4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th"

Transcription

1 n r t d n 20 2 :24 T P bl D n, l d t z d th tr t. r pd l

2 4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th n f v r. Th t n f r nt h b n l n t d. F r rl th r r ft n tr. h n d th r r, n th tr p, h th r th r r t ll tr, th n r d: h h v t tr n t Th p pl n v r ll th t v r pr d t b n d tr b t d j tl, nd n th n th t, th r n tr bl b t th r r n n t r." r t n n l d h p h th th r r th t nl v l nt r r n b n nt t ld r, nd th t th r r n v rth l n ld r th t n t ll n b n d t l t r r. H v rd L n th h d l r nt f pr nt d tt r h h h h d br ht b t N r th h, ll f h h nf t d b th N r n v rn nt, nd nl ll p rt n l t r r t rn d. H d d th n h n th t h d t n pl n R. " l v t h n p t l t fr f nd nd n th r f r l ttl nd r t nd h t n n n R. n th r 0 R n th n l th n n n l n, b t ft r 0 th r d v l p d, n n n f tt n pr r, v r r p d nd tr l r th, th th r lt th t th pr d t n f r t r l ld h rdl p p th th d nd f nd tr. Th nn t r ll r p d d v l p nt h d br ht f rth r t n r, th t nl r v l t n ld v R. n n n f r n nv n, nd tr h d t b thdr n r nd r fr th t f th ntr t th nt r nd t th t. N t nl r th h n tr n pl nt d, b t l th l n r v l t n r r r, h h h d n dv nt nfl n n nd tr. n pl nt n nt nd pr d t n n d n, b t th r t r p rt f th b r n r t pr f t, n th r ntr. Th d l n f pr d t n th h f f th R n R v l t n. t th nd f 6 nd th b nn n f th r r n n pl lr d r d nd n th ntr l v r pr d t n n n f t r. n l f f t r r r r b n f r d, n p t f th nd n nt r t n f th p t l t. Th n h v, h t f r t r th j r t n th r r n l, r n f l n th r r, nd th r f r th p r v r th n l p d nt th h nd f th B l h v. "Th N v b r R v l t n d p bl th pl t n f th n r n r dj t nt, th t th r lr d rt n t v t n n l f. r n r t bl h d f r th ntr l f th nt r nd tr l pr d t n. Th b t f th b r nv lv d n l r t n f th pr f l z t n, h h t h d b n r n ll nt nd d t pr t r th r l l. F r n p t l l b n t b r th r r t v. n th d t f th t b tt r tr l th th b r, pr d t n h d t b p d d p. tr n ntr l z d l d r h p f pr d t n r r d. Th ntr l z t n, h h v d R, d ff r nt th n fr th tr t f t n f p t l t t, b t b p rv d n r t d n 20 2 :24 T P bl D n, l d t z d th tr t. r pd l

3 N v b r 20, 20 4 R n n t P rt h d t n t ll th n r f th r n l, nd th r th v t r f th R n R v l t n. Th tr d n n r nt n n p th n nd pr t t n th t n t n p bl p d ff rt f p t l t r t r t n." Th r p rt f th t d l t r r v d th th r t t nth. l t r R v B Lt. l. B. R t B "V\ ljld th l d t n f th r n fr nt * * p t n nd t th bl d h d n v t R n r n th n t v th n pp r t fr p r l tr t l t ndp nt, th r n h n f r p n r p, n n r l, r n R n p rt l r, l n th p t l t l t n f rld p r l d n t d r p. h v n pr f f th p f l tt t d f th v t v rn nt, nd t n t n r t r p t th h r. v t R nt p. Th f R n tr t t f r th n r n f th v t R p bl t n l d d f n t p th th R n r r nd p nt h l th tr t f th p t l t l t n, n th ntr r, b d n d t r n t n t d â tr th t bl h d r n R. n v f th t t f ff r, th r n th n f r th R n p pl t d b t t f ht th h tt th. N l t l l r v th t t n n R. Th t h h n th tr th t b t ld th t f r f r t b th h d ll n th r f l nd l n n r l pr d thr h t th rld n rn n R. t th pr nt nt th R d r f th v t R p bl f r th xth t n t thr r f f ht n n t n r d nd tr n l b d b f r d bl p t l t p r n n h pl t l d f t d t th rn f, nd h r n th n n th p t l t pr f th p rh n r f f th R n p pl nd th R d ld r. L t r ll th r t r, th "h r " f th B l n b r, h h fl d n p n b f r th r l n. Th B l n "h r " n f t r d b th p t l t pr f n l nd p p l r t th d n th n r nt l, h l th B l n r n b n h n f r n l pl nn d "p f t n f R ", nd n r t r l th n n th p t. L t nt n l th rb n l nd n r h r t rn d t f th r n ntr b th f r f r n l t r, n p t f ll pp rt f th ll, nd h h v f n ll ld t nt r l t Br t h p t l nd h v n b n nt t f ht th R n r r nd p nt. n h t h h tr b t p d th "br v l ttl rb n " h r r rd d b b r h t r n f th r t r nd f th r d nt rv nt n n R h r n t n. nd h t b t R â th R h h, n d t t t, t rv n, r f d, t rt r d nd bl d n, th R h h r f d n th lt r f t rn "d r " v n ll n r r nd p nt, nd n nt r n h r f rth r f f ht n r f r d bl nd r l n th n r n, nd t ll tr n nd v t r D t n t d rv d r t nâ th h r n r t d n 20 2 :2 T P bl D n, l d t z d th tr t. r pd l

4 00 N v b r 20, 20 l n tr t d n rr r lr d. Fr n h l t r xp rt n d r d th p t n pr n bl. t f th th f P r p, l t n th ddl f th v h, t t d p n n l, h n r, nn t n th th nl nd, nd ll d "th br d ", b th f r p l r l p v r t fr l t p l. Th p n n l th n rth t rn t f r, nd tr n l f rt f d b r nf r d n r t n tr t n nd n r r nt f th d rn t p. Th Fr n h n r l t ff d v r ff rt t r th h n r f rt nd b tt r n h th t th th ht d f n t l b r th ntr n t r. B d th, th nd T n f r b t pr t t th v h nd n ntl r fr th t nd t d th t r n l h d t h d p l tr n d t h nt f d tr r nd n r d fl t ll n r b t B, n th f z v. Th t rn xtr t f r pr t t d b th f rt f t n f r h. Th th rn h r f th p n n l r rd d b th ll d n v l f r, th p r tt n r n l t t ppl nd r rv th t b n n d b h dv r r. Fr l t r p nt f v, th p t n f th nt v t f r n r b n d r d v r tr n th ld h v ff r d r t n t n tt f n n f t l t thr t th r tr n th, h d r n l r n d n th d f n v. B t nf rt n t l f r r n l, th Fr n h tr t t nt rf r d nd d th n f r th R d. t d f th r p rt fr n th l t v t r f th R d r n r, l d t n l d th t n r l n n t d t r n l b l t l th t t r d b n r l nd t r. t th nd f t b r, ft r r f t t l d f t n th n rth, r n l, t, h d t r n d t p th nt r n r, nd r th pr t t n f h tr n dv n d p t n t P r p nd h n r. t b th t th h t r tr t f h h rd fr h t n rth rn fr nt t th r n p n n l p rt ll d t th nt rf r n f th Fr n h nd, h h h d n v r p t t n f th t th R d h d d d r n th r ft r h n r. n f t, th dv n f th R d r fr l x ndr v t r v r nd d nx t. Th r lr d r n th t th R d f r h d n t br ht t th b ttl l n ll th n r r rv, f r rt n f th r n l b nd, h n b th n b r f pr n r t n, t nd t th t r n l h d n f v r bl p n n h r. tr n nt r tt b f fr hl n ntr t d r rv, h v n n th r r r h f rt f d p t n t r n l d p l, ht l h v nd d n v t r v r n n h p r t v l n xt nd d v r r th r l n d t n, nd ff r n h rt f r l n t n ll f h n l tr n p rt. Th r f r t b nt r ff n v r pl n n d b th Fr n h nd n t th R d, h h d lr d p d th t n f P r p nd n th n rth t r n p n f l v nd n h, th b n t th t f r. n r t d n 20 2 :2 T P bl D n, l d t z d th tr t. r pd l

5 N v b r 20, 20 0 n f ll pr r. Th pp r n f th B l n tr p n L th n pr v th t th p t l t l t n h n t b nd n d t t r h th pr l t r n r p bl f R, nd r n z n n b n t n f r n dd n tt. Th pp rt fr th P l h hl ht, h h th b nd t B l h v h nj n n n, ll th f t th t th P l h v rn nt h lp n n P tl r, th r n n rp r, t j n r n l b nd, ff ntl pr v th t th pr nt P l h r l r r pr p r d t th r t th v t R bl nd t pr p r f r n r. d n t tr t th P l h hl ht, th t h v n t, t b t nd b ll l n th rld, nd p n d th pr l t r n r p bl b th r r pr nt t v th ll l n d r r p f p p r t b t rn t p t th f r t rd r fr L nd n r P r. r l p th P l nd, r p t n r, n b t bl h d th v t R nl f th P l h p pl l b r t th lv fr th f p r l. n 20 B Db. lf n ld h dt ( hth nd L t n t l nt rz z n Th ff f th l tr l t n n tr t n th th r d f th v. Th r n b tl, n b l t v t (fr th t d n th r. t h t r h r th n n th b ld n f th T xt l ntr l r n th t f th pr n l f N t n l n, h h n n nt rr pt d r n. H r rz z n r, L n n fr nd. H n ld rl n, p rh p v n n ld n, n r, p rh p xt. H rdl f d h ht, l ht f b ld, h t th pr v n ll r, h t pr f r. B t h n th t t ll h f r, n h b rn, n th r br l l. pr t l n, bl t d b th r, n h pl n n th l r t l. h d t h rt v n xp r n n, h v lr d nt n d: n th th F t r tt f th Pr h r v t bl h nt, nd v t t rz n. H fr nd f L n n. H h d r t t l ph n r nt th r l n, nt L n n ff. b l v L n n t h dv n n t t r, nd h n t n t n d n. F r th n, t r, t n l r d t th h h t d r. H r n, r br ll nt. H ld r th n t n l, n t bv l n r t, b t h br n h r d l t l rt l t d. H h d n nt rpr t r th h, n l tr t h n n h h d t d d n r n. rz n p r n t, b t n t ll n h f r ll p rp. Th r b th nth t b t r n. B th h p d f r th r n z n t n, th t h n l t n f r n. B th r tr n d b t n th th pl n f l n nb r ( f th n r l l tr., ll n l tr z t t ll h ft. B t, rz z n, th pl n nn t b rr d t nd r p t l th t b rr d t nd r l. F r l tr t th p r f l t t, h l t th n r t d n 20 2 :2 T P bl D n, l d t z d th tr t. r pd l

6 02 N v b r 20, 20 rld, th n rld. t th b nn n f th n rld. P l l tt r d, th h f th p pl l d th n l ht, p t h p r d fr th n, p l d p, v t l z d th f ld, nd d th p r nd ll th h rt f th r n. L f b r n nt h ll, th ld n h d. b br thl, br th r n h rt n tt pt t b rb h n t r l. H r tr t t pl t l d ff r nt fr th tr t t t th fr nt, r fr th p l t l tr t t. Th th n p tr t t, th p r d r t n tr t t. th n th r r h tr t t n r n, t. H pp th p pl h r b n d d b h tr t t. F r d n f th nd th b f th n r. N p rt n r n, n v l nt l p n th f, n d thr n, n d t n r nd p n l t, n tt n n j d nt, n t l l l p, b t th n r, th t p, t j f l f, t l r v n f d f n t l. r h ldr n nj t. Pl vn l v T xt l (T xt l ntr l f r rl b d v n f th h l D p rt nt f th pr n l f N t n l n. t n n nd p nd nt d p rt nt f r th t xt l nd tr n f th r t t nd tr f R. Pl vn b r f th pr d f th T xt l ntr l. H n h r f th f n n l b r, f th nt n, f th tr r f th nt b n. H n 4 r ld, t ll, n rr h d, th v r v : nt. n h l d h r h t R n bl th r d br d r. r d th h v r d f r f r. r r th r f r f r h v d l l t r, f r b n f t, n th r n z t n f th R n t xt l nd tr. t t b th n h pt r f b n th nd tr l r n z t n f v t R. H h d th b nn n f th v t t x t l nd tr, t d v l p nt. H h d th nfl t, th d ff lt, nd th r f l l n t n, h d th p l r l b r t nd t ppl t n. H xpl n d th t f t t ntr l, f l z t n. b n t pr h nd thr h h th pr d t n t, th n b d t, th l t b d t, th b d t th t n l n r b d n p t l t n t, n th pr f t t. l rn d t pr h nd th n v r l n l t, th rr n t th t rr n, p nt th t n f p nt, th n v r l t f nt n. Th l t t f nt n h h d ff r nt fr th nt n nd r th t f pr v t pr p rt. H h d t h d f r ll tr t n th t f l z t n f nd tr, nd t t t h n th ntr l f pr d t n. H xpl n d t th f n n l h t nd th pr f h t. H t thr h th d ff r nt t n nd d p rt nt, nd thr h th ff f th t xt l n n. Pl vn n t n n n n r n. H n r n n 8. H n th t ff f th R n v t b n B rl n, nd p d pr v l n f th t p rt nt d n tr n r t d n 20 2 :22 T P bl D n, l d t z d th tr t. r pd l

