APPH 4200 Physics of Fluids

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "APPH 4200 Physics of Fluids"

Transcription

1 APPH 42 Physics of Fluids Problem Solving and Vorticity (Ch. 5) 1.!! Quick Review 2.! Vorticity 3.! Kelvin s Theorem 4.! Examples 1

2 How to solve fluid problems? (Like those in textbook) Ç"Tt=l I $T1P#( D ii;4 Lv A fj t c.t u /Z t2 tv (L (TE p Ô t /V A L L I ò C A. 6 E J/ rlf A I' io foji c. ( " '1 S _ r ç TH i S A 1) T v A.,CAL ) t1 çrti ( f If i ' E? o TOY /VA t (c.) A il l' ç (. L ve.l (J t L(.l ( 7 A ò æ L lí S' t) TH &2 \.' ': l2 ( &.A C )) lj rf c A J) e Å." ' 1 t P Yl () 1 c. c."" rl t7 Âd (. c. lf r1 c).l tf,c t F l'c ( C U t 'r. çr;:,#3 ç Ec.tZLI lk ;1\7 C)".vEf'(tE4Â7 LOù.l/.A ç (" S Te p.. C' A. r C 1/ J L( A. t=a ce d /ê ". r A..A S / N /Tle/' i x. (J. ') Ç( i it l+ Ç'7E rp t: ç N i L '( GO;. S EI? V ia(l Ò A pi! ( C (,ol C S. i CJ A ç rk ' IS. T "" ".1 #/V '7 v l "'Ò '" ; (v r E"IS ft' r ) p Il ( c ( to L If (è ò Â, Ç( pf.;aj It A i/ cgq òi,j L L L f S Y L)/l SDLU(fdl: C tar\ Y ()v ftil l t l!j /Z / A.u,7' è)., ( 2

3 Mechanical Energy Density for a Stokes Fluid 3

4 . i I I. Fluids Equations q; il cv Vi (internal) t V' ') i. ). '\ i t I.L l l: 1 ) ". a, ci "; J f J (/ \L 1 I "' 'J ; J l:: ll VJ "\ C! : ' :: \/' v ') 1 VI s: IJ '; ( v ClO "'\ i l:: a. \ l! ") q, ti () a Ii,, lù 'V i Q ';!J, VI.J r CÀ, \j f cd Ii '" t L 'J W\ t II O Q Q : lj It: CL \ Z L I 1'3 1 b I J' ') b 1, 'x 't b I :J a u I \. \. \ i re Q \t ' :) li) \. q" " J t tll ' \ IltJ (1 ì! i. J l t () l t il Qj l l'" + /' J J,, \l 1 I", l C i \l" 1'J.'" \ t Nl"ì \ i 'V 4

5 Vorticity Dynamics (Remember the importance of viscosity.) r r i \ i :J / i. J If' t "t (),J lù I :: (' Il\ (U, 'Û va l/.j, + i (V \ I :: ',f' (\ ' Q ll L I\: II b. Z l l. 'X /' \\ I l= 1: J?$ I I :J "= la F ù lrj. i I tr ' \ r 'J. 1 '.J v II 1:5, 13' 't : :i y. ) l 'j 1 l ) " f + + 'C 1"3 \. I\ 'I (" II L J. y. X b \\.u (ò C' \L 1 el \ c: X 1/ (A B) =A( B) B( A) +(B )A (A )B 5

6 Simple (2D) Fluid Rotation, : 1: i y r Q F II Q * Ç) 'i V\ ll )l J :, :i ;, tj \J L.. \I \D 'f "" " i tl J J l.. l, " \1 c\. r j,' k ) II r l( ' j w \ i rv,., 1 1 iv j, J ' i, t' ' r. l\ \l I:. I II to a \) '; (J \I fi L t v C J i ) \I S Oö ' " () \p c ' ", "../ ) ai ) " 'i " I\ \) Ql ll Q U i. V\. l,: Ll t (, :) \. i lo d? '" () Hr (' Q, r \I l t. (, VI i / t Q ri CJ \, "' v r: (j il \I \J l :J \ \f Il oj. 'X \.. I g ' ) oj \t Cl r ev CJ ' \. II C:.s ). ( C l 6

7 3D Fluid Flow CFD calculation of atmosphere (IsoVorticity contours) CFD calculation of flow in mixing tank 7

8 Today s Vorticity 8

9 , Kelvin s Theorem \t J,.r. f ( () \l l I 'ì L \: w () ':.j f LL I. '\ f L 1 ' J C\ r! VI r i '. I) l \l ' VI _ V'. '. I l X ( V) G \ i ( ( I V) \ I t ( (: : VI ly oj n t:.) (. 'C J '5 II VI l \f t v J ç 1 v ij. :i ' VI, ) F \J, Vl " " l w j J J l. \. 1 y. \J IU 1 r 1 ' J ) t,. 'ft t ( "' ( 9

10 A (General) Vector Theorem for a Moving Surface Flux \ J \ iidentity: ( L \I \. " lt: '" t U u It \ \ i IL \ \ \1 t' t cj (/ l 1 J '4 o "l f () J i., J i l '" "' a V' V' e vi" J I I \p I :: ( l C, \1, t j t t 'tt u ' N + lt ) Q c: V' Q \ I l) l f t: ta '" V\ r ',, 'i J I t( \. l l! Q t' t t. t" I ' \ rj f V "ij \J X. t \. i +. J\ J _(. Vi t: i '" 1

11 Vector Flux Identity (cont) ( \ l r ì l\t t:,, '\ r "t L c l (: ld 4\' C' ij c Vi ) " (. ""C' ( L t r!d ' L 1 + "t l (LJ l l t C' :: '. II r "S ((, \ (, \( L c l " x tt I /;: \..i " l G: l x + 1\1 ' 'l \' b "T I \i " V1 + \ l. + l\i \1 CD n i \ \ ' l" c, \ \ L li F \u t " It u:. :J LL l l\l \.\ \L C" "" g t Vi t (t ì: \J l c " L :J l. X. I ' t + '( " J\) "' t " j a \l l:j u /' I.) i; () '" 1I I + IF) \ h d tb :J Ç) \. g V), Ç) ll, \ 11

12 Two Line Vorticies c i r, iw lj J c: 9 t: N 1 l ii 11 \ C.\ \ 11 t. It ": Q 'i t. i \! "). l $ 'Ḷ. ;) Q. tf 2 o '.( i. lw Ci li vi, \. a \: \ l V (/\ 1 c: C: o l1: \J f r: t: \ II lē: fò G: 12

13 Two CounterDirected Line Vorticies L J( \! F r:\ o: : t i i W LL Q Q VI i " lj \ i 1 r r Q. lc * l J vi Q: ' t \J ; ll '5 't :J t, i=.j F U j.j t 3 (J r c: 13

14 Ring of Point Vortices 14

15 Clouds of Opposite Vortices 15

16 , Smoke Rings C\ ' c: ll I; I " \I. ( J " t) c" o; ') Q,,:. Q. v..( l J A b i I II t. "; Q ) U' tj.o LL 1 f Q i " it ") 1 l c: ( l v VI q ql.ø IL '" V' \/ Ûl v ) \ v \: ' l J 'l G c: 16

