

Approximations for the Bessel and Struve Functions

Approximations for the Bessel and Struve Functions MATHEMATICS OF COMPUTATION VOLUME 43, NUMBER 168 OCTOBER 1984. PAGES 551-556 Approximations for the Bessel and Struve Functions By J. N. Newman Abstract. Polynomials and rational-fraction approximations

More information

Calculation of Cylindrical Functions using Correction of Asymptotic Expansions

Calculation of Cylindrical Functions using Correction of Asymptotic Expansions Universal Journal of Applied Mathematics & Computation (4), 5-46 www.papersciences.com Calculation of Cylindrical Functions using Correction of Asymptotic Epansions G.B. Muravskii Faculty of Civil and

More information

(0, 0), (1, ), (2, ), (3, ), (4, ), (5, ), (6, ).

(0, 0), (1, ), (2, ), (3, ), (4, ), (5, ), (6, ). 1 Interpolation: The method of constructing new data points within the range of a finite set of known data points That is if (x i, y i ), i = 1, N are known, with y i the dependent variable and x i [x

More information

Further Mathematics SAMPLE. Marking Scheme

Further Mathematics SAMPLE. Marking Scheme Further Mathematics SAMPLE Marking Scheme This marking scheme has been prepared as a guide only to markers. This is not a set of model answers, or the exclusive answers to the questions, and there will

More information

1 Solutions to selected problems

1 Solutions to selected problems Solutions to selected problems Section., #a,c,d. a. p x = n for i = n : 0 p x = xp x + i end b. z = x, y = x for i = : n y = y + x i z = zy end c. y = (t x ), p t = a for i = : n y = y(t x i ) p t = p

More information

Completion Date: Monday February 11, 2008

Completion Date: Monday February 11, 2008 MATH 4 (R) Winter 8 Intermediate Calculus I Solutions to Problem Set #4 Completion Date: Monday February, 8 Department of Mathematical and Statistical Sciences University of Alberta Question. [Sec..9,

More information

x x2 2 + x3 3 x4 3. Use the divided-difference method to find a polynomial of least degree that fits the values shown: (b)

x x2 2 + x3 3 x4 3. Use the divided-difference method to find a polynomial of least degree that fits the values shown: (b) Numerical Methods - PROBLEMS. The Taylor series, about the origin, for log( + x) is x x2 2 + x3 3 x4 4 + Find an upper bound on the magnitude of the truncation error on the interval x.5 when log( + x)

More information

A Chebyshev Polynomial Rate-of-Convergence Theorem for Stieltjes Functions

A Chebyshev Polynomial Rate-of-Convergence Theorem for Stieltjes Functions mathematics of computation volume 39, number 159 july 1982, pages 201-206 A Chebyshev Polynomial Rate-of-Convergence Theorem for Stieltjes Functions By John P. Boyd Abstract. The theorem proved here extends

More information

Numerical Analysis Solution of Algebraic Equation (non-linear equation) 1- Trial and Error. 2- Fixed point

Numerical Analysis Solution of Algebraic Equation (non-linear equation) 1- Trial and Error. 2- Fixed point Numerical Analysis Solution of Algebraic Equation (non-linear equation) 1- Trial and Error In this method we assume initial value of x, and substitute in the equation. Then modify x and continue till we

More information

Quadrature Formulas for Infinite Integrals

Quadrature Formulas for Infinite Integrals Quadrature Formulas for Infinite Integrals By W. M. Harper 1. Introduction. Since the advent of high-speed computers, "mechanical" quadratures of the type (1) f w(x)f(x)dx^ Hif(aj) Ja 3=1 have become increasingly

More information

Some notes on applying computational divided differencing in optimization

Some notes on applying computational divided differencing in optimization Some notes on applying computational divided differencing in optimization Stephen A. Vavasis arxiv:1307.4097v1 [math.oc] 15 Jul 2013 May 7, 2014 Abstract We consider the problem of accurate computation

More information

Solutions to Assignment 1

Solutions to Assignment 1 Solutions to Assignment 1 Question 1. [Exercises 1.1, # 6] Use the division algorithm to prove that every odd integer is either of the form 4k + 1 or of the form 4k + 3 for some integer k. For each positive