7 N v b r 20, 20 0 n h r t th r. H xpl n d t th r n z t n f th l l v t. H xpl n d t, f rth r, th n t r nd th r n z t n f th R n r t l nd tr, nd n th r th n b d. H h d b n h d f v rn nt v t n th r n. H n th n p h l f th r n l l th r p t. Thr h h nd thr h h p nt n t th d t l t, b n t r l z h t th t th P l r b nd t l th r. n, 20, h l v n n d r r f th tr p l. H n th f nt. H l t nb l v bl d t. H t f d th v r th n. H r d r nd nt l f r n h d th t h f r d t r n b n h n th l ttl rd n n fr nt f th tr p l. n f nd n L nd n R L nd h d d n fr th b t n p th, v r d t b t t ll f r f l. P pl h d n t n th lv, th th tr n th t v nt n, b t h t n nf rn h d r fr h r d ff d n. d n t n h th r th f n n, th n f l t n v r l n l d, n d n tr t v h d. B t t th t th r h n th r n pl. h p pl h v t b p h d, th r h v t b t rn d n rd. Th d n t n th lv, th h v t b f r d t lf t d, th t th r f r b t rn d t dv nt. Th r r n h L nd n th rld. Th r f ll bl d d v l t, p pl h d p t th r tr n th h r nd th r, t d nd hr n n. Th b b t f b rd n h n th h ld b l d r f th h rd. n h L nd n r n. h t b f h J t n h D r t. B t h n t t l t pl t l. P rh p h ll b h v d t th fr nt n f th d h n h l r nd h ll r l z th t h pl h l b n t th fr nt. n n h d t. J. n L nd d r r n th tr p l. l d n, th t ld, l d f nd, n ld n. h t l d th b t th r n r v l t n, b t th l v l f d v l p nt f th r n r v l t n, b t th pr bl f l d r h p, nd th r p rt nt p nt. d n t r b r h r n. h n d r d b d n th p rt, th t ld. h t b, f r h l d r. tr t, n l z d, p ll d, tr d t ld, t f n. h nt rr pt d fl f l n nl ld, b t h h rl d h v r, nt b ld r h n h p. h d n v r t h n. h r n b d. H r d r h d th th p rt n f h r l n d n th nt r l htl l r d t rd. Th r n r th, b t t n f f r n, r p t n, l n r. Th t n n p l t, n th nd, nd n t th t. n v r n b f r th t th r r h n. n n p l t h d b n n ht r t. n v r nt t h r n p l t n p. Th n, n th d r r f L nd n th tr p l, p l t n. l v l r, h n r t d n 20 2 :22 T P bl D n, l d t z d th tr t. r pd l

8 04 N v b r 20, 20 f R B t r l v th tr n p rt t n t, t f ll th n phth r rv r. B th r t h p. (H v r, l t n t b f r tt n. l t n t ll n n, th r t bl nd ll bl t h. t l ph n x h n n h ff. t d t b h, nd t b h r t r, n th h rp, r n R n bl. t r t rn r r th n nd. Th r n t nt tr f p p r b n d p t d p n l t n d f r h n t r. Th r n t ph r f r p t, f r v r n. J t l th t ph r n th ff f b n t n t r, r f th h d f r t nd tr l pl nt. P rh p b t l v l r, n t l d d. l t n (p bl 40 r f d d n t b n n t n l n t. Th r rt n l f t n h nt n h. h d v v d nt rv th h, th th h lp f n nt r pr t r. p f th r t n f r n r n t R, f t d f th R n n t, f th pr n h d th r d n th l ht f th t d. D pl n, h p pl nt d, ft r h d n r t d f r h th n b f t r. Th r n r f r t r p t n th ff, n r th r n br n f thr d, nl rd rl n. n fr nt f l t n ff th r r d f l nt, d r n th nt r ff d. T rl th h rt h r fl h b nd f rth: fr th r pt n r t l t n ff, fr l t n ff t th nt r. N xt t th nt r ll r, h r th fl tt n rl r t, nd h r t d. F r t t ll b n rv d n R n ff. B rn n h t t n b rn n h t th r. B l n h t t. h tl th n f r t h fr th t p r d z n, h h n r d h t d t d t b b ld t r th ph n l r p d t, r b rb l n ltz r r l n d th t p nd l n f r ld h r. n th dr n b l n h t t nd r br l n n. h tl ff r. B t th t ll th t t th b t th n n t th r h t. h l h d t h n d l t d th b l n t th ld t r. Th r r l n rr d r th n b r d d r, j t n r p n b r. B t n r h r n th ff. nl h r nd th r r t h r th f rt bl b. F r th r t pl d n h r b f r pl d. t n pl f r p pl fr th r b n f t t, r f r v n p t r d r t r. Th f n n d p rt nt h r r d th v r nt ll nt n r h, fr th t ndp nt f r b n f t t. f th t f th v rn nt r l t d n P tr r d t ld b r f rt bl. n t f r v rn nt ff. Th r r n v rn nt b ld n, n ff b ld n. Th h t l f th t h d t b d f r th p r p, d pt d, r rr n d, r r n z d. B t v n, th ll d, th th h lp f fr nt h ft n, th b rd p rt t n nd l ttl d ll. ll th nt r r n t ntl p d. p d b p pl th ll rt f d r. rl h t ff b r t t n d n ll th nt r, nd ft n br th ff l t l. n n r t d n 20 2 :22 T P bl D n, l d t z d th tr t. r pd l

9 N v b r 20, 20 0 Thf nd f th n h b n n t n l z d t f R. N r v rb r n ff n, r l l l n n v r t ff d r h r, x d n p p t nd b rb n pr f t. Th r n r b n pr d t v l z n, n r bl ff n th b n r t n nd r l l. n h t r n, h t f t n, n t n h l n r th r th n d r t tr p t. t l htn n h n. n n d th l rdl t n h d v n h d. N r t r fr d, n r d t n fr d h v r b n pr t d n th d f n l rld th n th fr d f th n t n l b n, f th r t v n b n, th b n pp n th l f f th n t, nd th p nn f th p r nd n r r pr f t fr th. r n ll nl b bl t br th h n th r t p t b h v b n l d. t l r ht t th pt b n b ld n n R, th b t f l d t n pl t l nd n th b ld n f th r t b n n n t t t n f R. Th h v lr d b h b r f h rr r fr th ddl, h b r f t rt r f r th t r t t v t. r n ll n t b h pp nt l th r d nd v r b r n p t b h b n h t p. Th ll n t b h pp nt l th h v l n t d th l n n fr d, th t hn ll nn n fr d, th r l t n fr d, th p t nt d nd v r nt pr t t d fr d. H v r, th r l b th. h d t l t ff t, t th b l n p nt. Th r r n b l t, t p d t nd p r v r t l ft n R, b t th r r n r n t n l b n. n ntr th t n t n l b n, th t th d t n p p r ndl r nd p l t n tr, th t th n t n d p p br r fr d. Th t l n l r f t t nt pl t. h d t r p t lf, bl d b l d p n r. Pl vn t thr h ll th ff. Thr h th ff f r th d tr b t n f r t r l, thr h th d p rt nt f t t t, h r n f th t f f R t t t n h h ff. (Th L rd p n h th t t t n Th n thr h th ff f th pr d, th ff f th n r l pr d nd f th b pr d. Thr h th t xt l xh b t n, h h n th ntr l b ld n, nd v r d v r f d. H t t th d r f th t hn l tr n n h l. Th r th t xp rt f lt n t xt l tr n n t xt l r r, p r nt t n r l p t, n nd n. nt r R t b t hn ll tr n d. T hn l tr n n h l r v r h r. Th r f th pr n l f N t n l n h h r f t hn l n t f tr n n d p rt nt. t nt r fr h h xh b t n f n nv nt n, xh b t n h n th p b l t f pr d t n n R, n n t t t n nd r n z t n f r nd th ntr t l r r n t ntl b n nt t l r f l ht. Tb nl b nn n, l l t v r th n l n v t R, b t t b n n n t l t. R n l th r, R n d, n r l pr d t, b t t t t r l. v r th n r l b nn n, b t n t b n t. nd th n Pl vn t thr h th ff f n r t d n 20 2 : T P bl D n, l d t z d th tr t. r pd l

10 06 N v b r 20, 20 nd r t nd th pr nt r n. t ld th f th r n n t n l n f th pr nt. Th t d t ll, n nd n, f r n h h d rr d th r h b nd n R r n t r n. n nd h lf h r p, nt l d f ll. B t th r n d t, b rb n r n f t d, th n n. Th t d tr n f x d, th r d pl h n. t n l n r th ld r n, h h th n. t d ff r nt r n, d ff lt r n, n v l d, d pl ff r n r n. h d t h th r n nd t n th, nd th nd bt dl r. t n d l n t th p pl dr n th th l n n f r h, v n th br ht l r. Th h d t th ntr t. t n d t ll n ntr th. Th r n v r n d n th t. h h ld l t th p r p pl p d thr h r p f p pl n th bl rd n t th r n h p t l. p d thr h r p f n l r d n f r. ll th v r r nt f p t r r pr nt d. Th r r h r br d n, l n r j t, l ht bl dr n l th, d r bl nf ntr t th r d ll r, d bl tr n p rt n f r. nl f n rv r. Th r l t ll l d r h h d b n pt r d d r n th f r t nth f th r. t l t b n t r l z th f ll n n f th th n. H n b n r ht, p t n, f n d n, rd d nd p d n, tr t d l h rd f ttl. P pl r d pr v d f th r fr d. l n t p r tt d t t h h n b n, l n th rld n b nd. T pt r h n b n t h nt th, t fl th, t pr n th. ll th t n t r t h n t. t ll b l n t th ddl, t nt t, t b rb r. r n t t n th n r. p t r n ld r h t n tr t. H r t rn n h fr T h nt. p, n t f h n r, n t f l f f d. Th r r th r h rd h p th t b t n, h h r r h rr bl th n th p n f h n r. n h r h ndr d f d v r n p n n t th tr t nt f pr n r. f th h d b nt nt d l n z r n b r, th r h d b n dr d fr n pr n t n th r, r t rv d. n th nd d d f p d, f n d rn r h nt. n th N v b r R v l t n th pr n r d t b pr n r. Th r fr. B t v n th n r n t l th h ld h v b n. F r th ll f th v t v rn nt d d n t t nfl n v r nd v d l br n. Th r r t ll p tr bl nd r nd f r pl nt. B t n N v b r,, th pr n r r pr n r n l n r. p t n n h d d n t r t f ll n l d " th f t. n r d h rd nd rn d h n. n n r n r r, h h d b n f r r pr n r f r, h d d d n. h r v r ld p t th h n pr n r. n n th tr t, n th ff f th r n n l, nd n th r t rn j rn v n, n th pr n p t N rv. n th pr n p t N rv, b ld n r r nd d b th th ll f th r n n t r, t l d th r t rn n pr n r f r h r. n r t d n 20 2 : 8 T P bl D n, l d t z d th tr t. r pd l

11 N v b r 20, 20 0 H n h ld b, v n f r" n d, p pl h d n t nt t r n n r ntr, h nt t r t rn t th r h H n b r t f r p pl t r n n pr n p v n f r n d l n r n b r t br th, t nd dr n h l n r t ll l n n pr n p nt th fr n, th n h h th rld. h r v r h th r h ll b h ntr, nd h ld h d r t r t rn t th pl f h b rth, h h ld n t b h ld b f r nt. h v n r ht t h l h n b n. nl th d h v th r ht t h l th. nd th r r n d. R t rn J rn t th N l d p t ff l fr th r t f F r n ff r t l v f th b r f th n l h d l t n, h nd T rn r. b l v th br ht l f r ll n t fr L n n. b l v t n t v r fl tt r n l tt r. t r f r ll n t, L n n f r ll n t, th bl nt nv rn h d l n. P r h p th n l h t ld th r p pl f th f r ll n t n th r r t rn h. t n t p l t n t. B t t L n n nv t n th t n t f h p t rld ph v l n nn t b p l t, n t b tr thf l. T b tr thf l t b pl n, t h t n th n. T b tr th f l, th r f r, n n t t b d pl t, t th ntr r. L n n n t th t d pl t b l t, nd t h n d pl t. n r j rn p d b th d d l p, th r n d, th nd v ll h dd n n th, p d b th p n f r t nd th b h d, b th r n p t r, th r l p t r b t n nd P tr r d. n dr n l t 2 r bl th p nt, n l pt n th v t r, n th f rt bl v rn nt r f rn h d th b d nd t bl, nd th t b n n n t nt dr v n h rr. n d b t 20 t 2 l t r p r h r n th t rd P tr r d. B t n r t p h n d. F r r pl d t n xpr fr ht. p rl r r dd d, nd t, t l d nd dr n t th R n r lr d r r. n f th b r f th ntr l x t v tt f th R n R lr d r r n n. H nt r t n t th r n r d. h r b d l v r th r t n fr th R n ll nd r d t th r n r lr d r r. ft r v n h r j rn r h d b r. Th r r tr bl b n, p tr bl, v tr bl, ff tr bl, p l t l r d t p tr bl. r p r n t n rd r, nd th th n n ld n t d t nt th r ntr. Th l l v t n b r n l d th pt d nn r, nd n f th r lr d r r rv d p t t p n. B t nt d t h, t p d th r nd, r t r d f th l p n r. nt d r, nt d t b n r t h, nt d t t fr th t. nt d t l v th t b h d nd t n. N t fr th t d t r th h d t, b t t nt l nd t n. n rv r v r r d. t f ll f t r l, r d t b r t, h d t t t f th t. nt d n r t d n 20 2 : 8 T P bl D n, l d t z d th tr t. r pd l