17 Toroidal Vortex Ring 17

18 Colliding Vortex Rings N f '" c6, tt_v :J :i :t 1 ' t \. J I. l :t li r \Ä :: VI I) c. $. (: t "j\t ( J =' 18

19 (Prof. Lim, Division of Fluid Mechanics, Melbourne, AU) 19

20 (Prof. Lim, Division of Fluid Mechanics, Melbourne, AU) 2

21 Surface of Rotating Bucket 21

22 How to solve fluid problems? (Like those in textbook) Ç"Tt=l I $T1P#( D ii;4 Lv A fj t c.t u /Z t2 tv (L (TE p Ô t /V A L L I ò C A. 6 E J/ rlf A I' io foji c. ( " '1 S _ r ç TH i S A 1) T v A.,CAL ) t1 çrti ( f If i ' E? o TOY /VA t (c.) A il l' ç (. L ve.l (J t L(.l ( 7 A ò æ L lí S' t) TH &2 \.' ': l2 ( &.A C )) lj rf c A J) e Å." ' 1 t P Yl () 1 c. c."" rl t7 Âd (. c. lf r1 c).l tf,c t F l'c ( C U t 'r. çr;:,#3 ç Ec.tZLI lk ;1\7 C)".vEf'(tE4Â7 LOù.l/.A ç (" S Te p.. C' A. r C 1/ J L( A. t=a ce d /ê ". r A..A S / N /Tle/' i x. (J. ') Ç( i it l+ Ç'7E rp t: ç N i L '( GO;. S EI? V ia(l Ò A pi! ( C (,ol C S. i CJ A ç rk ' IS. T "" ".1 #/V '7 v l "'Ò '" ; (v r E"IS ft' r ) p Il ( c ( to L If (è ò Â, Ç( pf.;aj It A i/ cgq òi,j L L L f S Y L)/l SDLU(fdl: C tar\ Y ()v ftil l t l!j /Z / A.u,7' è)., ( 22

23 Surface of Rotating Bucket 1. Draw a picture. 2. Dynamic or Static? 3. Coordinate system? 4. Can you apply conservation principles? 5. Use your intuition. Static corotating cylindrical (no flow in this frame) Bernoulli s 23

24 CoRotating Frame u R t u t + u u = g (1/ ) p + 2 u + u R u R = g (1/ ) p + 2 u R + R 2 2 u R with Centrifugal and Coriolis apparent forces. (Very convenient when u R =.) 24

25 CoRotating With Bucket \J l :s \Ù d LA l. 'J l:: () '\ C: ( \1, :) C: 'U \I t; \) () \ i l l U. U q. \ i 'l..j I tl\., '3 lo I :: l I C: J\) I \\ V ' " "".. '" l Force balance: ") \ I 'l \L ' ' l r: (( c: i l \) \L J \ t r' \c D (W V l \ \L 'J ù f. 1\ï i ' ' \I (V '\ t 'ù K \l \!; l') I. li + v led Q 25

26 " \ i Rigid Rotation Statics (" C,. l. li l.t lt "l \Ì rf C i a. ri CL \) J u: Q + t: 11 Ii Î U1 '1 C + C \. 'i '" \ 'f (" N Ci (VJ?: '" Ll :i Q. + + J i v V) VI ' l. II (' (\ '\. t; C' c: ': O a. r. J r\,:. t ( C' II.r 1I. 1 I Ç) "' "v U \t rj ( t () 1 \. 1\.J l: i L :: /" _. 't J l l + C ' Q "r ('e! 'r J J i. r I. \1 t' tj + '" + :: G: s: J Q. "" V" \T ", ) 'P Q. lu n i + (: O v ( t, LL ri Q.t '= T _ II ( \/ \. r. Q. (, ') 26

27 I ( j ;) l l', "" (1 ;p.s ) 1:,, " " "' "'.., ll J ' \. " /". ' "', o J Ik v " i ì: 8 t l Cl 8).L ø c:. i J ') r1 t\ G: l'.:,,\ i Q. N rj ('J Problem 5.1 Force balance: l. ( c tp, t I r: :: l" N "'J Q. trj ' lo ' tq '\ ' ' ' ". "',", ' / 't l N.( i( i: 1 r V ' \ U Q L. J t 1 v.( ṯ ' u. J tj '\ \r l i ': \) t t 7) ø (' I rj i "'l "'" "' r N \= \ ti \I f: /'./ '", " ' l ì ' 2 JL ì. :) N N 3l It! i r' ' ) o ii t ) IJ IN c. rl u N JI :: C: L '= /' \f ('. 1: Q,r \1 (\.J ' :, J + I + i il w r ; ) L (V (j c: cj Qì.) \Í (I r: ( ll ),r N 1i \h o (V r& \ f N c. r i V\ 4 'C cl II.: I: () 27

28 Summary Fluid motion can be described by vorticity dynamics. Vorticity is conserved in invicid flow. Vorticity is solenoidal, Ω =. Vorticity must either close upon itself (like a torus) or close at material boundaries (like a twirling spoon.) 28

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No xhibit 2-9/3/15 Invie Filing Pge 1841 f Pge 366 Dket. 44498 F u v 7? u ' 1 L ffi s xs L. s 91 S'.e q ; t w W yn S. s t = p '1 F? 5! 4 ` p V -', {} f6 3 j v > ; gl. li -. " F LL tfi = g us J 3 y 4 @" V)

More information

necessita d'interrogare il cielo

necessita d'interrogare il cielo gigi nei necessia d'inegae i cie cic pe sax span s inuie a dispiegaa fma dea uce < affeandi ves i cen dea uce isnane " sienzi dei padi sie veic dei' anima 5 J i f H 5 f AL J) i ) L '3 J J "' U J J ö'

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

(tnaiaun uaejna) o il?smitfl?^ni7wwuiinuvitgviisyiititvi2a-a a imaviitjivi5a^ qw^ww^i fiaa!i-j?s'u'uil?g'ijimqwuwiijami.wti. a nmj 1,965,333.

(tnaiaun uaejna) o il?smitfl?^ni7wwuiinuvitgviisyiititvi2a-a a imaviitjivi5a^ qw^ww^i fiaa!i-j?s'u'uil?g'ijimqwuwiijami.wti. a nmj 1,965,333. 0 fltu77jjiimviu«7mi^ gi^"ijhm?'ijjw?flfi^ V m 1 /14 il?mitfl?^i7wwuiinuvitgviiyiititvi2- imviitvi^ qw^ww^i fi!i-j?'u'uil?g'iqwuwiijmi.wti twwrlf^ imii2^

More information

'NOTAS"CRITICAS PARA UNA TEDRIA DE M BUROCRACIA ESTATAL * Oscar Oszlak

'NOTASCRITICAS PARA UNA TEDRIA DE M BUROCRACIA ESTATAL * Oscar Oszlak OVí "^Ox^ OqAÍ"^ Dcument SD-11 \ 'NOTAS"CRTCAS PARA UNA TEDRA DE M BUROCRACA ESTATAL * Oscr Oszlk * El presente dcument que se reprduce pr us exclusv de ls prtcpntes de curss de Prrms de Cpctcón, se h