More information

The Hardy-Littlewood Function: An Exercise in Slowly Convergent Series

The Hardy-Littlewood Function: An Exercise in Slowly Convergent Series The Hardy-Littlewood Function: An Exercise in Slowly Convergent Series Walter Gautschi Department of Computer Sciences Purdue University West Lafayette, IN 4797-66 U.S.A. Dedicated to Olav Njåstad on the

More information

MATH 150 Pre-Calculus

MATH 150 Pre-Calculus MATH 150 Pre-Calculus Fall, 2014, WEEK 2 JoungDong Kim Week 2: 1D, 1E, 2A Chapter 1D. Rational Expression. Definition of a Rational Expression A rational expression is an expression of the form p, where

More information

Jim Lambers MAT 460/560 Fall Semester Practice Final Exam

Jim Lambers MAT 460/560 Fall Semester Practice Final Exam Jim Lambers MAT 460/560 Fall Semester 2009-10 Practice Final Exam 1. Let f(x) = sin 2x + cos 2x. (a) Write down the 2nd Taylor polynomial P 2 (x) of f(x) centered around x 0 = 0. (b) Write down the corresponding

More information

Integration of Rational Functions by Partial Fractions

Integration of Rational Functions by Partial Fractions Title Integration of Rational Functions by MATH 1700 MATH 1700 1 / 11 Readings Readings Readings: Section 7.4 MATH 1700 2 / 11 Rational functions A rational function is one of the form where P and Q are

More information

1) The line has a slope of ) The line passes through (2, 11) and. 6) r(x) = x + 4. From memory match each equation with its graph.

1) The line has a slope of ) The line passes through (2, 11) and. 6) r(x) = x + 4. From memory match each equation with its graph. Review Test 2 Math 1314 Name Write an equation of the line satisfying the given conditions. Write the answer in standard form. 1) The line has a slope of - 2 7 and contains the point (3, 1). Use the point-slope

More information

1. Introduction The incomplete beta function I(a, b, x) is defined by [1, p.269, Eq and p.944, Eq ]

1. Introduction The incomplete beta function I(a, b, x) is defined by [1, p.269, Eq and p.944, Eq ] MATHEMATICS OF COMPUTATION Volume 65, Number 215 July 1996, Pages 1283 1288 AN ASYMPTOTIC EXPANSION FOR THE INCOMPLETE BETA FUNCTION B.G.S. DOMAN Abstract. A new asymptotic expansion is derived for the

More information

Note on Newton Interpolation Formula

Note on Newton Interpolation Formula Int. Journal of Math. Analysis, Vol. 6, 2012, no. 50, 2459-2465 Note on Newton Interpolation Formula Ramesh Kumar Muthumalai Department of Mathematics D.G. Vaishnav College, Arumbaam Chennai-600106, Tamilnadu,

More information

Integration of Rational Functions by Partial Fractions

Integration of Rational Functions by Partial Fractions Title Integration of Rational Functions by Partial Fractions MATH 1700 December 6, 2016 MATH 1700 Partial Fractions December 6, 2016 1 / 11 Readings Readings Readings: Section 7.4 MATH 1700 Partial Fractions

More information

Accessible Topic - Topics accessible to visually impaired students using a screen reader.

Accessible Topic - Topics accessible to visually impaired students using a screen reader. Course Name: Winter 2018 Math 95 - Course Code: ALEKS Course: Developmental Math Instructor: Course Dates: Begin: 01/07/2018 End: 03/23/2018 Course Content: 390 Topics (172 goal + 218 prerequisite) / 334

More information

DIFFERENCE EQUATIONS

DIFFERENCE EQUATIONS Chapter 3 DIFFERENCE EQUATIONS 3.1 Introduction Differential equations are applicable for continuous systems and cannot be used for discrete variables. Difference equations are the discrete equivalent

More information

k-protected VERTICES IN BINARY SEARCH TREES

k-protected VERTICES IN BINARY SEARCH TREES k-protected VERTICES IN BINARY SEARCH TREES MIKLÓS BÓNA Abstract. We show that for every k, the probability that a randomly selected vertex of a random binary search tree on n nodes is at distance k from

More information

Chapter 1 Mathematical Preliminaries and Error Analysis

Chapter 1 Mathematical Preliminaries and Error Analysis Chapter 1 Mathematical Preliminaries and Error Analysis Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 128A Numerical Analysis Limits and Continuity

More information

Math123 Lecture 1. Dr. Robert C. Busby. Lecturer: Office: Korman 266 Phone :