12 0 N v b r 20, 20 ff l r n f th. R N V T V RN NT B R 0 t 40th tr t N r, N.. Th l ll pr nt rt l b b r f th R n v t v rn nt B r ll b fr nd nd pp rt r f v t R. F ll r p n b l t d b th B r nl f r n n d rt l. n r pt r n t l t d f nt n, th r r t rn n t pr d. "D D R r n z t n t t d r th r v r l n th nt nt t th v t R, n p t f th h v nt d nd l n b rv d p l t l n tr l t f h b d. t ll b r b r d th t D n h R d r ff l h d t b xp ll d fr v t R b th h d d v l p d nt r r v l t n r t v t r v l n v n th f th D n h n l t n r l n th t ntr, nd th t l n ft r th r xp l n fr v t R th n t n d t t n nn r xtr l h t l t t z n f th t ntr h h pp n d t f ll nt th r l t h, h h p rt l rl b rv bl n th r tr t nt f th nh pp R n r pr n r h h d b n ntr t d t th r r n V nn. B t n t nl d rt n R d r r n z t n r fr n fr v n n t n t t z n f v t R â h l th r, l th D n, l f n v t R r bl p bl b xt nd n d t nt r r v l t n t â b t n t n v n t th v t v rn nt t r p tr t nd th th l t f th n f r r r pr n r f th R n p r, t z n f ntr n h t l t R. th nd t n n th pr n r n b r r ll n d tt nt n, nd th v t v rn nt b n p r tt d t d n th n t d th, h r th br n th tt r t th tt nt n f r r d r b pr nt n n f ll n d t r l th t p p r d n th bj t n Th J p n hr n l, b, J p n, t b r 4. Th d t r l r n f ll : " t n j t p n r n p bl h d n nt f th ff r n f 200,000 pr n r f r n b r. Th f t r n t t p pl, nd t th th n h n f l n h. t tr, th r r h th t f l d f ll d n t n l t n J p n h r t nd d th t t v r d ff lt t n h t nd t n r ll r n b r, nd th t n h h r ll ld n t f l p rt l rl d tr d b t th nd t n f H n nd T r. b l v th t f th t rt f f l n h v p r t d b th t, b t lth h th tt r h t f r t n n P rl nt, pr t ll n th n d n. n r d l f th th n t nt* p bl h d r p rt r tt n nl n J l l t b l d h h b n r n thr h b r n h rr r f r th d h R d r. t t b b rv d th t h v th n b râ 200,000â th ppr x * B t r t n fr th l hr n l.â d t r, v t R. t t t l f th n t ll ff r n d t t t n nd x l. Pr b bl r pr v nt v n nd r t t f th n b r, f r h v b n t n n l t r nd n h v d d, t th r t ll th pp ll n nt f nr l v d r. Th r pr nt t v f th d h R d r d r b n l nt t r t h h t ld b dl f r t dd n th n, th t rr bl n n r t d n 20 2 : 8 T P bl D n, l d t z d th tr t. r pd l

13 N v b r 20, 20 0 J r fr h n t t t rn fr p d n tr l r n z t n t fr n l h t l n t l t r. l h R t n t n tr l. r. R t b l n t t ll d th " r n ntr l tt f r R n R l f", h h h ld n n n l b n t t th B n h H t l, N r, n N v b r. Th r n z t n n t n tr l R d r t t fr n l n r n z d f r f pp t n t v t R, r. R t, h th pr d n ff r t th b n t, x pl n d n h p h ( t d b th N.. T : "Th r n l d f th t," d r. R t, " t v r l f n n n B l h v t R â th t th b j t n d n th h rt r. Th xt n n f p r f th B l h v n b, h v r, r t th t th r l ttl f ld f r r l f n th t rr t r f R. nd n ppl tt nd d b t r t pr b b l t th t th ld t ppl th B l h v t r. B t th B l h v pr d t, th p pl f r h th r l f r n ll nt nd d r r d ll p h d t f th n tr nt th B lt pr v n, P l nd, rb nd T r, nd ll l n th b rd r f R th r t b h ndr d f th nd f th p pl, d t t t. n d bt dl n v l bl l v h v b n v d nd h t rr bl ff r n h b n ll v t d b th r f th t n. "H p rt nt t th t th r h ll b v d th v l bl l v f R n h r t n f r th pp rt n t t r t rn t th rv fth r ntr â th t h t r d n. r v n th d rn h h ll br n f rth th f t r h rv t f r l fr d nd r t nd p nd pr p r t t R." n " t nt R d r n r t r p " ( n l d n v t R l pr nt.^ nd r... B tr, "R n R d r n r." B t th l tt r d d n t r p r nt v t R. F r th nf r t n f th f r r d r h h t n th.l t t t th pr b bl d r t n f th v t v rn nt, t th t f r. R t, d t th b n t: "Th nd f B l h v t r l n R ppr h n. Th r r l t n t h h l n r th B l h v n nt n. th n t nl tt r f p r t v l h rt t." r. R t pr ph f rt n t l n t t d f n t. nd, l ll p n, th r r p h b th d f h h th l f t f th v t v rn nt ll pp r " p r t v l h rt". \ R N R d r r r r r ntl * r p rt d n th r n pr h v n b n ll d b "B l h v " n th rn R. th l t r d n l f th ll n r h dd n n t f th p p r n p ff rd n n l r ntr t t th h v h dl n th t h d h r ld d th r n l f br t n, nd n p r n h v th r f r n th h r nd n t th d n l, r pr nt f r th r b n f t th t t nt th t pp r d n th N.. l b n N v b r 2: P r. N v. 2.â h n t n r p rt th t pt n t lp tr, n r n R d r r r n th R, n t ll d b th B l h v, b t b n h ld pr n r, r nf r d b t l r r v d t th P r br n h f th r n R d r fr b t p l t d. Th t l r f l d n b t p l n N v. 8. T^ R d nt ll d tr d th "h hl v l n r t d n 20 2 : T P bl D n, l d t z d th tr t. r pd l

14 0 N v b r 20, 20" J p n ntr nd Pr p nd b x. Z pp n N T B R th r pp r d h n t n ^~^ rr p nd n n th P bl L d r, n d b r. ll l, r n r n t th h n l l th r t n n h r f r th r "pl n nt th B l h v t h nd n nn r th t h rtl ll f r nt rn t n l pr t t." t n t t ll th t "r p rt rr nt f r t, t th ff t th t R n ff l nd ff r, h h d t n r f n h n l fr B l h v t t rr r nd p r t n, r b n d l v r d p t th R d, h v j t r v d nf r t n n n p rt nt nd p f " th p rt nt nd p f b n th t f "d t n h d" R n n v l ff r, pt n B r, nd th t f th R n n l t r n, h r l l dl l d t f r n, " n th d d f n ht," nd nt t rd Bl v h h n, th t nt th v r h nd f th R d. Th rr p nd n dd th t r. R l nd". rr, r n b d r t J p n, h t ll t h n t n " p r t n th r t r f t t lb," h bl d n tr t n t ff l n n h r t p r t th th r f r n ll n th tt r. n th d ll th n p p r rr d n t d Pr d p t h fr T, nn n n th t "th J p n v rn nt h d pr p d t th p r j nt t n t h th r f B l h v n th t nt n nt" b f th r p t d r d f n b rl b nd f b nd t nd "R d" b d n n h r, ll b "th r n pp r nt t nd n f r p bl nt nt n th n rth f h n t b nf t d th B l h v." l b " r v r, t rn b r h b n pl t l nv rt d t B l h v, nd th pr n f J p n r th r l." N l t t t t th t t, n th tr n th â f th b r n pr, th t th "pl n nt th h nd f th B l h v t b th h n v rn nt th t ll f r nt rn t n l pr t t," h h r l n ll t n, nd th b nd t r d t v r h h th J p n v rn nt n th p r f r n rt d t n, h h r f t, r t p rt f th J p n n p r, n p r t d p l b th h n nd R. B t th h nd f th h n v rn nt, nd l th t f th Vl d v t v rn nt â th t t d, bl, nd n l ttl v rn nt n rth, h h t ll t n t f th h nd f th ll d v rn nt fr nd r th h ll f rt f d b J p n l t r â th r h b n l t d n n r f v d n f th n p r. F r t, t th p f f th "d t n h d" R n ff r nd th R n n l t r n. n pt b r, th b r n pr rr d t t l r fr th J p n n, d t d P n nd d n, h r th t r r l t d n n lt th r d ff r nt l ht. Th n t r b nd t h f l v, ft r b n d f t d b th R n p rt n, ht r f n h n t rr t r, h r h nt n d h t v t, tt n, th h b nd, n b r f r bb r nd rd r n h n, h r p n h rr t d b th h n th r t nd nf n d n th r n pr n t t tr l. n r t d n 20 2 : T P bl D n, l d t z d th tr t. r pd l

15 N v b r 20, 20 fl, D B, nd n th r. rt f t n t tr thf ln r v n b r. p n, n dv r t th h n v rn nt, th D r t r n r l f th h n t rn R l, th v rn r f r n, b r f th Vl d v t v rn nt, nd n th r pr n nt h n nd R n ff l, ll r n b rv r. n th d nt p bl h d t pr v th n p r nd nt nd d t b r t, r th f ll n :. t l r n d nt b th J p n nd r t Vl d v t, n r l T n, t th h d f th J p n l t r t ff t H rb n, nd d t d 20, h r th h l pl n f z n th h n t rn R l f r J p n, th th h lp f th R n "n t n l t ", thr h n r n z d t f r d b r bb r b nd, "l d b r ". " n rd n th th n tr t n f nd r dj," r d n p, " h r th dv th t th d n t d pl n n b x t d f ll." ft r n th t h n h z b nd h v b n lr d r n z d t D r n nd th r pl n th rn n h r, nd th t th r b n tt r d ll l n th h n t rn R l, th t l r t t : " ll h v t nf r r lf n th t v t f th b nd nd ll th tt nt n f th h n ff l t th. n r d h ll fl d P n th pr t t n t th n f t t f th r d nt l h ll b d tt d t th d n tr t n f th r d." 2. t l r r v d b th h n v rn nt fr t ff l n n h r, t t n th t n d r bl n b r f n v ff r h v b n nt t H rb n, n d r t rd r fr J p n, f r th p rp f rr t n ll th b r f th nf r n f l b r nd d r t r n z t n th r, b t th l l h n th r t n pr p r t pr v nt d th pl h nt f th pl n.. t l r nt b ll n n J p n n r l t n v, h h r d : "Th J p n v rn nt ll, n th nt r t f h n t, n t n t p r t p l th t t n n t f th p n n f th r v rn nt. Th J p n v rn nt ll n v r ff r th t bl h nt f n nd p nd nt v rn nt n th F r t, ll n v r r n z th Vl d v t v rn nt, b t ll l pp rt r t ff. nd th r h lp, r h f nd r, z, ll b bl t nt n th r n t th B l h v f r th p rp f rd n th b rd r f n l nd n h r." 4. t l r nt b th J p n r n tr t th J p n nd r n h f, z, rd r n h t dv n v th t th l tt r pr p t n t r n z n l f r d v l nt r rp f r n h r h t th th ppr v l f th n tr. Th n v l nt r rp, th t l r t t, fn t b r n z d r tl nd h ld t rt n tr t p nt, r d t nv d n h r t nt n t, h l th f ll n n f nt dv v n b th J p n r n tr t n v, " ntr t h t t ll n r pr t n nd t d t t th rp nl x p r n d nd tr t rth ff r nd ld r.". d nt pr v n th t nd r th d r t t t l f J p n ff l, R n "n t n n r t d n 20 2 : T P bl D n, l d t z d th tr t. r pd l

16 2 N v b r 20, 20 b d j nt ff r. nd n n r b th h n v rn nt th t t r j t ll th d nd. Th J p n v rn nt h d d d d p n th v t n f t f r fr Tr n b l, th ff l xpl n t n, b th z h l v h v l ft b r nd th r n l n r n d f pr t t n th. B t th r l r n f r th ll b f nd n n th t h b v r p p l r n n b r. " b r t l r, th r t h rt, nd th p p l t n t d r t." h h, n t l f r, th r d nd d l d b r n nd th r ll d r pr n t t v, nt t th : t f J p n x p d t n r f r f b t f rt th nd, th r r ll d n b ttl f ld x th nd, h l v n th nd d d f nd nd n, th n n r v l d n b r f nd d, l f "l t", th t th J p n ld r th t t t th R n h ll. Th R d r t pp d t th t h r f L B l, b rd r fr, nd h n v r t t th J p n n p n r f r, b t th l l R n p rt z n r th r th th b v nt n d r lt. N nd r th J p n v rn nt f nd n th t " t rn b r h b n pl t l nv rt d t B l h v, nd th pr n f J p n r th r l." f r th f th "pl n", t ll b ff nt t t t th t t v r l t t n h np, n h r nd th r, th r r r l r "r nt " f h n h n h z r bb r b nd, n t n f fr 2,000 t,000 n, ff r d b R n "n t n l t " ff r, t t r d b J p n ff r, nd f ll r d, v n th h n n, r r d r, nd n b r f b n, ll f J p n. nd f r th nl n t ff r fr th h nd f th p d "R d " r th R n. R n t r nd h r l t d, R n b n n r b n dn pp d nd d t p ll n f r bl n " ntr b t n " R n p n r r lt d nd r bb d f ll th r b l n n, nd R n ff l r br t ll rd r d. J t f n t n t f r t n b r n h nd, b f ll tr t n: Th p d l t n f th Vl d v t v rn nt, n t n f t n, r zh v, nd d, h ld p n th b fr V r hn d n, t th t t n n, b thr b r f th "b nd t b nd ", ll R n ff r, r bb d, tr pp d n d, nd th n br t ll rd r d n b rn n d l ht. R bb d nd rd r d n th r b l n n t th nd r f th 4th D v n, n r l r d, nd r h pr t t n th tr v l d. l r f t t b th Vl d v t v rn nt r pr nt t v, l tr v l n nd r th pr t t n f th J p n l t r th r t, ndr v nd t v n v. Th d t r f th l b r n p p r Vp r d f H rb n, n t d nt b n. h rn v, rd r d n " nt rn t n l" rt r f th t t n r d d tr t t n n. rv tr n th R n r n n d r l d n r th t t n l n h nd f ft n r d r d. Th h r n f th R lr d n n f z t n r t d n 20 2 : 4 T P bl D n, l d t z d th tr t. r pd l