More information

z E z *" I»! HI UJ LU Q t i G < Q UJ > UJ >- C/J o> o C/) X X UJ 5 UJ 0) te : < C/) < 2 H CD O O) </> UJ Ü QC < 4* P? K ll I I <% "fei 'Q f

z E z * I»! HI UJ LU Q t i G < Q UJ > UJ >- C/J o> o C/) X X UJ 5 UJ 0) te : < C/) < 2 H CD O O) </> UJ Ü QC < 4* P? K ll I I <% fei 'Q f I % 4*? ll I - ü z /) I J (5 /) 2 - / J z Q. J X X J 5 G Q J s J J /J z *" J - LL L Q t-i ' '," ; i-'i S": t : i ) Q "fi 'Q f I»! t i TIS NT IS BST QALITY AVAILABL. T Y FRNIS T TI NTAIN A SIGNIFIANT NBR

More information

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009 Schedule H-6.lb SOUTHWSTRN LCTRIC POWR COMPANY SCHDUL H-6.1b NUCLAR UNIT OUTAG DATA For the Test Year nded March 31, 29 This schedule is not applicable to SVvPCO. 5 Schedule H-6.1 c SOUTHWSTRN LCTRIC POWR

More information

i;\-'i frz q > R>? >tr E*+ [S I z> N g> F 'x sa :r> >,9 T F >= = = I Y E H H>tr iir- g-i I * s I!,i --' - = a trx - H tnz rqx o >.F g< s Ire tr () -s

i;\-'i frz q > R>? >tr E*+ [S I z> N g> F 'x sa :r> >,9 T F >= = = I Y E H H>tr iir- g-i I * s I!,i --' - = a trx - H tnz rqx o >.F g< s Ire tr () -s 5 C /? >9 T > ; '. ; J ' ' J. \ ;\' \.> ). L; c\ u ( (J ) \ 1 ) : C ) (... >\ > 9 e!) T C). '1!\ /_ \ '\ ' > 9 C > 9.' \( T Z > 9 > 5 P + 9 9 ) :> : + (. \ z : ) z cf C : u 9 ( :!z! Z c (! $ f 1 :.1 f.

More information

PHYS 232 QUIZ minutes.

PHYS 232 QUIZ minutes. / PHYS 232 QUIZ 1 02-18-2005 50 minutes. This quiz has 3 questions. Please show all your work. If your final answer is not correct, you will get partial credit based on your work shown. You are allowed

More information

r(j) -::::.- --X U.;,..;...-h_D_Vl_5_ :;;2.. Name: ~s'~o--=-i Class; Date: ID: A

r(j) -::::.- --X U.;,..;...-h_D_Vl_5_ :;;2.. Name: ~s'~o--=-i Class; Date: ID: A Name: ~s'~o--=-i Class; Date: U.;,..;...-h_D_Vl_5 _ MAC 2233 Chapter 4 Review for the test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the derivative

More information

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th n r t d n 20 2 :24 T P bl D n, l d t z d http:.h th tr t. r pd l 4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n

More information

. Choose 4 out of 5 problems. Use an X in the table below to indicate which problem to

. Choose 4 out of 5 problems. Use an X in the table below to indicate which problem to Exam2 April 7, 2003 Page 1 Physics 263: Electromagnetism and Modern Physics Sections0101-0105 Exam 2 Prof JJ Kelly nstructions:. This is a closed book, closed notes exam to be completed in 50 minutes.

More information

o ri fr \ jr~ ^: *^ vlj o^ f?: ** s;: 2 * i i H-: 2 ~ " ^ o ^ * n 9 C"r * ^, ' 1 ^5' , > ^ t g- S T ^ r. L o n * * S* * w 3 ** ~ 4O O.

o ri fr \ jr~ ^: *^ vlj o^ f?: ** s;: 2 * i i H-: 2 ~  ^ o ^ * n 9 Cr * ^, ' 1 ^5' , > ^ t g- S T ^ r. L o n * * S* * w 3 ** ~ 4O O. THE PENALTY FR MAKING A FALSE STATEMENT IN THIS REPRT AND/R CERTIFICATE IS S5. R SIX MNTHS IMPRISNMENT R BTH "D "? y. " cr TJ Xl^ " Q. rt 5' "g s r ^.. C i :? S :.. y ' : s s ^ST (X. I ^^ ^ ^ S : t ^ :

More information

H NT Z N RT L 0 4 n f lt r h v d lt n r n, h p l," "Fl d nd fl d " ( n l d n l tr l t nt r t t n t nt t nt n fr n nl, th t l n r tr t nt. r d n f d rd n t th nd r nt r d t n th t th n r lth h v b n f

More information

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th n r t d n 20 0 : T P bl D n, l d t z d http:.h th tr t. r pd l 46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l

More information

WALL D*TA PRINT-OUT. 3 nmth ZONE

WALL D*TA PRINT-OUT. 3 nmth ZONE T A B L E A 4. 3 G L A S S D A T A P R I N T - O U T H T C L».>qth» H e ig h t n u «b»r C L A S S D A T A P R I N T O U T it************************************ 1*q o v»rh # n g recm oi*ion*l orient n

More information

Geometry Chapter 8: Area Review PA Anchors: A3; B2; Cl. .1.t+~4 -~-J. ""T... Sl. J":..2.l.. -+-Jw. A =- A(~)'" ~ A :..!w-l-~

Geometry Chapter 8: Area Review PA Anchors: A3; B2; Cl. .1.t+~4 -~-J. T... Sl. J:..2.l.. -+-Jw. A =- A(~)' ~ A :..!w-l-~ Geometry Chapter 8: Area Review PA Anchors: A3; B2; Cl 1. Find the missing value given BCDA is a rectangle. Perimeter = 62 cm Area =? V:. d.t-\" ~vj B.--- ---,c 17 em ~ J. ':. ~). -:: - '0..., rj ~ -;:,

More information

l I I I I I Mechanics M 1 Advanced/ Advanced Subsidiary Pearson Edexcel P46705A II II I I I I II PEARSON

l I I I I I Mechanics M 1 Advanced/ Advanced Subsidiary Pearson Edexcel P46705A II II I I I I II PEARSON Write your name here Su rn ame Other names Pearson Edexcel nternational Advanced Level r Centre Number l Mechanics M 1 Advanced/ Advanced Subsidiary Candidate Number "' Wednesday 8 June 2016 Morning Time:

More information

o C *$ go ! b», S AT? g (i * ^ fc fa fa U - S 8 += C fl o.2h 2 fl 'fl O ' 0> fl l-h cvo *, &! 5 a o3 a; O g 02 QJ 01 fls g! r«'-fl O fl s- ccco

o C *$ go ! b», S AT? g (i * ^ fc fa fa U - S 8 += C fl o.2h 2 fl 'fl O ' 0> fl l-h cvo *, &! 5 a o3 a; O g 02 QJ 01 fls g! r«'-fl O fl s- ccco > p >>>> ft^. 2 Tble f Generl rdnes. t^-t - +«0 -P k*ph? -- i t t i S i-h l -H i-h -d. *- e Stf H2 t s - ^ d - 'Ct? "fi p= + V t r & ^ C d Si d n. M. s - W ^ m» H ft ^.2. S'Sll-pl e Cl h /~v S s, -P s'l

More information

Inverse Iteration on Defective Matrices*

Inverse Iteration on Defective Matrices* MATHEMATICS OF COMPUTATION, VOLUME 31, NUMBER 139 JULY 1977, PAGES 726-732 Inverse Iteration on Defective Matrices* By Nai-fu Chen Abstract. Very often, inverse iteration is used with shifts to accelerate

More information

2.' -4-5 I fo. - /30 + ;3, x + G: ~ / ~ ) ~ ov. Fd'r evt.'i') cutckf' ()y\e.._o OYLt dtt:vl. t'"'i ~ _) y =.5_21/2-+. 8"'- 2.