Math123 Lecture 1. Dr. Robert C. Busby. Lecturer: Office: Korman 266 Phone : Lecturer: Math1 Lecture 1 Dr. Robert C. Busby Office: Korman 66 Phone : 15-895-1957 Email: rbusby@mcs.drexel.edu Course Web Site: http://www.mcs.drexel.edu/classes/calculus/math1_spring0/ (Links are case

More information

A Note on Extended Gaussian Quadrature

A Note on Extended Gaussian Quadrature MATHEMATICS OF COMPUTATION, VOLUME 30, NUMBER 136 OCTOBER 1976, PAGES 812-817 A Note on Extended Gaussian Quadrature Rules By Giovanni Monegato* Abstract. Extended Gaussian quadrature rules of the type

More information

Computer Use in Continued Fraction Expansions*

Computer Use in Continued Fraction Expansions* Computer Use in Continued Fraction Expansions* By Evelyn Frank Abstract. In this study, the use of computers is demonstrated for the rapid expansion of a general regular continued fraction with rational

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MATHEMATICS ACADEMIC YEAR / EVEN SEMESTER QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MATHEMATICS ACADEMIC YEAR / EVEN SEMESTER QUESTION BANK KINGS COLLEGE OF ENGINEERING MA5-NUMERICAL METHODS DEPARTMENT OF MATHEMATICS ACADEMIC YEAR 00-0 / EVEN SEMESTER QUESTION BANK SUBJECT NAME: NUMERICAL METHODS YEAR/SEM: II / IV UNIT - I SOLUTION OF EQUATIONS

More information

MATHEMATICAL FORMULAS AND INTEGRALS

MATHEMATICAL FORMULAS AND INTEGRALS HANDBOOK OF MATHEMATICAL FORMULAS AND INTEGRALS Second Edition ALAN JEFFREY Department of Engineering Mathematics University of Newcastle upon Tyne Newcastle upon Tyne United Kingdom ACADEMIC PRESS A Harcourt

More information

1 Solutions to selected problems

1 Solutions to selected problems Solutions to selected problems Section., #a,c,d. a. p x = n for i = n : 0 p x = xp x + i end b. z = x, y = x for i = : n y = y + x i z = zy end c. y = (t x ), p t = a for i = : n y = y(t x i ) p t = p

More information

Approximation theory

Approximation theory Approximation theory Xiaojing Ye, Math & Stat, Georgia State University Spring 2019 Numerical Analysis II Xiaojing Ye, Math & Stat, Georgia State University 1 1 1.3 6 8.8 2 3.5 7 10.1 Least 3squares 4.2

More information

Notes on floating point number, numerical computations and pitfalls

Notes on floating point number, numerical computations and pitfalls Notes on floating point number, numerical computations and pitfalls November 6, 212 1 Floating point numbers An n-digit floating point number in base β has the form x = ±(.d 1 d 2 d n ) β β e where.d 1

More information

Chebyshev Polynomials

Chebyshev Polynomials Evaluation of the Incomplete Gamma Function of Imaginary Argument by Chebyshev Polynomials By Richard Barakat During the course of some work on the diffraction theory of aberrations it was necessary to

More information

Core Mathematics 3 Algebra

Core Mathematics 3 Algebra http://kumarmathsweeblycom/ Core Mathematics 3 Algebra Edited by K V Kumaran Core Maths 3 Algebra Page Algebra fractions C3 The specifications suggest that you should be able to do the following: Simplify

More information

5.4 Bessel s Equation. Bessel Functions

5.4 Bessel s Equation. Bessel Functions SEC 54 Bessel s Equation Bessel Functions J (x) 87 # with y dy>dt, etc, constant A, B, C, D, K, and t 5 HYPERGEOMETRIC ODE At B (t t )(t t ), t t, can be reduced to the hypergeometric equation with independent

More information

8.3 Partial Fraction Decomposition

8.3 Partial Fraction Decomposition 8.3 partial fraction decomposition 575 8.3 Partial Fraction Decomposition Rational functions (polynomials divided by polynomials) and their integrals play important roles in mathematics and applications,

More information

The numerical stability of barycentric Lagrange interpolation

The numerical stability of barycentric Lagrange interpolation IMA Journal of Numerical Analysis (2004) 24, 547 556 The numerical stability of barycentric Lagrange interpolation NICHOLAS J. HIGHAM Department of Mathematics, University of Manchester, Manchester M13