17 N v b r 20, 20 Th F d P l f th v t v rn nt B. v d b ( nt n d fr v t R, t b r 0, 20 Th h f tt nt n f th P pl F d n n th r r f th r l nd th r t nd l r n th ll t n nd n b rn f f nd r nb r t b x l d d, ntr t n f f d nd th r pr d t. f th t ll pp r th t n th t lv b rn n h h pr d t h h th r n f th r t r th ppl h fl b n rr d n, n l n nd v r n t bt n, th t p rt nt, f th b rn f V r n zh, V t, z n, r, r, r n, h h bt n d n th pr n pl r l, P nz, R z n, r, r t v, b r, f t t n p l. T b v, nd T l, lt th r th r t r d Th t t n p l h v d h rp r r t, 80,000 p d,. f h h 6, 4,000 r n th n n th r n r f r r v l pr p r, th r n n 0,466,000 f r. Th f l t n r p h. Th t, f r, t bv, l n t bl nd t th nn r n h h th Th br d n p l h th n b f pl n dr n p f r th t r n f th d ff r nt nd b r t, nd ff t tr n l th l f r n h b n rr d t b th P pl F d T p h h b ld th r lf r p n p l t n r t. t th xp n f th t rv n p p l t n.,â ž.,,.â ž. T b t r d P r nt. l j â  n n j N f r l b r "* bt n d bt n d Th br d p n f 8 b n nd r (â  t. f p d t nf v r bl r t n. n th n h nd. d P* J: $f0â 0 6 f2l 8 t rv t n n th p t l nd n th l r nd Zf x t : ::: :,Hf0 0 l 42 tr l nt r h d r h d t h ht, nd t p F d r n nd f r 260, 00, p th t rv n p p l t n t b n r Th n 8 th f d r n d d t p r t th fr p r h f xt p nd f n bt n n r th n n th rd f th r n r fl r, h h rr d t b th t f h pl, b th f r pr v n nd f r f r, r rd n n h n p r h th f r r t nd p l th f ll nt bt n d, r n t th h l t v t f th f d r n Th f ll n t bl r pr nt th p r nt n th th r h nd th 8 h rv t b n j t t f th f d bt n d n th nd v d l b rn : th t h n th R d r ff r d r f b rn P r nt P r nt P r nt d f t n th v r fr nt th th r lt th t v. r n l v f r l v bt n d.....,,.., â.. V r n zh n f rt l b rn r l t t th v t v t R p bl. Th p r t v l ll t rr t r v r r ^0 2 J h h th r l f th r r nd P nt v  râ z â â â â â â â â â â â \ 0f \ j j f rn nt xt nd d xpr d n th d t f R z n... â â 6 r f 66,80,000 p d f r n ll t d h l t lâ ll... : ll. l ll.l th nn l n d f th p p l t n v n f r th b r ,F r.,.. T b v ppl t h n r r t n n t l th n T l ,66,000 p d n bv h rt f 40, Th P pl F d r t n t n p 000,000 p d f r n. > n f xh t v f r r l t n t th f d t th t t th t r n f r n v r th r p n f r 8. rd n t th n n n f nt r lt : t v j t l ttl v r pl t d t t d d d r n th t n nth f n ll n p d, pt b r l ttl v r 6,000,000 8 n bt n n nl 0,000,000 p d f p d. F rth r, n t b r, r lt f th v r nd f r n. n d r n th b v n l t r p t n h n n n r f v r nd th t n d f r r l t n t th 8 f d n nt n l d t n f th v t v rn nt p n th n l n b dr n th t d r n t n th l l t, th r n t r n r t 24,000, nd r f x t n th f d r n f th 000 p d t nt n d th l v l n N v v t v rn nt r h r f l, l b r nd nl n th b nt nth, h h r th h th h v b f r n t f lf ll d ll th t n r ll nth f p r r ppl, th t r n f xp t d th n t t rn pr v th t nd r th br d b n t d l n v n nl 4,000,000 pr nt nd t n th v t f d p l th p d n D b r, nd t n nd h lf ll n nl r t n l n, nd th t th xtr l pl x p d n J n r,. n pr v nt pp r t h h h b n t bl h d f r th t r j t f bl xp t d n F br r, b t n t r n f br d h j t f d t lf. f dr r t l z d, r lt f r d f t n th t rn t nt n t th d t h r t r z n th rr nt f d fr nt d r n th f ll n p r d fr F br r p n (th nf n h d p n f 20, t t th d l n p r pt bl. F r ll h ll b f r d t th n l n th t th th t, n rd n th n pl t d t n th pr v nt f th v t pp r t f ll n p n f th P pl F d r t th f r d. t f th pl n f r th r f r th t r f rt l b rn l n f th v t R p bl r n f 2 6 ll n p d, 60 ll n p d, th t l z d r n t r n nt n t 0,000,000 t, r th n h lf, h lr d b n p d. bt n d. D r n th r n n nth b f r f ll th r n h h h d b n t r d n v r th r l z t n f th n h rv t t l l th t n r t d n 20 2 : 4 T P bl D n, l d t z d th tr t. r pd l

18 4 N v b r 20, 20 n t l th n 20 t 2 ll n p d r ll b bt n d, th t t pr bl th t th h l nt t ll nt t 80 t 8 ll n p d r 60 t 6 p r nt f th h l nt r r d f r th r. t th nd t n h h f l t t d r f l d v l p nt f th r n p n f r th rr nt r t p rt l rl n r t p nt t th th d f t r n d pt d n 20, n l, th th d f r n b l v th x t nt t bl h d b th r n f th F d r t f th r n t b tr n f rr d b th v ll p p l t n h r p d f r pl, nt th h nd f th t t. Th th d f xtr t n th r n rpl h pr v d t pt bl t th p nt p p l t n h h n d r n t n th l ht f l n n r n t th t t t ppl th h n r r r f th t n p p l t n, h h l n ll b r p d b th t t th n f t r d d n th r r v rn nt, h v n th t d nd d f t d t v r n, ll b n p t n t d v t t lf nt r l t r p n th n fr nt. Th d ff lt nd t n nd r h h th f d r n h d t rr n th r p t p n nf v r bl r fl t d l p n th tp t f th r r lt r l pr d t. Th f d r n d d n bt n n f r th h l r 20 ll n p d f v t bl nd r n, r ppr x t l n f fth f th nt n d d b th p p l t n. Th 6 ll nt f p t t nd v t bl bt n d, p rt fr th n r l nd t n, d t th n f th f d r n, nd t b n r t p r t v r r n z t n t pr r th pr d t n rd n th th d r f th 2 t f J n r,, n rn n th ppl f n n ntr ll d pr d t. Th p r t v f th r n l v t d t th v t v rn nt th ppl t n f th th d t th r pr d t p bl t p r h f r r d h n t th xtr d v l t n f n. r ntl d d r h t bl h d l v n p t t, t, nd d r pr d. n rd r t d l v r f th pr d t n t ppr v t th r r l p p l t n, th f d r n h v t bl h d t nd rd f l v h h f r l th n th nt f f d xp rt d n th pr r p r d. t b t t d th nf d n th t h n f rth th p pl f pr d t ll b r f l, th n t th r d pt d, nd th t th r f r th p p l t n ll b r d f pr v n f r p bl nd r th r t n. Th r lt f th ppl f t nd f t l f r fr b n t f t r. Th f d r n h v ppl d nl th f ll n nt t f t: t b r, 8, p r nt N v b r, 26 p r nt D b r, 2 p r nt J n r,, 6 p r nt F br r, p r nt r h, 22 p r nt pr l, p r nt, p r nt. Th r lt f th b tt r nd l ppl r t ll p r r. t bv th t nd r th nd t n th r n b n t n f r l r ppl t th p p l t n f t nd f t. Th nt b t n d h rdl ff d f r th n d f th h p t l nd th R d r. r f v r bl r lt r bt n d fr th n r t d n 20 2 : T P bl D n, l d t z d th tr t. r pd l

19 N v b r 20, 20 r nd t nt p nd f lt p r p r n p r nn. ll th r t n r n t ntl d r d d r n th l t r. h d t r t t d p t v n ll n p d f r t th b nn n f th r t f th X ll n p d r d tr b t d pr r t th t n n th r n n thr ll n r l ft f r th r n. Th ppl f th p p l t n th f t r nd l th r n b d t t. Th r n b nd n f 6 ft l th r, b t th r rv f h rd l l th r nd nd r bb r l xh t d. Th r f r, lth h t pr p d t ppl th p p l t n d r n th r th f r ll n p r f b t, n r l t t nl p bl t d l v r t h ndr d p r nthl. Th r t r p rt f th f t r n f t r d nt f r th n d f th r. Th d tr b t n f l h t b n th r t f n p r t v r thr n f th t n p p l t n nd n p r f r ht n f th r lt r l d tr t. t ll h r l th ppl f r r d t, d t th l f f l, th tp t f th f t r n n d r bl. Th r l h rt f r lt r l pl nt. nl n th rd f th r r nt ld b t f d b th d n t. Th t f l t th d p l f th t t r th r ll. ntl t b n r t d r r tl th ppl f l t th p p l t n n v f th r t d nd f r l b th l t r th r t. r rd l r th t n t t f t r t t, th h th ppl p d d b th tr n p rt d ff lt. n v r t l t t d r n th l t r th ppl f th p p l t n th l ht n t r l. n 20 n t th pl t l f p r ff n nd p tr l, th ppl f l ht n t r l t th p p l t n h d t b p nd d nt r l. T p, th ppl f th p p l t n th d d r n th pr d n nd th rr nt r bv l n t f t r. Th h f r n f r th n t h th h rt n f th d tr b t v pp r t th l f d r rv t th d p l f th t t. Th n r l p r p t v f th ppl r ph ll f ll : nt l th pr nt t l v d x l v l n th ld t nd t xt nt n th t f th f t r, nd t nl n h n r f r r n l n r xp nd d n th n d f th r f r d p n, th t r b nn n n n t r t t r l v l. r rd th nd p rt nt t th h h th P pl F d r t nfr nt d, v z., th x h n f d th th f rt l b rn, nf rt n t l, th P pl F d r t d n t p ll th t r l n d d f r d l n xh t v l th th t n. n dd t n t th b v t t d d r nd t d f n n th t f x h n f d, th f ll n b dd d: lt th r d r n 8 d t th nt f l ttl v r n ll rd r bl r nt t th f rt l b rn f r th r lt r l p p l t n th t t th t d r n 8 b t t 60 p r nt f r n h h r v d f r th t rv n p p l t n thr h th n r t d n 20 2 : T P bl D n, l d t z d th tr t. r pd l

20 6 N v b r 20, 20 h r. n t n nd ttl nt nd n 20 n n b rn n n v r th r.02 p nd f br d p T p r n (fl t t n fr 0. p nd p r d f r th b rn f h r p v tz t.28 p nd f r th b rn f N zhn N v rdd n th r rd n nd th rd p nd f br d f r v r d lt p r d. Th F d r t nd t d tr b t v r n ppl d th p p l t n n n v r f 40 p r nt, r h n t. 4 p r nt f r th h r p v tz b rn nd p r nt f r th t f l n tz. n th p pl f th P pl F d r t r h th b v nt n d f r f 8 p r nt t b nt n d th t th nd tr l r r nd th r l n r v d 4 t 42 p r nt h l pl nd th r n l d n b r l nt r v d 6 p r nt. Th f r t d p f r th lv. Th pr v th t f th r t d n t ppl th f ll r t n f br d n t r n z t n f p bl f d n nd r th x t n d ff lt nd t n t ppl t l t f r d bl nt t. Th 40 t 0 p r nt f th h l nt t f br d n d h h ppl d b th F d r t ld n v r h v f ll n nt th h nd f th r r nd th p r h d th p p l t n b n dr v n t b t t th x t n x rb t nt pr n th p n r t. t th r f r n t p bl t l p n th t v t f th F d r t n p r t nt. t ll p bl t r rd th v t f d p l n rr t nd n t n r n th nt r t f th r n. n th pr nt tr n t n p r d th n t f th t t r n f ppl t v th r r nd th p r t th xp n f th r h th l ttl th t th t t h t t d p l. Fr th b v, pp r ntl n f lv n th t n h v b n f nd b t th ld n t h v b n f nd h d th v rn nt f d p l b n b nd n d. t nt l t nt n f r n th ph r f f d ppl nd rt n b th v rn nt. B n f ll r f th n ff n f th d ppl d t th p p l t n, th t t r n f ppl t th p p l t n n th r. Th, f r n t n, th d r d t d r h,, t bl h th pr n pl f fr f d n f r h ldr n th r h f r b n ntr d d n, P tr r d nd 4 b rn t n b v rt f th d r th pr d t ppl d b th f d r n r fr t ll h ldr n h h v n t r h d th f xt n. n dd t n t th, n t,, th d r f ll d, t b l h n n dd t n l r t n f r th f l f R d r ld r r v n p n n. F n ll th t t t n n r t r f r th r n z t n f p bl f d n, h h r t pr v p bl f d n t th nt f n ff t d n th pr d t nd t r l xp nd d. Th pr t l n f n f th r n t n d b th r d fr th d t n rn n th r n z t n f fr h ld f d n nd f p bl f d n. T rd th nd f h l dr n d n n r t r d t 00,000 h ldr n nd P tr r d t 260,000 h ldr n th h lf rl t t f r th nd h lf f f r h ld f d n nt l t t thr ll rd f n r t d n 20 2 : T P bl D n, l d t z d th tr t. r pd l