2.' -4-5 I fo. - /30 + ;3, x + G: ~ / ~ ) ~ ov. Fd'r evt.'i') cutckf' ()y\e.._o OYLt dtt:vl. t''i ~ _) y =.5_21/2-+. 8'- 2. Statistics 100 Sample FINAL Instructions: I. WORK ALL PROBLEMS. Please, give details and explanations and SHOW ALL YOUR WORK so that partial credits can be given. 2. You may use four pages of notes, tables

More information

> DC < D CO LU > Z> CJ LU

> DC < D CO LU > Z> CJ LU C C FNS TCNCAL NFRMATN CNTR [itpfttiiknirike?fi-'.;t C'JM.V TC hs determined n \ _\}. L\\ tht this Technicl cment hs the istribtin Sttement checked belw. The crnt distribtin fr this dcment cn be telind

More information

ON THE DENSITY OF SOME SEQUENCES OF INTEGERS P. ERDOS

ON THE DENSITY OF SOME SEQUENCES OF INTEGERS P. ERDOS ON THE DENSITY OF SOME SEQUENCES OF INTEGERS P. ERDOS Let ai

More information

NO-Sl~l 966 RN INTERPRETiTION OF THE 02 AMGR ELECTRON SPECTRUNl(U) 1/1

NO-Sl~l 966 RN INTERPRETiTION OF THE 02 AMGR ELECTRON SPECTRUNl(U) 1/1 NOSl~l 966 RN INTERPRETiTION OF THE 02 AMGR ELETRON SPETRUNl(U) 1/1 MRSHINGTON UNIV MRSHINOTON D DEPT OF HEMISTRY UNSSIIEDH SANDE ET AL. OT 95 TR2S NSSSI4BSK9852 FO74 N 1 tgeorge UASIIE G? N L L. Q.. 1111111

More information

Nrer/ \f l xeaoe Rx RxyrZH IABXAP.qAATTAJI xvbbqaat KOMnAHT1. rvfiqgrrox 3Axl4 Pn br H esep fiyraap: qa/oq YnaaH6aarap xor

Nrer/ \f l xeaoe Rx RxyrZH IABXAP.qAATTAJI xvbbqaat KOMnAHT1. rvfiqgrrox 3Axl4 Pn br H esep fiyraap: qa/oq YnaaH6aarap xor 4 e/ f l ee R RyZH BXP.J vbb KOMnH1 vfig 3l4 Pn b H vlun @*,/capn/t eep fiyaap: a/ YnaaH6aaap eneaneee 6ana tyail CaHafiu cafigun 2015 Hu 35 nyaap l'p 6ana4caH "Xe4ee a aylzh abap gaan" XKailH gypeu"uzn

More information

DIAMOND DRILL RECORD

DIAMOND DRILL RECORD iitft'ww!-;" '**!' ^?^S;Ji!JgHj DIAMOND DRILL RECORD Molftflp.'/^ f* -. j * Dtp * ^* * Property '^^^J^ - I/^X/'CA*- Etev, Collar Locatioa..-A^*.-//-^.^ /Z O f* j\. Is!/'. ~O stt^+'r&il, Di turn.....,,,...,.,......

More information

p r * < & *'& ' 6 y S & S f \ ) <» d «~ * c t U * p c ^ 6 *

p r * < & *'& ' 6 y S & S f \ ) <» d «~ * c t U * p c ^ 6 * B. - - F -.. * i r > --------------------------------------------------------------------------- ^ l y ^ & * s ^ C i$ j4 A m A ^ v < ^ 4 ^ - 'C < ^y^-~ r% ^, n y ^, / f/rf O iy r0 ^ C ) - j V L^-**s *-y

More information

ACCELERATED LIFE MODELS WHEN THE STRESS IS NOT CONSTANT

ACCELERATED LIFE MODELS WHEN THE STRESS IS NOT CONSTANT KYBERNETIKA- VOLUME 26 (1990), NUMBER 4 ACCELERATED LIFE MODELS WHEN THE STRESS IS NOT CONSTANT VILIJANDAS BAGDONAVICIUS 1 The concept of a relation functional is defined and the accelerated life models

More information

r 3 > o m > o > z m Z -< Z il r H O O H H i-» 00 a o x3 X M > I- > 1 n 0) l' 1

r 3 > o m > o > z m Z -< Z il r H O O H H i-» 00 a o x3 X M > I- > 1 n 0) l' 1 7J 73 Z -) r a c -< 0-73 - -0 -< C 73 FLE N. UC08-25454S - c X - a 0 TJ 0 TB - ;w - 70 () < r 3 a r w r r r Ō Z c a Z. < 7 C B D - -< a r Z J < r < < 70 TJ "s w 3 0 D < 70 -) 7) 0 TJ!! -( Z X - r 7) 77

More information

Ed H. H w H Ed. en 2: Ed. o o o z. o o. Q Ed. Ed Q to. PQ in o c3 o o. Ed P5 H Z. < u z. Ed H H Z O H U Z. > to. <! Ed Q. < Ed > Es.

Ed H. H w H Ed. en 2: Ed. o o o z. o o. Q Ed. Ed Q to. PQ in o c3 o o. Ed P5 H Z. < u z. Ed H H Z O H U Z. > to. <! Ed Q. < Ed > Es. d n 2: d t d t d! d d 52 d t d d P in t d. d P5 d - d d , d P il 0) m d p P p x d d n N r -^ T) n «n - P & J (N 0 ' 4 «"«5 -» % «D *5JD V 9 * * /J -2.2 " ^ 0 n 0) - P - i- 0) G V V - 1(2). i 1 1 & i '

More information

YORK UNIVERSITY. Faculty of Science and Engineering Faculty of Liberal Arts and Professional Studies MATH A Test #2.

YORK UNIVERSITY. Faculty of Science and Engineering Faculty of Liberal Arts and Professional Studies MATH A Test #2. YORK UNIVERSITY Faculty of Science and Engineering Faculty of Liberal Arts and Professional Studies MATH 317 6. A Test #2 June 27, 212 Surname (print): Given Name: Student No: Signature: INSTRUCTIONS:

More information

fnm 'et Annual Meeting

fnm 'et Annual Meeting UUVtK Ht.t, A 0 8 4 S.. Rittin Nub t, n L Y t U N i, n ' A N n, t\ V n b n k pny' ull N) 0 R Z A L A V N U X N S N R N R H A V N U R A P A R K A L A N Y Buin Add. N. Stt ity wn / Pvin) Ali l) lil tal?l

More information

Math Assignment. Dylan Zwick. Spring Section 1.2-1, 6, 11, 15, 27, 35, 43 Section Section 1.1-1, 12, 15, 20, 45

Math Assignment. Dylan Zwick. Spring Section 1.2-1, 6, 11, 15, 27, 35, 43 Section Section 1.1-1, 12, 15, 20, 45 Math 2280 - Assignment 1 Dylan Zwick Spring 201 Section 1.1-1, 12, 15, 20, 45 Section 1.2-1, 6, 11, 15, 27, 5, 4 Section 1. - 1, 6, 9, 11, 15, 21, 29 1 Section 1.1 - Differential Equations and Mathe matical