More information

PART I Lecture Notes on Numerical Solution of Root Finding Problems MATH 435

PART I Lecture Notes on Numerical Solution of Root Finding Problems MATH 435 PART I Lecture Notes on Numerical Solution of Root Finding Problems MATH 435 Professor Biswa Nath Datta Department of Mathematical Sciences Northern Illinois University DeKalb, IL. 60115 USA E mail: dattab@math.niu.edu

More information

A NEW NONLINEAR FILTER

A NEW NONLINEAR FILTER COMMUNICATIONS IN INFORMATION AND SYSTEMS c 006 International Press Vol 6, No 3, pp 03-0, 006 004 A NEW NONLINEAR FILTER ROBERT J ELLIOTT AND SIMON HAYKIN Abstract A discrete time filter is constructed

More information

COMPUTATION OF BESSEL AND AIRY FUNCTIONS AND OF RELATED GAUSSIAN QUADRATURE FORMULAE

COMPUTATION OF BESSEL AND AIRY FUNCTIONS AND OF RELATED GAUSSIAN QUADRATURE FORMULAE BIT 6-85//41-11 $16., Vol. 4, No. 1, pp. 11 118 c Swets & Zeitlinger COMPUTATION OF BESSEL AND AIRY FUNCTIONS AND OF RELATED GAUSSIAN QUADRATURE FORMULAE WALTER GAUTSCHI Department of Computer Sciences,

More information

Assignment 11 Assigned Mon Sept 27

Assignment 11 Assigned Mon Sept 27 Assignment Assigned Mon Sept 7 Section 7., Problem 4. x sin x dx = x cos x + x cos x dx ( = x cos x + x sin x ) sin x dx u = x dv = sin x dx du = x dx v = cos x u = x dv = cos x dx du = dx v = sin x =

More information

Chapter R - Review of Basic Algebraic Concepts (26 topics, no due date)

Chapter R - Review of Basic Algebraic Concepts (26 topics, no due date) Course Name: Math 00023 Course Code: N/A ALEKS Course: Intermediate Algebra Instructor: Master Templates Course Dates: Begin: 08/15/2014 End: 08/15/2015 Course Content: 245 topics Textbook: Miller/O'Neill/Hyde:

More information

27 Wyner Math 2 Spring 2019

27 Wyner Math 2 Spring 2019 27 Wyner Math 2 Spring 2019 CHAPTER SIX: POLYNOMIALS Review January 25 Test February 8 Thorough understanding and fluency of the concepts and methods in this chapter is a cornerstone to success in the

More information

Math 141: Lecture 11

Math 141: Lecture 11 Math 141: Lecture 11 The Fundamental Theorem of Calculus and integration methods Bob Hough October 12, 2016 Bob Hough Math 141: Lecture 11 October 12, 2016 1 / 36 First Fundamental Theorem of Calculus

More information

Math 473: Practice Problems for Test 1, Fall 2011, SOLUTIONS

Math 473: Practice Problems for Test 1, Fall 2011, SOLUTIONS Math 473: Practice Problems for Test 1, Fall 011, SOLUTIONS Show your work: 1. (a) Compute the Taylor polynomials P n (x) for f(x) = sin x and x 0 = 0. Solution: Compute f(x) = sin x, f (x) = cos x, f

More information

Chapter R - Basic Algebra Operations (94 topics, no due date)

Chapter R - Basic Algebra Operations (94 topics, no due date) Course Name: Math 00024 Course Code: N/A ALEKS Course: College Algebra Instructor: Master Templates Course Dates: Begin: 08/15/2014 End: 08/15/2015 Course Content: 207 topics Textbook: Barnett/Ziegler/Byleen/Sobecki:

More information

Error Analysis of a Computation of Euler's Constant*

Error Analysis of a Computation of Euler's Constant* MATHEMATICS OF COMPUTATION, VOLUME 28, NUMBER 126, APRIL 1974, PAGES 599-604 Error Analysis of a Computation of Euler's Constant* By W. A. Beyer and M. S. Waterman Abstract. A complete error analysis of

More information

ECE257 Numerical Methods and Scientific Computing. Ordinary Differential Equations