21 N v b r 20, 20 r l nd th r N N L D N D R p t dl t n r f r p r d l d r n t r t r rt f tr thf l b l n, n v f th fl d f l r l t n b t v t R, t pr nt ntr d t n f nd v d l r pr nt t n. l D r t n, f hr t n, N r, pr nt n t f t b r n t th t f nt r t n th nn t n: B r p p r t d n pr nt " n t n l" t l r n rn n th " ll p f th v t r " nd " r nfl t b t n th r nd th x t v tt." t fr th rr p nd nt f D n N h t r n R v l th t th r v l t n. h v th d r v d th f ll n ff l d n l f th l : "R, t b r 0.â D n ll b rd n t n n rn n t n n R d Fl t nd th r pl. L ll r p rt f v t p ff r t r n l. Th nt r r v l t n r r b l h ll h r th f t f l h nd th r tr t r f th p pl."( n d r h v. ND R N, t b r 26, 20 R t.â nf r t n b t ll d n n lt t f R t r n rr n. v t R p r n p l f p nd n t nfl n n th N r t f r th p rp f t bl h n p. R n t nn t d th n v nt r v nt l t f l t r h r t r. Th T r h dv n n r n n b nd r n n n n t n th th v t v rn nt p l th l tt r h n ntr l v r th T r h v rn nt. Th v t v rn nt n f ll p th th th T r f ht f r nd p nd n n t p r l, b t n t r p n bl f r v r v nt f th T r h tr p. Th l tt r dv n p n th r n n b rd r n nd p nd nt t f th T r h n t n l v rn nt. Th R n v rn nt n d n r th n pr p d t n, b t n th t n xp t fr r n r l f l t nd th t n f t p rt p t n n th r v nt R n p l f th nt nt. v t R n rt r th t fr ndl f l n f r th r n n p pl, nd n r l d r f h lp n t t rd b tt r f t r nd t rd t bl h n p n th N r t. B R N PR NT N NT RPR t h l, t b r 4.â R n p bl t n h h b n p n d n t h l nd r th l t r r p rv n f Pr f r L nd ll f th n v r t f pp l, nd Pr f r L t n, h n f R t pr n nt l t r r h t r n. l n t th f r t b r lt n fr th t v t f th p bl h n h t, nd n th l t f d n dd t n l r f b r f rn h d b th t h l p n. n n r r t pr p r t n h v b n d n d n t pr v d R, ll th n r r nt h r tt r d ll v r d n nd th r t f r p, th R n b n th R n l n. Th b th t h v th f r pp r d r v l f t r b h h v nd f pr r, nd n th l t f d th r t l r r f l t r r r t b Pr f r L t n n nt h r v, l n r t d n 20 2 : 2 T P bl D n, l d t z d th tr t. r pd l

22 8 N v b r 20, 20 B R v d Th B l h v dv nt r. B J hn P ll.. P. D tt n nd p n, N r. nt t L tt r fr P tr r d. B P l n. r l.. P. D tt n nd p n, N " r. nt B l h v b p t f t l v r r p dl. Th f t n f 8 ll n t p t r n th l r d t l p l nd pt n 20. t t n h ll th N r T l b d t f pr p nd, r v l r d " p l d p t h fr h n t n", ll n 2. r. P ll p bl h r h v d n h v r d btf l rv n br n n t n r n d t n f h r, h h r t t n nd p bl h d n n l nd n. r. P ll n n l h n, h p nt t n R d r n nd 8, t n bl n d n l n ft r h ldr n h n P t r r d. F r r n, n t l rl xpl n d b th th r, h ll d h r t bl t v t br ht h nt d f v r th th v t th r t, nd h l v d f r t nd r v r d nd f l d nt t, f n ll l v n R rr pt t l b l pp n r th F nn h b r d r. H b tr l xtr rd n r ll t n f ld nd f n f l f l h d b t th R n R v l t n. H rt th t th B l h v r r n nt th t th n t n l z t n f n n pl h d f t n v t R t t p pl n P tr r d d d t th r t f h ndr d th nd nth (b th p t t n th t ld h v l n p d t f x t n th t th v t v rn nt nt n d nt r l b r n, L tt nd " h n r n r " nd th t th f r d " h n r n r " d d thr v n b n n th l f h n fl h f r f d. n f t, p n th pr p r r rv, nd t n f ll nt f th f r p t t n n th f ld, n dr v n t th n l n th t r. P ll r nt n r l b t v t R th n n p bl t n h h h t d t pp r n n th ntr. n th v r b nn n r v n th d f n t n f "B l h v ": "Th rd n n h nt th b h r, h ll n t b t f d, n ht, th l th n ll th l t." Th r th r xtr rd n r tr n l t n pr bl nd t r. P ll d r f f l r t th th R n l n. Fr th t rt t f n h th b f ll d th nf d nt pr ph f th p nd n d nf ll f th v t v rn nt, t th r th fr nt pl d n f r ll d nt rv nt n. Th th r t d n v r r t n r n rd th b l t r d l t. H r v l rt th t th p nt d r d n th n h th r t rn f z r. l h, D n n, nd r n l h v t t f d, t th r t, th r f th th r. rd n t r. P l l, ll l f th R n p pl rn d f r th rr v l f Br t h tr p "t r t r rd r." Th h n, ltr t, b n f nt v rn nt f Ll d r, rz n nd. n r l nd nd nd rt nl l l t d t n p r th r r nd p nt f fr R th n rd nt d r t b bj t f th Br t h p r. Th t n h l b n p t t v r pr t l t tâ n r t d n 20 2 : 2 T P bl D n, l d t z d th tr t. r pd l

23 N vâ bâ r 20, 20 f v l r p t t th r ff r. l r nd r n t ll p rt p t d n r pt n t h r d t n h d h b nd t b t p l. Th ntr b n r l d b pl n r r nd p nt, b n th n bl bl d n th r v n. h n h nn t th n f n r n r t t n h t t th x t t f h r R n r t r t fr nd b ll n th b r f th v t "D D p t ".* r. r l r nt r t n nd h nd tr t t r b t h p ll d t d t th t h n v r bj t d t n p r n l l t t n d r n th nt r f 8, lth h h r h t h v b n rt f n ff l h d rt r f r nt r r v l t n t. n v f th h p h h r r ll d h d b th b n f l h t n th N v, n r d l f r v r. r l h r h r h rd nd h r n r r pr nt t n, p ll th l tt r b p rt ll r b d t h r b l n r n f R n l f. n n nl f l p t f r th fr l fl r f p t l t v l z t n, n ndl xp d t th r d bl t f pr l t r n r v l t n. f HH l p h R r n n r, t bh lp B<n B T. b T x H H. P hh h hj b. Hnj H p. HT p, np p jhh B H.." Hn t H p. Jl. h n l Dr n nd h n D t l, b. nt r,.., N r p bl h d b th T hn l h l f R n h n, 20. t r t f n t b rv h h nth b n h n b p r n nd r n z t n p th z n th th p pl f v t R n th r f r n tr t n th r ntr. N t nl h v h d n r ntl t n t th pl r th f t th t n p r n r t v l r n t th r f nd t b p nt n th p r h f d l ppl nd r l n tr nt, b t l th t l r r p f R n r r r d v t n ll th r p r t t p rf t n th lv n th r v r tr d th t, h n n pp rt n t f f rd d t r t rn t v t R, th b bl t b f r l nd ff nt t n t th p pl f th t ntr, nd t t v rn nt, n th r t r f r b ld n th t ll r r th ppl t n f h ll nd n r n th r t. Th pr nt l ttl v l d b h n r n z t n f r r h r pr p r n th lv f r th n r th t ll b th r ft r th r r t rn h. t r f n tr t n n h n l Dr n, p n d b x ll nt ll tr t n nd l rl f r l t d t xt, t th r th f l t bl t b d n th nv r n f ht nd r fr n t t n th r. N p h b n t d b n rt n t bl f t d ff lt h r t r f r th f n dr ht n nd r r, nd f th t bl r p rt l rl d f r th r pl nd d r t f ln, h th t bl nv rt n ll t r t n h, nd v v r. Th ll tr t n th t r nt nd d t nv n d f th n p t n f tr, p r p t v, nd pr j t n th t nd rl th pr t f h n l Dr n r l l t d th r t p d ll nd t t, nd x t d th n tn nd d b rd n t n f n r d t l. lt th r, th b th t v r n r t d n 20 2 : 2 T P bl D n, l d t z d th tr t. r pd l

24 20 N v b r 20, 20 t v r d l f dv nt r r, nd r th f r t n nd nf t n. n p t th p p l t n n th r n l n. h r v r th r r n r lr d l n th p l t l t n f th tr n nd t b r nt th r t t v l l, ft n t t d fr 0 t 00 v r t fr th r lr d l n. Th nd f p r n bl h r r t l rn th n b t th r l n t r f th v t n, r h p, r t pl, nd t n th t pp t n r h ld v r h r h r th r n p pl ld b r h d. Th R d t h rr d t n t nl r t l b r f t t n nd n tr t n b t l h th r d l r nt f t hn l t r l n T r t n, ll nd rt n th n p t n f th nd f v t n t t t n. Th t r l nd th r l b r rr d t b th p r nn l f th tr n ll l t r d btl b b f r t t n th v t nd th r f d t n rr d n b th n t P rt n T r t n. N R F H R N LL T R t rd n t t n h h h d b n n pr r b t n L tv n v nd n r L r ntz n f th N rth N r F h r n n n, r t r n t d. L tv n v b ht th f h n n th n n r h â 200,000 l r t pr f r f r dr d f h nd 4 r f r fr z n f h. Th n pr f th N r n t t r 4 nd r r p t v l. lt n l L t v n v pr d t p r h f h h h th n n b bl t ppl l t r n th nt r f r d l v r n, 2. Th n t t n n rn 800,000 l r. Th f h l ll b p d f r t th r t f nd 4 r, b t L tv n v h n nt d t r th r t f p n t n f th pr f p tr l h ld r d r n th nt r. F n ll, b th th p rt h v r d n n t t n r f fr h f h d l v r fr t rn F nn r n t r h n l d r n th r n f 2. Th f h t b d l v r d ll b p d f r n h n r l r l t n b t n N r nd R h v b n t bl h d.â Fr l D r t n, pt b r 4. N P T N, t b r 8, 20 (R f.â n n b r f B rtz v 8 b ht h D l l n l P r d l v th ll t n th t Tr t h d b n n t rn Pr n l t r n lt t n th Pr n ff r. n n r t n r Tr t th f ll n t t nt: "Th r n t rd f tr th n t. n t n t rn Pr r n n th r pl. B t t th t, t n t, r d t h ld nv r t n th n n bl nd h n t r n ff r h ld ff r h rv f r th f ht n t Fr n h p r l h h r b nd ppr r n.". TH N XT ll nt n, n th r F t r, th F ll n : Th r f th r t f d t n, b. L n l r, P pl r f r d t n. Thr R n N t t th Br t h v rn nt. N t ddr d b r n t L rd n r t d n 20 2 : 2 T P bl D n, l d t z d th tr t. r pd l

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

I if +5sssi$ E sr. Egglg[[l[aggegr glieiffi*gi I I a. gl$[fli$ilg1li3fi[ Ell F rss. F$EArgi. SEgh*rqr. H uf$:xdx. FsfileE

I if +5sssi$ E sr. Egglg[[l[aggegr glieiffi*gi I I a. gl$[fli$ilg1li3fi[ Ell F rss. F$EArgi. SEgh*rqr. H uf$:xdx. FsfileE (tl Sh*q +sss$!! ll ss s ;s$ll s ; B 3 $ Sest -9[*; s$t 1,1 - e^ -" H u$xdx fd $A sfle *9,9* '. s. \^ >X!l P s H 2.ue ^ O - HS 1- -l ( l[[l[e lff* l$[fl$l1l3f[ U, -.1 $tse;es s TD T' ' t B $*l$ \l - 1

More information

Ed H. H w H Ed. en 2: Ed. o o o z. o o. Q Ed. Ed Q to. PQ in o c3 o o. Ed P5 H Z. < u z. Ed H H Z O H U Z. > to. <! Ed Q. < Ed > Es.