More information

A CONVEXITY CONDITION IN BANACH SPACES AND THE STRONG LAW OF LARGE NUMBERS1

A CONVEXITY CONDITION IN BANACH SPACES AND THE STRONG LAW OF LARGE NUMBERS1 A CONVEXITY CONDITION IN BANACH SPACES AND THE STRONG LAW OF LARGE NUMBERS1 ANATOLE BECK Introduction. The strong law of large numbers can be shown under certain hypotheses for random variables which take

More information

zp - 1 = 0 (1) sums Ys = 2: Uk' l+s ' k=o The method of finding the va\ues of these periods is based upon the consideration of the sum

zp - 1 = 0 (1) sums Ys = 2: Uk' l+s ' k=o The method of finding the va\ues of these periods is based upon the consideration of the sum Mathematics. -"On the binomial equation o{ prime degree". By Prof. J. C. KLUYVER. (Communicated at the meeting of April 25. 1925). 1. The roots of the equation zp - 1 = 0 (1) where p is prime. can be expressed

More information

NEW ZEALAND QUALIFICATIONS AUTHORITY MANA TOHU MATAURANGA 0 AOTEAROA. Level 2 Physics, Demonstrate understanding of mechanics

NEW ZEALAND QUALIFICATIONS AUTHORITY MANA TOHU MATAURANGA 0 AOTEAROA. Level 2 Physics, Demonstrate understanding of mechanics L 91171 lllllllllllllllllll _j,.,, NZ~ SUPERVISOR'S NEW ZEALAND QUALIFICATIONS AUTHORITY MANA TOHU MATAURANGA 0 AOTEAROA Level 2 Physics, 2013 91171 Demonstrate understanding of mechanics 2.00 pm Wednesday

More information

(ril"s::lli '*Y, ,dr4{n. w.j. ",;:ii:{..._, I i,ai I. AOEP'IIICKOTO MyHI4TIUIIA.JTbHO O PAI,rOrrA nepmckoto KpA.fl TIOCTAHOBJTEHPIE

(rils::lli '*Y, ,dr4{n. w.j. ,;:ii:{..._, I i,ai I. AOEP'IIICKOTO MyHI4TIUIIA.JTbHO O PAI,rOrrA nepmckoto KpA.fl TIOCTAHOBJTEHPIE '*Y w.j TOCTOBJTEPE.MCTPU{ OEP'CKOTO MyTU.JTbO O PrOrr EPMCKOTO Kp.fl 26.02.20t3 e387 -l fo uecet Meellf [epe.rer 3eMeJrbbr ycrkb rrperr3ebr r pecrbjreg MferbM cembfl Mr ytbeprme r ctbjrerrem MrcTpr r

More information

'5E _ -- -=:... --!... L og...

'5E _ -- -=:... --!... L og... F U T U R E O F E M B E D D I N G A N D F A N - O U T T E C H N O L O G I E S R a o T u m m a l a, P h. D ; V e n k y S u n d a r a m, P h. D ; P u l u g u r t h a M. R a j, P h. D ; V a n e s s a S m

More information

THE STRUCTURE OF MULTIVARIATE POISSON DISTRIBUTION

THE STRUCTURE OF MULTIVARIATE POISSON DISTRIBUTION K KAWAMURA KODAI MATH J 2 (1979), 337-345 THE STRUCTURE OF MULTIVARIATE POISSON DISTRIBUTION BY KAZUTOMO KAWAMURA Summary In this paper we shall derive a multivariate Poisson distribution and we shall

More information

ON THE NUMBER OF NIVEN NUMBERS UP TO

ON THE NUMBER OF NIVEN NUMBERS UP TO ON THE NUMBER OF NIVEN NUMBERS UP TO Jean-Marie DeKoninck 1 D partement de Math matiques et de statistique, University Laval, Quebec G1K 7P4, Canada e-mail: jmdk@mat.ulaval.ca Nicolas Doyon Departement

More information

\-. [)fe-~ LDO ~ (puct)

\-. [)fe-~ LDO ~ (puct) t Co A) \" (2.() L-- ~ C-H tv Y($ U I:!""S \-. [)fe-~ LDO ~ (puct) f) f re-aj vs e---b UJ1,\1-+ s I' e-pp /L M~")Il (U 2 ( C:1-C~e=-D-,-em P {tp c.vq _ 0~lj 1 Feec -t> A--cX:..- (J2),u 'HU>L - ~ DS\ u>

More information

-r IdfJ (r-lc) / f\&() + Q sz r I~ (Y\(,J /I\q) +- fy\17. ~~/VL ~ V\ ("I) -:: f\(") e-rn~>,/'(-

-r IdfJ (r-lc) / f\&() + Q sz r I~ (Y\(,J /I\q) +- fy\17. ~~/VL ~ V\ (I) -:: f\() e-rn~>,/'(- 1. Consider a dilute gas of particles in the atmosphere. Near the earth's surface, the force on a particle of mass m may be taken as a constant, F = -mgj, where J is a unit vector in the vertical direction.

More information

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia Commun. Theor. Phys. (Beijing, China) 43 (005) pp. 709 718 c International Academic Publishers Vol. 43, No. 4, April 15, 005 Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

More information

conventions and notation

conventions and notation Ph95a lecture notes, //0 The Bloch Equations A quick review of spin- conventions and notation The quantum state of a spin- particle is represented by a vector in a two-dimensional complex Hilbert space

More information

Limits and Continuity. 2 lim. x x x 3. lim x. lim. sinq. 5. Find the horizontal asymptote (s) of. Summer Packet AP Calculus BC Page 4

Limits and Continuity. 2 lim. x x x 3. lim x. lim. sinq. 5. Find the horizontal asymptote (s) of. Summer Packet AP Calculus BC Page 4 Limits and Continuity t+ 1. lim t - t + 4. lim x x x x + - 9-18 x-. lim x 0 4-x- x 4. sinq lim - q q 5. Find the horizontal asymptote (s) of 7x-18 f ( x) = x+ 8 Summer Packet AP Calculus BC Page 4 6. x

More information

CMSC427 Parametric curves: Hermite, Catmull-Rom, Bezier

CMSC427 Parametric curves: Hermite, Catmull-Rom, Bezier CMSC427 Parametric curves: Hermite, Catmull-Rom, Bezier Modeling Creating 3D objects How to construct complicated surfaces? Goal Specify objects with few control points Resulting object should be visually

More information

Port Vintage. Foundry: Onrepeat Types Website: Designer: João Oliveira INTRO PORT VINTAGE REGULAR

Port Vintage. Foundry: Onrepeat Types Website:  Designer: João Oliveira   INTRO PORT VINTAGE REGULAR Port Vintage Foundry: Onrepeat Types Website: http://www.onrepeat.net Designer: João Oliveira Email: hi@onrepeat.net 2 3 63 115 131 139 INTRO PORT VINTAGE REGULAR PORT VINTAGE DECORATED PORT VINTAGE ORNAMENTS

More information

FY 13 TDC Revenue Report 31-Dec-2012

FY 13 TDC Revenue Report 31-Dec-2012 CLLR CNTY TRST TAX RVN CAC January 10, 2013 V-1 Staff Reprts 1 f 18 Budget escriptin und Y 13 Adpted Budget Y 13 (5%) Reserved by Law Y 13 Net Budget Y 13 recast Variance t Y 13 Budget Beach acilities

More information

BOOLEAN ALGEBRAS WITH FEW ENDOMORPHISMS SAHARON SHELAH

BOOLEAN ALGEBRAS WITH FEW ENDOMORPHISMS SAHARON SHELAH proceedings of the american mathematical society Volume 74, Number 1, April 1979 BOOLEAN ALGEBRAS WITH FEW ENDOMORPHISMS SAHARON SHELAH Abstract. Using diamond for N, we construct a Boolean algebra in

More information

4r, o I. >fi. a IE. v atr. ite. a z. a til. o a. o o. 0..c. E lrl .',,# View thousands of Crane Specifications on FreeCraneSpecs.