ECE257 Numerical Methods and Scientific Computing. Ordinary Differential Equations ECE257 Numerical Methods and Scientific Computing Ordinary Differential Equations Today s s class: Stiffness Multistep Methods Stiff Equations Stiffness occurs in a problem where two or more independent

More information

Chapter 6: Rational Expr., Eq., and Functions Lecture notes Math 1010

Chapter 6: Rational Expr., Eq., and Functions Lecture notes Math 1010 Section 6.1: Rational Expressions and Functions Definition of a rational expression Let u and v be polynomials. The algebraic expression u v is a rational expression. The domain of this rational expression

More information

Section Taylor and Maclaurin Series

Section Taylor and Maclaurin Series Section.0 Taylor and Maclaurin Series Ruipeng Shen Feb 5 Taylor and Maclaurin Series Main Goal: How to find a power series representation for a smooth function us assume that a smooth function has a power

More information

Solving Systems of Linear Equations. Classification by Number of Solutions

Solving Systems of Linear Equations. Classification by Number of Solutions Solving Systems of Linear Equations Case 1: One Solution Case : No Solution Case 3: Infinite Solutions Independent System Inconsistent System Dependent System x = 4 y = Classification by Number of Solutions

More information

Outline. 1 Interpolation. 2 Polynomial Interpolation. 3 Piecewise Polynomial Interpolation

Outline. 1 Interpolation. 2 Polynomial Interpolation. 3 Piecewise Polynomial Interpolation Outline Interpolation 1 Interpolation 2 3 Michael T. Heath Scientific Computing 2 / 56 Interpolation Motivation Choosing Interpolant Existence and Uniqueness Basic interpolation problem: for given data

More information

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised) Term-End Examination December, 2015 BCS-054 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised) Term-End Examination December, 2015 BCS-054 : COMPUTER ORIENTED NUMERICAL TECHNIQUES No. of Printed Pages : 5 BCS-054 BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised) Term-End Examination December, 2015 058b9 BCS-054 : COMPUTER ORIENTED NUMERICAL TECHNIQUES Time : 3 hours Maximum Marks

More information

High Precision Calculation of Arcsin x, Arceos x, and Arctan % By I. E. Perlin and J. R. Garrett

High Precision Calculation of Arcsin x, Arceos x, and Arctan % By I. E. Perlin and J. R. Garrett 70 I. E. PERLIN AND J. R. GARRETT (18) EB+1 = A"Eo + An_1Uo + An~\Jx + + U_i. From (18) it follows at once that the criterion for the stability of (17) is identical with that for (9), namely that Ax and

More information

Scientific Computing

Scientific Computing 2301678 Scientific Computing Chapter 2 Interpolation and Approximation Paisan Nakmahachalasint Paisan.N@chula.ac.th Chapter 2 Interpolation and Approximation p. 1/66 Contents 1. Polynomial interpolation

More information

5.13 Rational Chebyshev Approximation Rational Chebyshev Approximation 197

5.13 Rational Chebyshev Approximation Rational Chebyshev Approximation 197 5.13 Rational Chebyshev Approximation 197 y(j)=x(j) do 11 k=1,n q(j,k)=cof(j-k+n+1) qlu(j,k)=q(j,k) enddo 11 enddo 12 call ludcmp(qlu,n,nmax,indx,d) Solve by LU decomposition and backsubstitution. call

More information

Fully Symmetric Interpolatory Rules for Multiple Integrals over Infinite Regions with Gaussian Weight

Fully Symmetric Interpolatory Rules for Multiple Integrals over Infinite Regions with Gaussian Weight Fully Symmetric Interpolatory ules for Multiple Integrals over Infinite egions with Gaussian Weight Alan Genz Department of Mathematics Washington State University ullman, WA 99164-3113 USA genz@gauss.math.wsu.edu

More information

A Note on the Recursive Calculation of Incomplete Gamma Functions

A Note on the Recursive Calculation of Incomplete Gamma Functions A Note on the Recursive Calculation of Incomplete Gamma Functions WALTER GAUTSCHI Purdue University It is known that the recurrence relation for incomplete gamma functions a n, x, 0 a 1, n 0,1,2,..., when

More information

(f(x) P 3 (x)) dx. (a) The Lagrange formula for the error is given by

(f(x) P 3 (x)) dx. (a) The Lagrange formula for the error is given by 1. QUESTION (a) Given a nth degree Taylor polynomial P n (x) of a function f(x), expanded about x = x 0, write down the Lagrange formula for the truncation error, carefully defining all its elements. How