Ed H. H w H Ed. en 2: Ed. o o o z. o o. Q Ed. Ed Q to. PQ in o c3 o o. Ed P5 H Z. < u z. Ed H H Z O H U Z. > to. <! Ed Q. < Ed > Es. d n 2: d t d t d! d d 52 d t d d P in t d. d P5 d - d d , d P il 0) m d p P p x d d n N r -^ T) n «n - P & J (N 0 ' 4 «"«5 -» % «D *5JD V 9 * * /J -2.2 " ^ 0 n 0) - P - i- 0) G V V - 1(2). i 1 1 & i '

More information

8. Relax and do well.

8. Relax and do well. CHEM 1225 Exam I John I. Gelder February 4, 1999 Name KEY TA's Name Lab Section Please sign your name below to give permission to post your course scores on homework, laboratories and exams. If you do

More information

I;;"" I _ t. . - I...AJ_ ~I 11 \_-., I. LIfI.l..(!;O '{. ~- --~--- _.L...,.._ J 5" i. I! I \ 1/ \. L, :,_. RAmE ABSTRACT

I;; I _ t. . - I...AJ_ ~I 11 \_-., I. LIfI.l..(!;O '{. ~- --~--- _.L...,.._ J 5 i. I! I \ 1/ \. L, :,_. RAmE ABSTRACT 5 ;; _L_ 7 9 8 A Ll(;O '{ L _ OFFCAL RETURNS GENERAL ELECTON RAmE 98 9 w ;; (k4(ap 'A ' lee S'T'lTE 5'C TU AS c ; _ l6l>'

More information

The Periodic Table of Elements

The Periodic Table of Elements The Periodic Table of Elements 8 Uuo Uus Uuh (9) Uup (88) Uuq (89) Uut (8) Uub (8) Rg () 0 Ds (9) 09 Mt (8) 08 Hs (9) 0 h () 0 Sg () 0 Db () 0 Rf () 0 Lr () 88 Ra () 8 Fr () 8 Rn () 8 At (0) 8 Po (09)

More information

CHEM 130 Exp. 8: Molecular Models

CHEM 130 Exp. 8: Molecular Models CHEM 130 Exp. 8: Molecular Models In this lab, we will learn and practice predicting molecular structures from molecular formulas. The Periodic Table of the Elements IA 1 H IIA IIIA IVA VA VIA VIIA 3 5

More information

Chem 6 Sample exam 2 (150 points total) NAME:

Chem 6 Sample exam 2 (150 points total) NAME: hem 6 Sample exam 2 (150 points total) @ This is a closed book exam to which the onor Principle applies. @ The last page contains equations and physical constants; you can detach it for easy reference.

More information

fnm 'et Annual Meeting

fnm 'et Annual Meeting UUVtK Ht.t, A 0 8 4 S.. Rittin Nub t, n L Y t U N i, n ' A N n, t\ V n b n k pny' ull N) 0 R Z A L A V N U X N S N R N R H A V N U R A P A R K A L A N Y Buin Add. N. Stt ity wn / Pvin) Ali l) lil tal?l

More information

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009 Schedule H-6.lb SOUTHWSTRN LCTRIC POWR COMPANY SCHDUL H-6.1b NUCLAR UNIT OUTAG DATA For the Test Year nded March 31, 29 This schedule is not applicable to SVvPCO. 5 Schedule H-6.1 c SOUTHWSTRN LCTRIC POWR

More information

Chemistry Standard level Paper 1

Chemistry Standard level Paper 1 Chemistry Standard level Paper 1 Thursday 12 May 2016 (morning) 45 minutes Instructions to candidates Do not open this examination paper until instructed to do so. Answer all the questions. For each question,

More information

Balanced preamp - Digital control

Balanced preamp - Digital control TSOP Vdd U V OUT GN uf xial GN GN Vdd J Prog.Header J Prog.Header MLR V GN PG PG cc0 cc cc cc cc MLR cc cpwr U VSS V R0/IN0 R0/INT R/IN R/SI R/IN/VREF R/SO 9 R/IN R/P 0 R/T0KI R/SK R/MLR/VPP R/SS R/OS/LKO

More information

, (1). -, [9], [1]. 1.. T =[ a] R: _(t)=f((t)) _ L(t) () = x f, L(t) T., L(t), L() = L(a ; ) = L(a). (2) - : L n (t) =(L n )(t) = 1=n R supp [ 1], 1R

, (1). -, [9], [1]. 1.. T =[ a] R: _(t)=f((t)) _ L(t) () = x f, L(t) T., L(t), L() = L(a ; ) = L(a). (2) - : L n (t) =(L n )(t) = 1=n R supp [ 1], 1R 25 3(514) 517.988..,..,.. -.,.., -, -. : _x(t) =f(t x(t)) _ L(t) (1) L(t) _.. - -, f(t x(t)) L(t). _ ([1],. 1, x 8,. 41),. [2]{[4],., [2]{[4],, [1]. - x(t) =x f( x())dl() t {, {.. [5]{[7]. L(t),. [8] (1),

More information

Example: Helium has an atomic number of 2. Every helium atom has two protons in its nucleus.

Example: Helium has an atomic number of 2. Every helium atom has two protons in its nucleus. 59 Atomic terms - ATOMIC NUMBER: The number of protons in the atomic nucleus. Each ELEMENT has the SAME NUMBER OF PROTONS in every nucleus. In neutral atoms, the number of ELECTRONS is also equal to the

More information

E5 Lewis Acids and Bases: lab 2. Session two lab Parts 2B, 3, and 4. Session one lab Parts 1and 2A. Aquo Complex Ions

E5 Lewis Acids and Bases: lab 2. Session two lab Parts 2B, 3, and 4. Session one lab Parts 1and 2A. Aquo Complex Ions E5 Lewis Acids and Bases: lab 2 Session one lab Parts 1and 2A Session two lab Parts 2B, 3, and 4 Part 2B. Complexation, Structure and Periodicity Compare the reactivity of aquo complex ions containing

More information

4.06 Periodic Table and Periodic Trends

4.06 Periodic Table and Periodic Trends 4.06 Periodic Table and Periodic Trends Dr. Fred Omega Garces Chemistry 100, Miramar College 1 4.06 Periodic Table and Periodic Trend The Periodic Table and the Elements What is the periodic table? What

More information

4r, o I. >fi. a IE. v atr. ite. a z. a til. o a. o o. 0..c. E lrl .',,# View thousands of Crane Specifications on FreeCraneSpecs.

4r, o I. >fi. a IE. v atr. ite. a z. a til. o a. o o. 0..c. E lrl .',,# View thousands of Crane Specifications on FreeCraneSpecs. i View husns Crne Speiiins n reecrnespes.m :: :r R: 8 @ il llj v u L u 4r,? >i C) lrl? n R 0&l r'q1 rlr n rrei i 5 n llvvj lv 8 s S llrvvj Sv TT [ > 1 \ l? l:i rg l n - l l. l8 l l 5 l u r l 9? { q i :{r.

More information

Geometry Chapter 8: Area Review PA Anchors: A3; B2; Cl. .1.t+~4 -~-J. ""T... Sl. J":..2.l.. -+-Jw. A =- A(~)'" ~ A :..!w-l-~

Geometry Chapter 8: Area Review PA Anchors: A3; B2; Cl. .1.t+~4 -~-J. T... Sl. J:..2.l.. -+-Jw. A =- A(~)' ~ A :..!w-l-~ Geometry Chapter 8: Area Review PA Anchors: A3; B2; Cl 1. Find the missing value given BCDA is a rectangle. Perimeter = 62 cm Area =? V:. d.t-\" ~vj B.--- ---,c 17 em ~ J. ':. ~). -:: - '0..., rj ~ -;:,

More information

Ëâ,a E :lëë, ËgËEggEËËgË ËiË

Ëâ,a E :lëë, ËgËEggEËËgË ËiË 4 Ë s F Ë3 ËËs *s ôl s{ëaëëëëë {) è) (ll '* ËË Ë Ër rëë s: 5 Ë ËË Ë3s âëëëësëëëë ô r.9 fë;uëë;ëë *Ë =ËfËâ$âË$[Ë$ Ë ËË FêËËËËËrËËËË.Ë:eË*cs srrëf rl $Ël*ËË s66- Ë3 ËËË ËËs.4 Ëâ, :lëë, ËËËËË ËË.Ë $ËFj ËÉË......l"*ÂlÉËËr

More information

Atomic terms. Example: Helium has an atomic number of 2. Every helium atom has two protons in its nucleus.

Atomic terms. Example: Helium has an atomic number of 2. Every helium atom has two protons in its nucleus. Atomic terms - ATOMIC NUMBER: The number of protons in the atomic nucleus. Each ELEMENT has the SAME NUMBER OF PROTONS in every nucleus. In neutral atoms, the number of ELECTRONS is also equal to the atomic

More information

SPECTRAL ORDER PRESERVING MATRICES AND MUIRHEAD'S THEOREM

SPECTRAL ORDER PRESERVING MATRICES AND MUIRHEAD'S THEOREM TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 200, 1974 SPECTRAL ORDER PRESERVING MATRICES AND MUIRHEAD'S THEOREM BY KONG-MING chongo.1) ABSTRACT. In this paper, a characterization is given

More information

Chemistry 112 Name Exam I Form A Section January 29,

Chemistry 112 Name Exam I Form A Section January 29, Chemistry 112 Name Exam I Form A Section January 29, 2013 email IMPORTANT: On the scantron (answer sheet), you MUST clearly fill your name, your student number, section number, and test form (white cover

More information

210H-3 HA 289 HA H-3. f80 f160. f140. f125. f50. Type. Standard type. Adaptable fluid. Seal material. Phosphate ester fluid. Water in oil fluid

210H-3 HA 289 HA H-3. f80 f160. f140. f125. f50. Type. Standard type. Adaptable fluid. Seal material. Phosphate ester fluid. Water in oil fluid 288 28 Type Nominal pressure Maximum allowable pressure roof test pressure Minimum operating pressure orking speed range orking temperature range (ambient/fluid temperature) Structure of cushioning Adaptable

More information

R k. t + 1. n E t+1 = ( 1 χ E) W E t+1. c E t+1 = χ E Wt+1 E. Γ E t+1. ) R E t+1q t K t. W E t+1 = ( 1 Γ E t+1. Π t+1 = P t+1 /P t

R k. t + 1. n E t+1 = ( 1 χ E) W E t+1. c E t+1 = χ E Wt+1 E. Γ E t+1. ) R E t+1q t K t. W E t+1 = ( 1 Γ E t+1. Π t+1 = P t+1 /P t R k E 1 χ E Wt E n E t+1 t t + 1 n E t+1 = ( 1 χ E) W E t+1 c E t+1 = χ E Wt+1 E t + 1 q t K t Rt+1 E 1 Γ E t+1 Π t+1 = P t+1 /P t W E t+1 = ( 1 Γ E t+1 ) R E t+1q t K t Π t+1 Γ E t+1 K t q t q t K t j

More information

VIIIA He IIA IIIA IVA VA VIA VIIA. Li Be B C N O F Ne. Na Mg VIB VIIB VIIIB IB IIB S. K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br

VIIIA He IIA IIIA IVA VA VIA VIIA. Li Be B C N O F Ne. Na Mg VIB VIIB VIIIB IB IIB S. K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br 188 THE FIRST TWO PERIODIC TRENDS IN A NUTSHELL LARGER IONIZATION ENERGY SMALLER RADIUS IA H IIA IIIA IVA VA VIA VIIA VIIIA He Li Be B C N O F Ne Na Mg IIIB IVB VB Al Si P VIB VIIB VIIIB IB IIB S Cl Ar

More information

elnpol^l SSJU (tl = N) gnot

elnpol^l SSJU (tl = N) gnot ZZ'Uap 66-' S fbul - alnph lluuur!^u SSf, psnu '6 ajns ' l/mu) l,u l fuan 's 'b rll ' p9 'z p6 ua ' "'s pr.u6lu rna u! 6url6ll l4s a11 ap]sap na plnm'6lu l bulm ll psnu aln5 11r1/vu) l,u lusl ll l p usal

More information

2. T H E , ( 7 ) 2 2 ij ij. p i s

2. T H E , ( 7 ) 2 2 ij ij. p i s M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X A N A L Y S I S O F T E M P E R A T U R E D I S T R I B U T I O N I N C O M P O S I T E P L A T E S D U R I N G T H E R M A

More information

Nagoya Institute of Technology

Nagoya Institute of Technology 09.03.19 1 2 OFDM SC-FDE (single carrier-fde)ofdm PAPR 3 OFDM SC-FDE (single carrier-fde)ofdm PAPR 4 5 Mobility 2G GSM PDC PHS 3G WCDMA cdma2000 WLAN IEEE802.11b 4G 20112013 WLAN IEEE802.11g, n BWA 10kbps

More information

ON A CONJECTURE OF BALOG ADOLF HILDEBRAND

ON A CONJECTURE OF BALOG ADOLF HILDEBRAND PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 95. Number 4. December 1985 ON A CONJECTURE OF BALOG ADOLF HILDEBRAND Abstract. A conjecture of A. Balog is proved which gives a sufficient condition

More information

A CHARACTERISTIC PROPERTY OF QUADRATIC RESIDUES

A CHARACTERISTIC PROPERTY OF QUADRATIC RESIDUES A CHARACTERISTIC PROPERTY OF QUADRATIC RESIDUES JOHN B. KELLY 1. Introduction. Let p be an odd prime. We denote by Rp the set of quadratic residues (mod p), by Np the set of quadratic nonresidues, and

More information

Section 4-5: Electric Potential

Section 4-5: Electric Potential 148 CHAPTER 4 Pv(2) = 2b = 10. Hence. b = 5. Appling Gauss's law to a spherical surface of radius R, J;; 1D.ds = Jv r pv d'll, DR 4nR2 = Jo rr 5R 41tR2 dr = 201t 4'" ~ ' 5 DR = 4 R2 (C/m2), A ~ 5? ') (Clm-).