4r, o I. >fi. a IE. v atr. ite. a z. a til. o a. o o. 0..c. E lrl .',,# View thousands of Crane Specifications on FreeCraneSpecs. i View husns Crne Speiiins n reecrnespes.m :: :r R: 8 @ il llj v u L u 4r,? >i C) lrl? n R 0&l r'q1 rlr n rrei i 5 n llvvj lv 8 s S llrvvj Sv TT [ > 1 \ l? l:i rg l n - l l. l8 l l 5 l u r l 9? { q i :{r.

More information

Colby College Catalogue

Colby College Catalogue Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1871 Colby College Catalogue 1871-1872 Colby College Follow this and additional works at: http://digitalcommonscolbyedu/catalogs

More information

Lattice Boltzmann Simulation of Complex Flows II: Applications

Lattice Boltzmann Simulation of Complex Flows II: Applications Lattice Boltzmann Simulation of Flows II: Applications Bodies Dr Giacomo Falcucci, PhD University of Rome Tor Vergata, Via del Politecnico 1, 00100, Italy Outline Bodies 1 2 Reconstruction 3 Problem Statement

More information

Ed S MArket. NarROW } ] T O P [ { U S E R S G U I D E. urrrrrrrrrrrv

Ed S MArket. NarROW } ] T O P [ { U S E R S G U I D E. urrrrrrrrrrrv Ed S MArket NarROW Q urrrrrrrrrrrv } ] T O P [ { U S E R S G U I D E QUALITY U op e nt y p e fa q: For information on how to access the swashes and alternates, visit LauraWorthingtonType.com/faqs All operating

More information

{n 2 } of {n) such that n = rii+n is an {n-l}, the Vf-i^2 is a {r-l} in {r}, for T=T' + T" + 2. Hence, we have.

{n 2 } of {n) such that n = rii+n is an {n-l}, the Vf-i^2 is a {r-l} in {r}, for T=T' + T + 2. Hence, we have. i93o.] GENERALIZED DIVISION ALGEBRAS 535 {n 2 } of {n) such that n = rii+n 2 + 2 is an {n-l}, the Vf-i^2 is a {r-l} in {r}, for T=T' + T" + 2. Hence, we have or N - k + 2 = 1, iv = * 1, which was to be

More information

Table of C on t en t s Global Campus 21 in N umbe r s R e g ional Capac it y D e v e lopme nt in E-L e ar ning Structure a n d C o m p o n en ts R ea

Table of C on t en t s Global Campus 21 in N umbe r s R e g ional Capac it y D e v e lopme nt in E-L e ar ning Structure a n d C o m p o n en ts R ea G Blended L ea r ni ng P r o g r a m R eg i o na l C a p a c i t y D ev elo p m ent i n E -L ea r ni ng H R K C r o s s o r d e r u c a t i o n a n d v e l o p m e n t C o p e r a t i o n 3 0 6 0 7 0 5

More information

> ", A " "<n. :-t. 'O "" (l, -...I. c-j "';> \ J, \l\ , iy-j: "a-j C 'C) \.,S \\ \ /tv '-> .,,J c,. <tt .

> , A  <n. :-t. 'O  (l, -...I. c-j ';> \ J, \l\ , iy-j: a-j C 'C) \.,S \\ \ /tv '-> .,,J c,. <tt . ~ l' '" >. 1.... A " '.",... ".,,J c,..$ < 4S' .,. r 1 """..,. 3.3 3 "" "",.. Q?., 0... < Jt... 2

More information

INSTRUCTIONS: Exam III. November 10, 1999 Lab Section

INSTRUCTIONS: Exam III. November 10, 1999 Lab Section CHEM 1215 Exam III John III. Gelder November 10, 1999 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 7 different pages. The last page includes a periodic table and

More information

r;-7~-~13~-1 81t: Group Meaning TE form 1. h-l)' I) i-t ( )- 2. C1)h.i-t ( )- 3. \\~ i-t ( )- 4. ch I) i -t ( )- 5. i?

r;-7~-~13~-1 81t: Group Meaning TE form 1. h-l)' I) i-t ( )- 2. C1)h.i-t ( )- 3. \\~ i-t ( )- 4. ch I) i -t ( )- 5. i? 1B 4 "'_"1 i. 7 F---.::.~/ 1-,.. - 8*~1 ;g llfr:.' v --itt r;-7~-~13~-1 81t: 1. Write G 1 for Group 1 verbs, G2 for Group 2 verbs and IR for irregular verbs in the first blank. Then write the English meanings

More information

SUFFICIENT CONDITIONS FOR THE CONVERGENCE OF NEWTON'S METHOD IN COMPLEX BANACH SPACES1

SUFFICIENT CONDITIONS FOR THE CONVERGENCE OF NEWTON'S METHOD IN COMPLEX BANACH SPACES1 SUFFICIENT CONDITIONS FOR THE CONVERGENCE OF NEWTON'S METHOD IN COMPLEX BANACH SPACES1 MARVIN L. STEIN 1. Introduction. Let T(y) be an operator defined on a Banach space Y into another such space and let

More information

Exam 3 Review Questions

Exam 3 Review Questions Exam 3 Review Page 1 of Exam 3 Review Questions 8. Spring 9 Question 1 Which of the following expressions could be a valid representation of the E and B fields in an electromagnetic wave? (Remember that

More information

Formulation of Finite Element Matrices

Formulation of Finite Element Matrices Topic 6 Formulation of Finite Element Matrices Contents: Summary of principle of virtual work equations in total and updated Lagrangian formulations Deformation-independent and deformation-dependent loading

More information

Excited states and tp propagator for fermions

Excited states and tp propagator for fermions Excited states and tp propagator for fermions So far sp propagator gave access to E 0 Ground-state energy and all expectation values of 1-body operators E +1 Energies in +1 relative to ground state n E0

More information

Snork Synthesis Lab Lab Directions

Snork Synthesis Lab Lab Directions Snork Synthesis Lab Lab Directions This activity, modified from the original at The Biology Corner, will help you practice your understanding of protein synthesis. Submit your lab answers according to

More information

CS100: DISCRETE STRUCTURES. Lecture 3 Matrices Ch 3 Pages:

CS100: DISCRETE STRUCTURES. Lecture 3 Matrices Ch 3 Pages: CS100: DISCRETE STRUCTURES Lecture 3 Matrices Ch 3 Pages: 246-262 Matrices 2 Introduction DEFINITION 1: A matrix is a rectangular array of numbers. A matrix with m rows and n columns is called an m x n

More information

Graphical Evaluation of a Convolution Integral

Graphical Evaluation of a Convolution Integral Graphical Evaluation of a Convolution Integral By T. Mirsepassi 1. Introduction. The analytical expression which defines the response of a linear system to an arbitrary excitation is, in general, in the