More information

Zeros of the Hankel Function of Real Order and of Its Derivative

Zeros of the Hankel Function of Real Order and of Its Derivative MATHEMATICS OF COMPUTATION VOLUME 39, NUMBER 160 OCTOBER 1982, PAGES 639-645 Zeros of the Hankel Function of Real Order and of Its Derivative By Andrés Cruz and Javier Sesma Abstract. The trajectories

More information

Taylor Series. Math114. March 1, Department of Mathematics, University of Kentucky. Math114 Lecture 18 1/ 13

Taylor Series. Math114. March 1, Department of Mathematics, University of Kentucky. Math114 Lecture 18 1/ 13 Taylor Series Math114 Department of Mathematics, University of Kentucky March 1, 2017 Math114 Lecture 18 1/ 13 Given a function, can we find a power series representation? Math114 Lecture 18 2/ 13 Given

More information

of the Incomplete Gamma Functions and the Incomplete Beta Function

of the Incomplete Gamma Functions and the Incomplete Beta Function MATHEMATICS OF COMPUTATION, VOLUME 29, NUMBER 132 OCTOBER 1975, PAGES 1109-1114 Uniform Asymptotic Expansions of the Incomplete Gamma Functions and the Incomplete Beta Function By N. M. Temme Abstract.

More information

Math 112 Rahman. Week Taylor Series Suppose the function f has the following power series:

Math 112 Rahman. Week Taylor Series Suppose the function f has the following power series: Math Rahman Week 0.8-0.0 Taylor Series Suppose the function f has the following power series: fx) c 0 + c x a) + c x a) + c 3 x a) 3 + c n x a) n. ) Can we figure out what the coefficients are? Yes, yes

More information

Part II NUMERICAL MATHEMATICS

Part II NUMERICAL MATHEMATICS Part II NUMERICAL MATHEMATICS BIT 31 (1991). 438-446. QUADRATURE FORMULAE ON HALF-INFINITE INTERVALS* WALTER GAUTSCHI Department of Computer Sciences, Purdue University, West Lafayette, IN 47907, USA Abstract.

More information

Computation of the error functions erf and erfc in arbitrary precision with correct rounding

Computation of the error functions erf and erfc in arbitrary precision with correct rounding Computation of the error functions erf and erfc in arbitrary precision with correct rounding Sylvain Chevillard Arenaire, LIP, ENS-Lyon, France Sylvain.Chevillard@ens-lyon.fr Nathalie Revol INRIA, Arenaire,

More information

Reading Mathematical Expressions & Arithmetic Operations Expression Reads Note

Reading Mathematical Expressions & Arithmetic Operations Expression Reads Note Math 001 - Term 171 Reading Mathematical Expressions & Arithmetic Operations Expression Reads Note x A x belongs to A,x is in A Between an element and a set. A B A is a subset of B Between two sets. φ

More information

Definition: 2 (degree) The degree of a term is the sum of the exponents of each variable. Definition: 3 (Polynomial) A polynomial is a sum of terms.

Definition: 2 (degree) The degree of a term is the sum of the exponents of each variable. Definition: 3 (Polynomial) A polynomial is a sum of terms. I. Polynomials Anatomy of a polynomial. Definition: (Term) A term is the product of a number and variables. The number is called a coefficient. ax n y m In this example a is called the coefficient, and

More information

Math 106: Review for Exam II - SOLUTIONS

Math 106: Review for Exam II - SOLUTIONS Math 6: Review for Exam II - SOLUTIONS INTEGRATION TIPS Substitution: usually let u a function that s inside another function, especially if du (possibly off by a multiplying constant) is also present

More information

Math 411 Preliminaries

Math 411 Preliminaries Math 411 Preliminaries Provide a list of preliminary vocabulary and concepts Preliminary Basic Netwon's method, Taylor series expansion (for single and multiple variables), Eigenvalue, Eigenvector, Vector

More information

6.1 Polynomial Functions

6.1 Polynomial Functions 6.1 Polynomial Functions Definition. A polynomial function is any function p(x) of the form p(x) = p n x n + p n 1 x n 1 + + p 2 x 2 + p 1 x + p 0 where all of the exponents are non-negative integers and