More information

Halogens HALOGENS. Parts 2A and 2B. Chem : Feb. 19, 20 and March 3. Compare the properties and reactivity of the halogens and halides

Halogens HALOGENS. Parts 2A and 2B. Chem : Feb. 19, 20 and March 3. Compare the properties and reactivity of the halogens and halides Chem. 125-126: Feb. 19, 20 and March 3 Experiment 3 Session 2 (Three hour lab) Complete Experiment 3 Parts 2B and 3 Complete team report Complete discussion presentation Parts 2A and 2B Compare the properties

More information

THE POISSON TRANSFORM^)

THE POISSON TRANSFORM^) THE POISSON TRANSFORM^) BY HARRY POLLARD The Poisson transform is defined by the equation (1) /(*)=- /" / MO- T J _M 1 + (X t)2 It is assumed that a is of bounded variation in each finite interval, and

More information

H A N S -O L A V E N G E R,

H A N S -O L A V E N G E R, O n -l i n e P r o c e e d i n gs o f t h e 7 t h M e d i t e r r a n e a n M o r p h o l o g y M e e t i n g 1 M o r p h o l o g y a n d D i a c h r o n y O n -l i n e P r o c e e d i n g s o f t h e

More information

Introduction to Magnetohydrodynamics (MHD)

Introduction to Magnetohydrodynamics (MHD) Introduction to Magnetohydrodynamics (MHD) Tony Arber University of Warwick 4th SOLARNET Summer School on Solar MHD and Reconnection Aim Derivation of MHD equations from conservation laws Quasi-neutrality

More information

(5) difference of squares,

(5) difference of squares, EOCT REVIEW UNIT 5 Quadratic Functions Name Kut Write each expression in factored form. 1. X2-2x - 15 (X>5')(X f 3) 2. X2-18x + 81 (x:-q)(x-q) (1)' (X, ) z- Complete each square and write the resulting

More information

- Some properties of elements can be related to their positions on the periodic table.

- Some properties of elements can be related to their positions on the periodic table. 186 PERIODIC TRENDS - Some properties of elements can be related to their positions on the periodic table. ATOMIC RADIUS - The distance between the nucleus of the atoms and the outermost shell of the electron

More information

NAME: 3rd (final) EXAM

NAME: 3rd (final) EXAM 1 Chem 64 Winter 2003 AME: 3rd (final) EXAM THIS EXAM IS WORTH 100 POITS AD COTAIS 9 QUESTIOS THEY ARE OT EQUALLY WEIGHTED! YOU SHOULD ATTEMPT ALL QUESTIOS AD ALLOCATE YOUR TIME ACCORDIGLY IF YOU DO'T

More information

EQUATIONS WHOSE ROOTS ARE T I E nth POWERS OF T I E ROOTS OF A GIVEN CUBIC EQUATION

EQUATIONS WHOSE ROOTS ARE T I E nth POWERS OF T I E ROOTS OF A GIVEN CUBIC EQUATION EQUATIONS WHOSE ROOTS ARE T I E nth POWERS OF T I E ROOTS OF A GIVEN CUBIC EQUATION N. A, DRAiMand MARJORIE BICKNELL Ventura, Calif, and Wilcox High School, Santa Clara, Calif. Given the cubic equation

More information

On reaching head-to-tail ratios for balanced and unbalanced coins

On reaching head-to-tail ratios for balanced and unbalanced coins Journal of Statistical Planning and Inference 0 (00) 0 0 www.elsevier.com/locate/jspi On reaching head-to-tail ratios for balanced and unbalanced coins Tamas Lengyel Department of Mathematics, Occidental

More information

Chapter 2 Lecture Notes: Atoms

Chapter 2 Lecture Notes: Atoms Educational Goals Chapter 2 Lecture Notes: Atoms 1. Describe the subatomic structure of an atom. 2. Define the terms element and atomic symbol. 3. Understand how elements are arranged in the periodic table

More information

VARGA S THEOREM IN NUMBER FIELDS

VARGA S THEOREM IN NUMBER FIELDS VARGA S THEOREM IN NUMBER FIELDS PETE L. CLARK AND LORI D. WATSON Abstract. We give a number field version of a recent result of Varga on solutions of polynomial equations with binary input variables and

More information

1 Introduction This work follows a paper by P. Shields [1] concerned with a problem of a relation between the entropy rate of a nite-valued stationary

1 Introduction This work follows a paper by P. Shields [1] concerned with a problem of a relation between the entropy rate of a nite-valued stationary Prexes and the Entropy Rate for Long-Range Sources Ioannis Kontoyiannis Information Systems Laboratory, Electrical Engineering, Stanford University. Yurii M. Suhov Statistical Laboratory, Pure Math. &

More information

H 2 -optimal model reduction of MIMO systems

H 2 -optimal model reduction of MIMO systems H 2 -optimal model reduction of MIMO systems P. Van Dooren K. A. Gallivan P.-A. Absil Abstract We consider the problem of approximating a p m rational transfer function Hs of high degree by another p m

More information

ADDITIONAL SOLUTIONS for exercises in Introductory Symbolic Logic Without Formal Proofs

ADDITIONAL SOLUTIONS for exercises in Introductory Symbolic Logic Without Formal Proofs 1 ADDITIONAL SOLUTIONS for exercises in Introductory Symbolic Logic Without Formal Proofs P. 32 2. P v ~J 3. ~P ~J 4. ~P (~A ~J) 5. ~(J v A) 6. [J v (~A ~J)] 7. J A 8. J (A P) 9. J (A v P) 11. P v (A J)

More information

ECE 650 Lecture #10 (was Part 1 & 2) D. van Alphen. D. van Alphen 1

ECE 650 Lecture #10 (was Part 1 & 2) D. van Alphen. D. van Alphen 1 ECE 650 Lecture #10 (was Part 1 & 2) D. van Alphen D. van Alphen 1 Lecture 10 Overview Part 1 Review of Lecture 9 Continuing: Systems with Random Inputs More about Poisson RV s Intro. to Poisson Processes

More information

DISTRIBUTED BY: National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road. Springfield Va.

DISTRIBUTED BY: National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road. Springfield Va. '" I " " "" ll '" I'" ' " P"-' I II -«...-.,. ' M»^..l^..l I! Ilium llljlll '^' '^'^ " " '!»"I AD-757 354 SYMMETRIC SIMPLE GAMES Robert James Weber Cornell University Prepared for: Office of Naval Research

More information

Primitive Digraphs with the Largest Scrambling Index

Primitive Digraphs with the Largest Scrambling Index Primitive Digraph with the Larget Scrambling Index Mahmud Akelbek, Steve Kirkl 1 Department of Mathematic Statitic, Univerity of Regina, Regina, Sakatchewan, Canada S4S 0A Abtract The crambling index of

More information

arxiv: v1 [math.pr] 4 Nov 2016

arxiv: v1 [math.pr] 4 Nov 2016 Perturbations of continuous-time Markov chains arxiv:1611.1254v1 [math.pr 4 Nov 216 Pei-Sen Li School of Mathematical Sciences, Beijing Normal University, Beijing 1875, China E-ma: peisenli@ma.bnu.edu.cn

More information

AN ARCSINE LAW FOR MARKOV CHAINS

AN ARCSINE LAW FOR MARKOV CHAINS AN ARCSINE LAW FOR MARKOV CHAINS DAVID A. FREEDMAN1 1. Introduction. Suppose {xn} is a sequence of independent, identically distributed random variables with mean 0. Under certain mild assumptions [4],

More information

Power Board 715G5246P02W21002S (For 42RL7500)

Power Board 715G5246P02W21002S (For 42RL7500) Key omponent Power Board GP0W00S (For RL00) SG0 DSPL-0N-AF 0 0PF 0V SG0 DSPL-0N-AF BOX 0 00PF 0V t R0 0K L0 0NF 0V change to.mm I0 D D D D AP00DG 0 PF L0 MH MH R0 0 0NF 0V TVRKFAOZF R- FB0 SG0 DSPL-0N-AF

More information

Generation of bandlimited sync transitions for sine waveforms

Generation of bandlimited sync transitions for sine waveforms Generation of bandlimited sync transitions for sine waveforms Vadim Zavalishin May 4, 9 Abstract A common way to generate bandlimited sync transitions for the classical analog waveforms is the BLEP method.

More information

ON THE DIFFERENTIAL EQUATIONS OF HILL IN THE THEORY OF THE MOTION OF THE MOON (II)

ON THE DIFFERENTIAL EQUATIONS OF HILL IN THE THEORY OF THE MOTION OF THE MOON (II) ON THE DIFFERENTIAL EQUATIONS OF HILL IN THE THEORY OF THE MOTION OF THE MOON (II) BY J. F. STEFFENSEN in Copenhagen i. In a former paper with the same title 1 (quoted below as "I") polar coordinates r

More information

r (p) = p J e- pf h (t) dt,

r (p) = p J e- pf h (t) dt, Mathematics. - Modern operational calculus based on the two-sided Laplace integral. I. By BALTH. VAN DER POL and H. BREMMER. (Laboratorium voor Wetenschappelijk Onderzoek, N.V. Philips' Gloeilampenfabrieken,

More information

PATTERN CLASS SCORE SHEET AMATEUR DATE:---, _v' ' I ENTRY _...-.#Ji)\,,41()!'<AIL - " WORK OVERALL FORM & PRESENTATION

PATTERN CLASS SCORE SHEET AMATEUR DATE:---, _v' ' I ENTRY _...-.#Ji)\,,41()!'<AIL -  WORK OVERALL FORM & PRESENTATION /Y ;g PtMriJeuv AMERICAN HQRSE /tna +f u v Se le cf YOUTH YOUTH YOUTH AMATEUR LEVEL1 < LEVEL1 SHOW: AMATEUR DATE:,. JUDGE: lb, )p, ') _v' ' I _...#Ji)\,,1()!'

More information

Discrete-time first-order systems

Discrete-time first-order systems Discrete-time first-order systems 1 Start with the continuous-time system ẏ(t) =ay(t)+bu(t), y(0) Zero-order hold input u(t) =u(nt ), nt apple t

More information

1.02 Elements, Symbols and Periodic Table

1.02 Elements, Symbols and Periodic Table .0 Elements, Symbols and Periodic Table Dr. Fred O. Garces Chemistry Miramar College.0 Elements, Symbols and the Periodic Table January 0 The Elements: Building block of Matter The periodic table of the

More information

Calculating Forward Rate Curves Based on Smoothly Weighted Cubic Splines

Calculating Forward Rate Curves Based on Smoothly Weighted Cubic Splines Calculating Forward Rate Curves Based on Smoothly Weighted Cubic Splines February 8, 2017 Adnan Berberovic Albin Göransson Jesper Otterholm Måns Skytt Peter Szederjesi Contents 1 Background 1 2 Operational

More information

THE LIE ALGEBRA ASSOCIATED TO THE LOWER CENTRAL SERIES OF A LINK GROUP AND MURASUGI'S CONJECTURE

THE LIE ALGEBRA ASSOCIATED TO THE LOWER CENTRAL SERIES OF A LINK GROUP AND MURASUGI'S CONJECTURE PROCEEDINGS of the AMERICAN MATHEMATICAL SOCIETY Volume 109, Number 4, August 1990 THE LIE ALGEBRA ASSOCIATED TO THE LOWER CENTRAL SERIES OF A LINK GROUP AND MURASUGI'S CONJECTURE JOHN P. LABUTE (Communicated

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval.............. 0 Section. Rolle s Theorem and the Mean Value Theorem. 07 Section. Increasing and Decreasing Functions and the First

More information

QUESTIONNAIRE FOR WEST BENGAL Demand Side Management & Renewable Energy in India: Capacity Building of CSOs -- DREC PROJECT. Ešlc a pðå u LR abé

QUESTIONNAIRE FOR WEST BENGAL Demand Side Management & Renewable Energy in India: Capacity Building of CSOs -- DREC PROJECT. Ešlc a pðå u LR abé Ešlc a pðå u LR abé 1z Ešlc a l e j 2z Sm l e j 3z Ešlc a l WL e J k N k Nl hhle (NË j, b e, hôl, fe L X, j h Cm eðl CaÉ c pçf ZÑ b L A a BhnÉL) WL e g e eðl (STD Code pq) j h Cm eðl C- jm 4z Hm L - 1z

More information

Bronsted: Acids are proton donors. Session one Pre-lab (p.151) due 1st hour discussion of E4 Lab (Parts 1and 2A)

Bronsted: Acids are proton donors. Session one Pre-lab (p.151) due 1st hour discussion of E4 Lab (Parts 1and 2A) E5 Lewis Acids and Bases (Session 1) November 5-11 Acids Bronsted: Acids are proton donors. Session one Pre-lab (p.151) due 1st hour discussion of E4 Lab (Parts 1and 2A) Problem Compounds containing cations

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012019 TITLE: Monotonicity Conditions of Curvature for Bezier-de Casteljau Curves DISTRIBUTION: Approved for public release,

More information

Brief Review of Statistical Mechanics

Brief Review of Statistical Mechanics Brief Review of Statistical Mechanics Introduction Statistical mechanics: a branch of physics which studies macroscopic systems from a microscopic or molecular point of view (McQuarrie,1976) Also see (Hill,1986;

More information

building buildings fraternity Planning City fraternity. the City Building # but Building City by:approved Property demolitions demolition proposing is

building buildings fraternity Planning City fraternity. the City Building # but Building City by:approved Property demolitions demolition proposing is nd v. nnlvn E. 8 h f p dln ld h ppv d. f pp h f 99, n n h h p ndd hhld nud uu REMMEDT: / MT:FSL / SUSTBLTY: / STE: T RE/FUS L STRTEG ng. vb h dln h ppvd HB) Bd vn ( H Th h n b p nud uu dln p dln nng fn.