More information

Humanistic, and Particularly Classical, Studies as a Preparation for the Law

Humanistic, and Particularly Classical, Studies as a Preparation for the Law University of Michigan Law School University of Michigan Law School Scholarship Repository Articles Faculty Scholarship 1907 Humanistic, and Particularly Classical, Studies as a Preparation for the Law

More information

Fall 2011 CHEM Test 4, Form A

Fall 2011 CHEM Test 4, Form A Fall 2011 CHEM 1110.40413 Test 4, Form A Part I. Multiple Choice: Clearly circle the best answer. (60 pts) Name: 1. The common constituent in all acid solutions is A) H 2 SO 4 B) H 2 C) H + D) OH 2. Which

More information

I I. R E L A T E D W O R K

I I. R E L A T E D W O R K A c c e l e r a t i n g L a r g e S c a l e C e n t r o i d - B a s e d C l u s t e r i n g w i t h L o c a l i t y S e n s i t i v e H a s h i n g R y a n M c C o n v i l l e, X i n C a o, W e i r u L

More information

Reciprocal Mixing: The trouble with oscillators

Reciprocal Mixing: The trouble with oscillators Reciprocal Mixing: The trouble with oscillators Tradeoffs in RX Noise Figure(Sensitivity) Distortion (Linearity) Phase Noise (Aliasing) James Buckwalter Phase Noise Phase noise is the frequency domain

More information

PIERCE EXPANSIONS AND RULES FOR THE DETERMINATION OF LEAP YEARS

PIERCE EXPANSIONS AND RULES FOR THE DETERMINATION OF LEAP YEARS PIERCE EXPASIOS AD RULES FOR THE DETERMIATIO OF LEAP YEARS Jeffrey Shallit Department of Computer Science, University of Waterloo, Waterloo, Ontario, 2L 3G1, Canada shallit@graceland.uwaterloo.ca (Submitted

More information

5 s. 00 S aaaog. 3s a o. gg pq ficfi^pq. So c o. H «o3 g gpq ^fi^ s 03 co -*«10 eo 5^ - 3 d s3.s. as fe«jo. Table of General Ordinances.

5 s. 00 S aaaog. 3s a o. gg pq ficfi^pq. So c o. H «o3 g gpq ^fi^ s 03 co -*«10 eo 5^ - 3 d s3.s. as fe«jo. Table of General Ordinances. 5 s Tble f Generl rinnes. q=! j-j 3 -ri j -s 3s m s3 0,0 0) fife s fert " 7- CN i-l r-l - p D fife s- 3 Ph' h ^q 3 3 (j; fe QtL. S &&X* «««i s PI 0) g #r

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2017/18 Part 2: Direct Methods PD Dr.

More information

SMOOTHNESS OF FUNCTIONS GENERATED BY RIESZ PRODUCTS

SMOOTHNESS OF FUNCTIONS GENERATED BY RIESZ PRODUCTS SMOOTHNESS OF FUNCTIONS GENERATED BY RIESZ PRODUCTS PETER L. DUREN Riesz products are a useful apparatus for constructing singular functions with special properties. They have been an important source

More information

Elementary Number Theory II

Elementary Number Theory II Elementary Number Theory II CIS002-2 Computational Alegrba and Number Theory David Goodwin david.goodwin@perisic.com 09:00, Tuesday 1 st November 2011 Contents 1 Divisibility Euclid s Algorithm & Bezout

More information

ALLEN. Pre Nurture & Career Foundation Division For Class 6th to 10th, NTSE & Olympiads. å 7 3 REGIONAL MATHEMATICAL OLYMPIAD-2017 SOLUTION

ALLEN. Pre Nurture & Career Foundation Division For Class 6th to 10th, NTSE & Olympiads. å 7 3 REGIONAL MATHEMATICAL OLYMPIAD-2017 SOLUTION For Class 6th to 0th, NTSE & Olympiads REGIONAL MATHEMATICAL OLYMPIAD-07. Let AOB be a given angle less than 80 and let P be an interior point of the angular region determined by ÐAOB. Show, with proof,

More information

Ú Bruguieres, A. Virelizier, A. [4] Á «Î µà Monoidal

Ú Bruguieres, A. Virelizier, A. [4] Á «Î µà Monoidal 40 2 Æ Vol.40, No.2 2011 4 ADVANCES IN MATHEMATICS April, 2011 273165) T- ÆÖ Ñ Ó 1,, 2 (1. È Ä È 832003; 2. È Ä È Ì. ½ A- (coring) T- (comonad) ( ± A º ¼ T º (monad)).» ³¹ (firm) µ ³ Frobenius ² ¾ ³ ¾

More information

8. Relax and do well.

8. Relax and do well. CHEM 1225 Exam I John I. Gelder February 4, 1999 Name KEY TA's Name Lab Section Please sign your name below to give permission to post your course scores on homework, laboratories and exams. If you do

More information

i of 6. PERFORMING ORG. REPORT NUMBER Approved for public Dtatibuft Unlimited

i of 6. PERFORMING ORG. REPORT NUMBER Approved for public Dtatibuft Unlimited SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) REPORT DOCUMENTATION PAGE READ INSTRUCTIONS BEFORE COMPLETING FORM I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER WP-MDSGA-65-4

More information

GOLDEN SEQUENCES OF MATRICES WITH APPLICATIONS TO FIBONACCI ALGEBRA

GOLDEN SEQUENCES OF MATRICES WITH APPLICATIONS TO FIBONACCI ALGEBRA GOLDEN SEQUENCES OF MATRICES WITH APPLICATIONS TO FIBONACCI ALGEBRA JOSEPH ERCOLANO Baruch College, CUNY, New York, New York 10010 1. INTRODUCTION As is well known, the problem of finding a sequence of

More information

arxiv: v1 [math.pr] 4 Nov 2016

arxiv: v1 [math.pr] 4 Nov 2016 Perturbations of continuous-time Markov chains arxiv:1611.1254v1 [math.pr 4 Nov 216 Pei-Sen Li School of Mathematical Sciences, Beijing Normal University, Beijing 1875, China E-ma: peisenli@ma.bnu.edu.cn

More information

`G 12 */" T A5&2/, ]&>b ; A%/=W, 62 S 35&.1?& S + ( A; 2 ]/0 ; 5 ; L) ( >>S.