More information

A Double Integral Containing the Modified Bessel Function: Asymptotic* and Computation. (1.1) l(x,y) = f f e-"-%(2]ful)dudt,

A Double Integral Containing the Modified Bessel Function: Asymptotic* and Computation. (1.1) l(x,y) = f f e--%(2]ful)dudt, mathematics of computation volume 47, number 176 october 1986, pages 683-691 A Double Integral Containing the Modified Bessel Function: Asymptotic* and Computation By N. M. Temme Abstract. A two-dimensional

More information

Math 106: Review for Exam II - SOLUTIONS

Math 106: Review for Exam II - SOLUTIONS Math 6: Review for Exam II - SOLUTIONS INTEGRATION TIPS Substitution: usually let u a function that s inside another function, especially if du (possibly off by a multiplying constant) is also present

More information

MEMORIAL UNIVERSITY OF NEWFOUNDLAND

MEMORIAL UNIVERSITY OF NEWFOUNDLAND MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS Section 5. Math 090 Fall 009 SOLUTIONS. a) Using long division of polynomials, we have x + x x x + ) x 4 4x + x + 0x x 4 6x

More information

Math RE - Calculus II Antiderivatives and the Indefinite Integral Page 1 of 5

Math RE - Calculus II Antiderivatives and the Indefinite Integral Page 1 of 5 Math 201-203-RE - Calculus II Antiderivatives and the Indefinite Integral Page 1 of 5 What is the Antiderivative? In a derivative problem, a function f(x) is given and you find the derivative f (x) using

More information

Engineering Mathematics through Applications

Engineering Mathematics through Applications 89 80 Engineering Mathematics through Applications Finite Differences, Numerical Differentiations and Integrations 8 8 Engineering Mathematics through Applications Finite Differences, Numerical Differentiations

More information

Variable-precision recurrence coefficients for nonstandard orthogonal polynomials

Variable-precision recurrence coefficients for nonstandard orthogonal polynomials Numer Algor (29) 52:49 418 DOI 1.17/s1175-9-9283-2 ORIGINAL RESEARCH Variable-precision recurrence coefficients for nonstandard orthogonal polynomials Walter Gautschi Received: 6 January 29 / Accepted:

More information

ACM 106a: Lecture 1 Agenda

ACM 106a: Lecture 1 Agenda 1 ACM 106a: Lecture 1 Agenda Introduction to numerical linear algebra Common problems First examples Inexact computation What is this course about? 2 Typical numerical linear algebra problems Systems of

More information

Numerical Quadrature over a Rectangular Domain in Two or More Dimensions

Numerical Quadrature over a Rectangular Domain in Two or More Dimensions Numerical Quadrature over a Rectangular Domain in Two or More Dimensions Part 2. Quadrature in several dimensions, using special points By J. C. P. Miller 1. Introduction. In Part 1 [1], several approximate

More information

Upon completion of this course, the student should be able to satisfy the following objectives.

Upon completion of this course, the student should be able to satisfy the following objectives. Homework: Chapter 6: o 6.1. #1, 2, 5, 9, 11, 17, 19, 23, 27, 41. o 6.2: 1, 5, 9, 11, 15, 17, 49. o 6.3: 1, 5, 9, 15, 17, 21, 23. o 6.4: 1, 3, 7, 9. o 6.5: 5, 9, 13, 17. Chapter 7: o 7.2: 1, 5, 15, 17,

More information

Barycentric interpolation, Chebfun, rational approximation, Bernstein ellipse,

Barycentric interpolation, Chebfun, rational approximation, Bernstein ellipse, STABILITY OF BARYCENTRIC INTERPOLATION FORMULAS MARCUS WEBB, LLOYD N. TREFETHEN, AND PEDRO GONNET Abstract. The barycentric interpolation formula defines a stable algorithm for evaluation at points in

More information

Horizontal and Vertical Asymptotes from section 2.6

Horizontal and Vertical Asymptotes from section 2.6 Horizontal and Vertical Asymptotes from section 2.6 Definition: In either of the cases f(x) = L or f(x) = L we say that the x x horizontal line y = L is a horizontal asymptote of the function f. Note:

More information

Math 185 Fall 2015, Sample Final Exam Solutions

Math 185 Fall 2015, Sample Final Exam Solutions Math 185 Fall 2015, Sample Final Exam Solutions Nikhil Srivastava December 12, 2015 1. True or false: (a) If f is analytic in the annulus A = {z : 1 < z < 2} then there exist functions g and h such that