More information

CHAPTER 11 Vector-Valued Functions

CHAPTER 11 Vector-Valued Functions CHAPTER Vector-Valued Functions Section. Vector-Valued Functions...................... 9 Section. Differentiation and Integration of Vector-Valued Functions.... Section. Velocit and Acceleration.....................

More information

THE VALUATION STRUCTURE OF HOMOMORPHIC IMAGES OF PRÜFER DOMAINS

THE VALUATION STRUCTURE OF HOMOMORPHIC IMAGES OF PRÜFER DOMAINS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 46, Number 3, December 1974 THE VALUATION STRUCTURE OF HOMOMORPHIC IMAGES OF PRÜFER DOMAINS MONTE B. BOISEN, JR. AND PHILIP B. SHELDON ABSTRACT.

More information

elegant Pavilions Rediscover The Perfect Destination

elegant Pavilions Rediscover The Perfect Destination Pv Rv T Pf D W... T O Lv! Rv p f f v. T f p, f f, j f f, bw f p f f w-v. T f bk pv. Pv w b f v, pv f. W, w w, w f, pp w w pv. W pp v w v. Tk f w v k w w j x v f. W v p f b f v j. S f f... Tk Y! 2 3 p Pv

More information

MATHEMATICS PAPER IB COORDINATE GEOMETRY(2D &3D) AND CALCULUS. Note: This question paper consists of three sections A,B and C.

MATHEMATICS PAPER IB COORDINATE GEOMETRY(2D &3D) AND CALCULUS. Note: This question paper consists of three sections A,B and C. MATHEMATICS PAPER IB COORDINATE GEOMETRY(D &3D) AND CALCULUS. TIME : 3hrs Ma. Marks.75 Note: This question paper consists of three sections A,B and C. SECTION A VERY SHORT ANSWER TYPE QUESTIONS. 0X =0.

More information

necessita d'interrogare il cielo

necessita d'interrogare il cielo gigi nei necessia d'inegae i cie cic pe sax span s inuie a dispiegaa fma dea uce < affeandi ves i cen dea uce isnane " sienzi dei padi sie veic dei' anima 5 J i f H 5 f AL J) i ) L '3 J J "' U J J ö'

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

Incremental Rotary Encoder G58

Incremental Rotary Encoder G58 Shaft: Type S / L / H Hollow shaft: Type W Mechanical Data Housing diameter: mm Shaft:... 0 mm Hollow shaft:... mm Line counts:... 0.000 signals: S, KI, KS, HTL, TTL, O, Vpp, µapp onnector or output: axial

More information

A CENTRAL LIMIT THEOREM AND A STRONG MIXING CONDITION BY M. ROSENBLATT COLUMBIA UNIVERSITY. Communicated by P. A. Smith, November 10, 1955

A CENTRAL LIMIT THEOREM AND A STRONG MIXING CONDITION BY M. ROSENBLATT COLUMBIA UNIVERSITY. Communicated by P. A. Smith, November 10, 1955 VOL. 42, 1956 MATHMATICS: M. ROSNBLATT 43 3~ p, either F(nh) = 0 or $n(nh) = 0. Thus the sum on the right-hand side of equation (3) is identically zero. Combining equation (3) with equation (2), we have

More information

(tnaiaun uaejna) o il?smitfl?^ni7wwuiinuvitgviisyiititvi2a-a a imaviitjivi5a^ qw^ww^i fiaa!i-j?s'u'uil?g'ijimqwuwiijami.wti. a nmj 1,965,333.

(tnaiaun uaejna) o il?smitfl?^ni7wwuiinuvitgviisyiititvi2a-a a imaviitjivi5a^ qw^ww^i fiaa!i-j?s'u'uil?g'ijimqwuwiijami.wti. a nmj 1,965,333. 0 fltu77jjiimviu«7mi^ gi^"ijhm?'ijjw?flfi^ V m 1 /14 il?mitfl?^i7wwuiinuvitgviiyiititvi2- imviitvi^ qw^ww^i fi!i-j?'u'uil?g'iqwuwiijmi.wti twwrlf^ imii2^

More information

Some Inference Results for the Exponential Autoregressive Process

Some Inference Results for the Exponential Autoregressive Process Advances in Methodology, Data Analysis, and Statistics Anuška Ferligoj (Editor), Metodološki zvezki, 14 Ljubljana : FDV, 1998 Some Inference Results for the Exponential Autoregressive Process Lynne Billard'

More information

q x = k T 1 T 2 Q = k T 1 T / 12

q x = k T 1 T 2 Q = k T 1 T / 12 Conductive oss through a Window Pane q T T 1 Examine the simple one-dimensional conduction problem as heat flow through a windowpane. The window glass thickness,, is 1/8 in. If this is the only window

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homework 5 1. Let z = f(x, y) be a twice continuously differentiable function of x and y. Let x = r cos θ and y = r sin θ be the equations which transform polar coordinates into rectangular

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Dr Gerhard Roth COMP 40A Winter 05 Version Linear algebra Is an important area of mathematics It is the basis of computer vision Is very widely taught, and there are many resources

More information

Lecture 2. Fading Channel

Lecture 2. Fading Channel 1 Lecture 2. Fading Channel Characteristics of Fading Channels Modeling of Fading Channels Discrete-time Input/Output Model 2 Radio Propagation in Free Space Speed: c = 299,792,458 m/s Isotropic Received

More information

NOTE ON FIBONACCI PRIMALITY TESTING John Brillhart University of Arizona, Tucson, AZ (Submitted August 1996-Final Revision January 1997)

NOTE ON FIBONACCI PRIMALITY TESTING John Brillhart University of Arizona, Tucson, AZ (Submitted August 1996-Final Revision January 1997) John Brillhart University of Arizona, Tucson, AZ 85721 (Submitted August 1996-Final Revision January 1997) 1. INTRODUCTION One of the most effective ways of proving an integer N is prime is to show first

More information

Expanding brackets and factorising

Expanding brackets and factorising Chapter 7 Expanding brackets and factorising This chapter will show you how to expand and simplify expressions with brackets solve equations and inequalities involving brackets factorise by removing a

More information

ON THE DENSITY OF SOME SEQUENCES OF INTEGERS P. ERDOS

ON THE DENSITY OF SOME SEQUENCES OF INTEGERS P. ERDOS ON THE DENSITY OF SOME SEQUENCES OF INTEGERS P. ERDOS Let ai

More information

Focus rules for segments. Focus and defocus rules for concatenation. Mlength with a while loop. Mlength with a while loop.

Focus rules for segments. Focus and defocus rules for concatenation. Mlength with a while loop. Mlength with a while loop. The function nth-cell Separation Logic Part 2 Returns the i-th cell of a list: Arthur Charguéraud February 2015 let rec nth_cell (i:int) (p: a cell) = if i = 0 then p else nth_cell (i-1) (p.tl) Why is

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE RPRT DCUMNTATN PAG Frm Apprved MB N. 74-188 Publi reprting burden fr tbis lletin f infrmtin is estimted t verge 1 hur per respnse, inluding the lime fr reviewing instrutins, serhing existing dt sures,

More information

The exponential distribution and the Poisson process

The exponential distribution and the Poisson process The exponential distribution and the Poisson process 1-1 Exponential Distribution: Basic Facts PDF f(t) = { λe λt, t 0 0, t < 0 CDF Pr{T t) = 0 t λe λu du = 1 e λt (t 0) Mean E[T] = 1 λ Variance Var[T]

More information

Document And Report Documentation Page Submitted edoc_

Document And Report Documentation Page Submitted edoc_ 'uaiwixll r'u.iu V xvpuii ifj-tmeniann iage Submitted as ed 1.. '...X,> https://trstiiit.dti.mil/passgi/ed/ed_press_sf298.pl -/ Dument And Reprt Dumentatin Page Submitted ed_17573268 as Reprt Dumentatin

More information

Uai~,ersily of Michigan, Ann Arbor, MI 48109, USA

Uai~,ersily of Michigan, Ann Arbor, MI 48109, USA Di~rete l~tatlueraafics 44(1983) 293--2'98 P/o,l'tll-Holland Pttblishing Company 293 A NOTE ON ABEL POLYNOMLALS LABELED FORESTS AND hooted Bruce E. SAGAN* Uai~,ersily of Michigan, Ann Arbor, MI 48109,

More information

c ll pj â **** p Cc q pe

c ll pj â **** p Cc q pe 1 c ll pj â **** p Cc q pe 2 fëbj fël n : H fëm, 2009 Date of first edition publication: April, 2009 p Cc q pe La«L phñüaæ pwl ra Published by Sayed Hossain Contact Address: Sayed Hossain Faculty of Management

More information

Deterministic Dynamic Programming

Deterministic Dynamic Programming Deterministic Dynamic Programming 1 Value Function Consider the following optimal control problem in Mayer s form: V (t 0, x 0 ) = inf u U J(t 1, x(t 1 )) (1) subject to ẋ(t) = f(t, x(t), u(t)), x(t 0

More information

A New Integration Algorithm for Ordinary Differential Equations Based on Continued Fraction Approximations

A New Integration Algorithm for Ordinary Differential Equations Based on Continued Fraction Approximations Numerical Mathematics R.A. Willoughby Editor A New Integration Algorithm for Ordinary Differential Equations Based on Continued Fraction Approximations I.M. Willers CERN A new integration algorithm is

More information

Adiabatic Expansion (DQ = 0)

Adiabatic Expansion (DQ = 0) Adiabatic Expansion (DQ = 0) Occurs if: change is made sufficiently quickly and/or with good thermal isolation. Governing formula: PV g = constant where g = C P /C V Adiabat P Isotherms V Because PV/T

More information

AN Lx REMAINDER THEOREM FOR AN INTEGRODIFFERENTIAL EQUATION WITH ASYMPTOTICALLY PERIODIC SOLUTION KENNETH B. HANNSGEN

AN Lx REMAINDER THEOREM FOR AN INTEGRODIFFERENTIAL EQUATION WITH ASYMPTOTICALLY PERIODIC SOLUTION KENNETH B. HANNSGEN proceedings of the american mathematical society Volume 73, Number 3, March 1979 AN Lx REMAINDER THEOREM FOR AN INTEGRODIFFERENTIAL EQUATION WITH ASYMPTOTICALLY PERIODIC SOLUTION KENNETH B. HANNSGEN Abstract.

More information

Is the superposition of many random spike trains a Poisson process?

Is the superposition of many random spike trains a Poisson process? Is the superposition of many random spike trains a Poisson process? Benjamin Lindner Max-Planck-Institut für Physik komplexer Systeme, Dresden Reference: Phys. Rev. E 73, 2291 (26) Outline Point processes

More information

Background and Definitions...2. Legendre s Equation, Functions and Polynomials...4 Legendre s Associated Equation and Functions...

Background and Definitions...2. Legendre s Equation, Functions and Polynomials...4 Legendre s Associated Equation and Functions... Legendre Polynomials and Functions Reading Problems Outline Background and Definitions...2 Definitions...3 Theory...4 Legendre s Equation, Functions and Polynomials...4 Legendre s Associated Equation and

More information

F l a s h-b a s e d S S D s i n E n t e r p r i s e F l a s h-b a s e d S S D s ( S o-s ltiad t e D r i v e s ) a r e b e c o m i n g a n a t t r a c

F l a s h-b a s e d S S D s i n E n t e r p r i s e F l a s h-b a s e d S S D s ( S o-s ltiad t e D r i v e s ) a r e b e c o m i n g a n a t t r a c L i f e t i m e M a n a g e m e n t o f F l a-b s ah s e d S S D s U s i n g R e c o v e r-a y w a r e D y n a m i c T h r o t t l i n g S u n g j i n L e, e T a e j i n K i m, K y u n g h o, Kainmd J

More information

Wojciech Roseker. LCLS Workshop: Application of Coherent X-rays at the LCLS Split and Delay Unit for XPCS at Free Electron Lasers

Wojciech Roseker. LCLS Workshop: Application of Coherent X-rays at the LCLS Split and Delay Unit for XPCS at Free Electron Lasers Spl d Dly U f XPCS F El L Wjh Rk LCLS Wkhp: Appl f Ch X-y h LCLS 70008 70008 Spl d Dly U f XPCS F El L Pg Spl pul XPCS Cp f h dly u Expl up Pf f h dly u Clu Oulk 70008 Spl d Dly U f XPCS F El L Pg Spl

More information

MA CALCULUS. Marking Scheme

MA CALCULUS. Marking Scheme MA 05 - CALCULUS Midsemester Examination (Autumn 06-07) Marking Scheme Department of Mathematics, I.I.T. Bombay. Max. Marks: 30 Time: 5:00 to 7:00 PM Date: 06/09/06 Q. (i) Show that lim n n /n exists and

More information

EECS 141: FALL 05 MIDTERM 1

EECS 141: FALL 05 MIDTERM 1 University of California College of Engineering Department of Electrical Engineering and Computer Sciences D. Markovic TuTh 11-1:3 Thursday, October 6, 6:3-8:pm EECS 141: FALL 5 MIDTERM 1 NAME Last SOLUTION

More information

This document contains the Errata for Design with Op Amps and Analog ICs.

This document contains the Errata for Design with Op Amps and Analog ICs. This document contains the Errata for Design with Op Amps and Analog ICs. The Errata are shown for the 4 th Edition, 3 rd Edition, and nd Edition, as follows: For the 4 th Edition Errata, scroll down to

More information