`G 12 */ T A5&2/, ]&>b ; A%/=W, 62 S 35&.1?& S + ( A; 2 ]/0 ; 5 ; L) ( >>S. 01(( +,-. ()*) $%&' "#! : : % $& - "#$ :, (!" -&. #0 12 + 34 2567 () *+ '!" #$%& ; 2 "1? + @)&2 A5&2 () 25& 89:2 *2 72, B97I J$K

More information

by Fdruary,2015 It may. kindly be eosured that a copy of deposit slip is supflied to this for All the Principals/HMs,

by Fdruary,2015 It may. kindly be eosured that a copy of deposit slip is supflied to this for All the Principals/HMs, .DBS(B) (10)/2014 3, /l 2' Oi.e he Depy Direr Hiher din Bilpr Diri Bilpr (). Tele phne /x 01978 2228 emil ddhebilpredinil.m '. Ded Bilpr 174001,rr he,. ' i i, lj by drry,201 All he rinipl/hm, Di Bilp"i)

More information

Ëâ,a E :lëë, ËgËEggEËËgË ËiË

Ëâ,a E :lëë, ËgËEggEËËgË ËiË 4 Ë s F Ë3 ËËs *s ôl s{ëaëëëëë {) è) (ll '* ËË Ë Ër rëë s: 5 Ë ËË Ë3s âëëëësëëëë ô r.9 fë;uëë;ëë *Ë =ËfËâ$âË$[Ë$ Ë ËË FêËËËËËrËËËË.Ë:eË*cs srrëf rl $Ël*ËË s66- Ë3 ËËË ËËs.4 Ëâ, :lëë, ËËËËË ËË.Ë $ËFj ËÉË......l"*ÂlÉËËr

More information

THE S 1 -EQUIVARIANT COHOMOLOGY RINGS OF (n k, k) SPRINGER VARIETIES

THE S 1 -EQUIVARIANT COHOMOLOGY RINGS OF (n k, k) SPRINGER VARIETIES Horiguchi, T. Osaka J. Math. 52 (2015), 1051 1062 THE S 1 -EQUIVARIANT COHOMOLOGY RINGS OF (n k, k) SPRINGER VARIETIES TATSUYA HORIGUCHI (Received January 6, 2014, revised July 14, 2014) Abstract The main

More information

SOME PROPERTIES OF THIRD-ORDER RECURRENCE RELATIONS

SOME PROPERTIES OF THIRD-ORDER RECURRENCE RELATIONS SOME PROPERTIES OF THIRD-ORDER RECURRENCE RELATIONS A. G. SHANNON* University of Papua New Guinea, Boroko, T. P. N. G. A. F. HORADAIVS University of New Engl, Armidale, Australia. INTRODUCTION In this

More information

A Survey of Computational Assumptions on Bilinear and Multilinear Maps. Allison Bishop IEX and Columbia University

A Survey of Computational Assumptions on Bilinear and Multilinear Maps. Allison Bishop IEX and Columbia University A Survey of Computational Assumptions on Bilinear and Multilinear Maps Allison Bishop IEX and Columbia University Group Basics There are two kinds of people in this world. Those who like additive group

More information

Min-Guk Seo, Dong-Min Park, Jae-Hoon Lee, Kyong-Hwan Kim, Yonghwan Kim

Min-Guk Seo, Dong-Min Park, Jae-Hoon Lee, Kyong-Hwan Kim, Yonghwan Kim International Research Exchange Meeting of Ship and Ocean Engineering in Osaka, December 1-, Osaka, Japan Comparative Study on Added Resistance Computation Min-Guk Seo, Dong-Min Park, Jae-Hoon Lee, Kyong-Hwan

More information

Music by: Theresa Lee-Whiting. Lyrics by: Rev. Dr. Brolin Parker. Piano. Pno.

Music by: Theresa Lee-Whiting. Lyrics by: Rev. Dr. Brolin Parker. Piano. Pno. A Chistmas Geeting Dab is the life, and sighfully long, which neve has head an angel's song. Dak is the night whose sky.full of space is staless offancy and its pomise of gace. So let the mey bells be

More information

CHEM 130 Exp. 8: Molecular Models

CHEM 130 Exp. 8: Molecular Models CHEM 130 Exp. 8: Molecular Models In this lab, we will learn and practice predicting molecular structures from molecular formulas. The Periodic Table of the Elements IA 1 H IIA IIIA IVA VA VIA VIIA 3 5

More information

NOTE ON GREEN'S THEOREM.

NOTE ON GREEN'S THEOREM. 1915.] NOTE ON GREEN'S THEOREM. 17 NOTE ON GREEN'S THEOREM. BY MR. C. A. EPPERSON. (Read before the American Mathematical Society April 24, 1915.) 1. Introduction, We wish in this paper to extend Green's

More information

AN ARCSINE LAW FOR MARKOV CHAINS

AN ARCSINE LAW FOR MARKOV CHAINS AN ARCSINE LAW FOR MARKOV CHAINS DAVID A. FREEDMAN1 1. Introduction. Suppose {xn} is a sequence of independent, identically distributed random variables with mean 0. Under certain mild assumptions [4],

More information

CE 394K.2 Hydrology. Homework Problem Set #3. Due Thurs March Theoretical study of infiltration at ponding time using Philip's equation

CE 394K.2 Hydrology. Homework Problem Set #3. Due Thurs March Theoretical study of infiltration at ponding time using Philip's equation CE 394K2 Hydrology Homework Problem Set #3 Due Thurs March 29 Problems in "Applied Hydrology" 423 nfiltration by Horton's method 432 nfiltration by Green-Ampt method 443 Ponding time and cumulative infiltration

More information

LA [: :]2- K. [Kt

LA [: :]2- K. [Kt EXPERIMENT17 LA-8 07 ~. t Lewis Structures and Molecular Models MATERIALS AND EQUIPMENT Special equipment: Bail-and-stick molecular model sets DISCUSSION Molecules are stable groups of covalently bonded

More information

HALLELUJAH! from "Messiah" For Four-Part Chorus of Mixed Voices with Piano Accompaniment. Ie -Iu -jab I Hal-Ie

HALLELUJAH! from Messiah For Four-Part Chorus of Mixed Voices with Piano Accompaniment. Ie -Iu -jab I Hal-Ie 2 Go SC*m«Octlt"O No 2020 Allegro J=72 HALLELUJAH! rom "Messiah" For FourPart Chorus o Mixed Voices with Piano Accompaniment GEORGE F'RlDERlC HANDEL \» Hal e lu jab Hal = e u jab Hale lu Jahl Halelujahl

More information

Atomic Positive Linear Maps in Matrix Algebras

Atomic Positive Linear Maps in Matrix Algebras Publ RIMS, Kyoto Univ. 34 (1998), 591-599 Atomic Positive Linear Maps in Matrix Algebras By Kil-Chan HA* Abstract We show that all of the known generalizations of the Choi maps are atomic maps. 1. Introduction

More information

106 70/140H-8 70/140H-8

106 70/140H-8 70/140H-8 7/H- 6 H 7/H- 7 H ffffff ff ff ff ff ff ff ff ff f f f f f f f f f f f ff f f f H 7/H- 7/H- H φφ φφ φφ φφ! H 1 7/H- 7/H- H 1 f f f f f f f f f f f f f f f f f f f f f f f f f f f f f ff ff ff ff φ φ φ

More information

February 17, 2015 REQUEST FOR PROPOSALS. For Columbus Metropolitan Library. Issued by: Purchasing Division 96 S. Grant Ave. Columbus, OH 43215

February 17, 2015 REQUEST FOR PROPOSALS. For Columbus Metropolitan Library. Issued by: Purchasing Division 96 S. Grant Ave. Columbus, OH 43215 F 7, 05 RQU FOR PROPOL P/B & O RFP L 5-006 F L : P D 96 G, OH 435 D : 3, 05 N :00 N (, O L ) W D, P P D, F D : (64) 849-034; F: (64) 849-34 @ RQU FOR PROPOL NRUON L ( L L ) R P ( RFP ) P B P N L 5-006

More information

ON THE CENTER OF THE GROUP OF A LINK

ON THE CENTER OF THE GROUP OF A LINK ON THE CENTER OF THE GROUP OF A LINK KUNIO MURASUGI 1. Introduction. A group G is said to be finitely presented if it has a finite presentation (P, i.e., (P consists of a finite number, «say, of generators

More information