More information

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0 Legendre equation This ODE arises in many physical systems that we shall investigate We choose We then have Substitution gives ( x 2 ) d 2 u du 2x 2 dx dx + ( + )u u x s a λ x λ a du dx λ a λ (λ + s)x

More information

Section x7 +

Section x7 + Difference Equations to Differential Equations Section 5. Polynomial Approximations In Chapter 3 we discussed the problem of finding the affine function which best approximates a given function about some

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) 6x + 4

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) 6x + 4 Math1420 Review Comprehesive Final Assessment Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Add or subtract as indicated. x + 5 1) x2

More information

Beginning Algebra. 1. Review of Pre-Algebra 1.1 Review of Integers 1.2 Review of Fractions

Beginning Algebra. 1. Review of Pre-Algebra 1.1 Review of Integers 1.2 Review of Fractions 1. Review of Pre-Algebra 1.1 Review of Integers 1.2 Review of Fractions Beginning Algebra 1.3 Review of Decimal Numbers and Square Roots 1.4 Review of Percents 1.5 Real Number System 1.6 Translations:

More information

CS 257: Numerical Methods

CS 257: Numerical Methods CS 57: Numerical Methods Final Exam Study Guide Version 1.00 Created by Charles Feng http://www.fenguin.net CS 57: Numerical Methods Final Exam Study Guide 1 Contents 1 Introductory Matter 3 1.1 Calculus

More information

Lecture 2: Computing functions of dense matrices

Lecture 2: Computing functions of dense matrices Lecture 2: Computing functions of dense matrices Paola Boito and Federico Poloni Università di Pisa Pisa - Hokkaido - Roma2 Summer School Pisa, August 27 - September 8, 2018 Introduction In this lecture

More information

Ch 7 Summary - POLYNOMIAL FUNCTIONS

Ch 7 Summary - POLYNOMIAL FUNCTIONS Ch 7 Summary - POLYNOMIAL FUNCTIONS 1. An open-top box is to be made by cutting congruent squares of side length x from the corners of a 8.5- by 11-inch sheet of cardboard and bending up the sides. a)

More information

Series methods for integration

Series methods for integration By K. Wright* Some methods of integration using Chebyshev and Legendre polynomial series are compared, mainly from an empirical point of view. The evaluation of both definite and indefinite integrals is

More information

Algebra 2 (2006) Correlation of the ALEKS Course Algebra 2 to the California Content Standards for Algebra 2

Algebra 2 (2006) Correlation of the ALEKS Course Algebra 2 to the California Content Standards for Algebra 2 Algebra 2 (2006) Correlation of the ALEKS Course Algebra 2 to the California Content Standards for Algebra 2 Algebra II - This discipline complements and expands the mathematical content and concepts of

More information

(x 3)(x + 5) = (x 3)(x 1) = x + 5. sin 2 x e ax bx 1 = 1 2. lim

(x 3)(x + 5) = (x 3)(x 1) = x + 5. sin 2 x e ax bx 1 = 1 2. lim SMT Calculus Test Solutions February, x + x 5 Compute x x x + Answer: Solution: Note that x + x 5 x x + x )x + 5) = x )x ) = x + 5 x x + 5 Then x x = + 5 = Compute all real values of b such that, for fx)

More information

Homework and Computer Problems for Math*2130 (W17).

Homework and Computer Problems for Math*2130 (W17). Homework and Computer Problems for Math*2130 (W17). MARCUS R. GARVIE 1 December 21, 2016 1 Department of Mathematics & Statistics, University of Guelph NOTES: These questions are a bare minimum. You should

More information

Math 115 HW #5 Solutions

Math 115 HW #5 Solutions Math 5 HW #5 Solutions From 29 4 Find the power series representation for the function and determine the interval of convergence Answer: Using the geometric series formula, f(x) = 3 x 4 3 x 4 = 3(x 4 )

More information

INTRODUCTION TO COMPUTATIONAL MATHEMATICS

INTRODUCTION TO COMPUTATIONAL MATHEMATICS INTRODUCTION TO COMPUTATIONAL MATHEMATICS Course Notes for CM 271 / AMATH 341 / CS 371 Fall 2007 Instructor: Prof. Justin Wan School of Computer Science University of Waterloo Course notes by Prof. Hans

More information