27r---./p. IR.(f)l<=,, l(o) max If(z)l. (1.2) o={z" z= 1/2(u + u-1), u p ei, O<- O <-- 2.a }

Size: px
Start display at page:

Download "27r---./p. IR.(f)l<=,, l(o) max If(z)l. (1.2) o={z" z= 1/2(u + u-1), u p ei, O<- O <-- 2.a }"

Transcription

1 SIAM J. NUMER. ANAL. Vol. 27, No. 1, pp , February Society for Industrial and Applied Mathematics 015 A NOTE ON THE CONTOUR INTEGRAL REPRESENTATION OF THE REMAINDER TERM FOR A GAUSS-CHEBYSHEV QUADRATURE RULE* WALTER GAUTSCHI, E. TYCHOPOULOS, AND R. S. VARGA Abstract. It is shown that the kernel K,,(z), n (even) -> 2, in the contour integral representation of the remainder term of the n-point Gauss formula for the Chebyshev weight function of the second kind, as z varies on the ellipse,={z: e-i, 0<O<27r},= p> 1, assumes its largest modulus on the imaginary axis if p >= p,,+, where z=pei+p- P,,+t is the root of a certain algebraic equation. If < p <P,,+l, the maximum is attained near the imaginary axis within an angular distance less than /(2n + 2). The bounds {P,,+l} decrease monotonically to 1. Key words. Gauss-Chebyshev quadrature, remainder term for analytic functions, kernel of contour integral representation AMS(MOS) subject classification. 65D32 1. We are dealing here with the remainder term R.(f) of the Gaussian quadrature rule for the Chebyshev weight function of the second kind, (1.1) f(t)(1- t) / dt= A<fl>f(r")) + R.(f), --1 u=l where )=cos (ur/(n+ l)), A)= r sin2 (vcr/(n+ l))/(n+ v= l,2, n. We assume that f is analytic inside of, and continuous on, an ellipse (1.2) o={z" z= 1/2(u + u-1), u p ei, O<- O <-- 2.a } with foci at z + 1 and with the sum of the semi-axes equal to p, t9 > 1. The remainder R,,(f) of (1.1) has the form (cf. [1]) (1.3) R, (f) 27r---./p so that f K,,(z)f(z) dz, IR.(f)l<=,, l(o) max If(z)l max IK.(z)l, where l(o) denotes the length of o. Since f(z) and eo are assumed known, the first two terms on the right side of (1.3 ) can be calculated, and our interest then is in determining where on o the kernel K.(z) assumes its maximum modulus. In view of K.() K.(z) and K(-)=-K.(z), the modulus of K. is symmetric with respect to both coordinate axes" (1.4) Thus, consideration may be restricted to the first quarter of, i.e., to the interval 0- < O -<_ 7r/2 in (1.2). * Received by the editors July 25, 1988; accepted for publication January 3, Department of Computer Sciences, Purdue University, West Lafayette, Indiana The work of this author was supported in part by National Science Foundation grant CCR Department of Mathematics, National Technical University, , Athens, Greece. Institute for Computational Mathematics, Kent State University, Kent, Ohio The work of this author was supported by the Air Force Office of Scientific Research. 219

2 220 W. GAUTSCHI, E. TYCHOPOULOS, AND R. S. VARGA It is known that, when n is odd, the maximum of [K,(z) on p is attained on the imaginary axis 1, Thm. 5.2]. It is remarked in [ 1 that when n is even, the maximum "... is attained slightly off the imaginary axis." The purpose of this note is to amplify this statement and make it more precise. Defining (1.5) a=a(p)=1/2(p+p-), j=1,2,3,..., p>l, we will prove, in fact, the following theorem. THEOREM 1. For each positive integer n with n >-2, let p, > 1 be the unique root of (1.6) a,(p)_ 1 (p> 1). a,(p) n Then, if n >- 2 is even, we have (1.7) max [K,(z)[ K, ( (p _p-l)) p- if p>=pn+, \z / i.e., the maximum of [Kn(z)[ on gep, when p >-p+l, is attained on the imaginary axis. If l<p<p+, then the maximum in (1.7) is attained at some z=z*= 1/2(p ei*+ e-i*) p with (n/(n + l))tr/2 < O*< r/2. In Table 1 we display p, for n =2(1)40 to 10 decimal places. Since a(p)/a,(p)<2p/p"=2p -(- for p> 1, putting p=p, we obtain from (1.6) that (1.8) nl/(n-1) < Pn < (2n)1 - o. The next theorem establishes monotonic- This shows, in particular, that p. 1 as n ity of the p. and sharpens the bounds in (1.8). THEOREM 2. The roots p. > 1 of (1.6) satisfy (1.9) p. > p.+ for all n >- 2. Moreover, if A. := (2n) /", and if I., n >-2, is the unique positive root (by Descartes" rule of signs) of (1.10) M.(/x) 0, M,,(/x) :=/x"+l- n(/x2+ 1), then (1.11) h. < p. </z. for all n >-_2. It is easily seen that the bounds in (1.11) are sharper than those in (1.8), except when n 2, in which case the lower bounds are both equal to 2. TABLE The roots p,, > of (1.6). n p,, n p,, n p,, n p,,

3 REMAINDER TERM FOR GAUSS-CHEBYSHEV QUADRATURE 221 The proofs of Theorems 1 and 2 will be given in 3 and 4, respectively. Section 2 contains some auxiliary results. 2. LEMMA 1. For each positive integer n, set sin trr (2.1) q.(o ) := 0<=o--<_ 1, sin ((1 cr)tr/(n + 1)) where o,(1):=lim,lo,(o ). Then o,(o ) increases monotonically from o,(o)=o to o, (1)= n + 1 as tr varies from zero to 1. Proof. Since sin crr sin [(1-tr)Tr], we can write o.(tr) as sin[(n+l)u] (1-tr)Tr o,(tr) where =: so that 0 _-< u _-< r/(n + 1). Furthermore, sin [(n + 1)u] sin u sin u n + 1 U.(x) (cos u=: x), where U,(x) is the Chebyshev polynomial (of the second kind) of degree n. It is well known that U,(x) is increasing from U,(cos(Tr/(n+l)))=O to U,(1)=n+l as x increases from cos (r/(n + 1)) to 1 (hence tr increases from zero to 1), from which the assertions of Lemma 1 follow. LEMMA 2. Let o, be as in Lemma 1, and set (2.2) 0, (o ) := cos o Tr + (n + 1)o (tr) cos 7r 0<tr<l. n+l Then d/,(tr) increases monotonically from,(0)= 1 to $,(1)=(n+1)2-1 as tr varies from zero to 1. Proof The limit values follow directly from the limit values of o. in Lemma 1. Differentiating (2.2), we get 4,;(o)-Trsintrr+q.(tr)sin( 1-7r ) +(n+ 1)o (r) cos (ln_tr) n+l 1 sin o er + r sin o-- + (n + 1 q (o ) cos 1 r =(n+ 1)q;(o-) cos which is positive by Lemma 1. [3 (3.1) (3.2) Proof of Theorem 1. From 1, eq. (5.9)] we have (r_,p.+,lk.(z)l)2 a2(p)- cos 20 02n+2(p) COS 2(n+ 1)0 z 1/2(p e + p-1 e-,o) e L" By (1.4), it,suffices to consider 0 -< 0 <-7r/2. Denote.(O) a2- cos 20 a COS 2(n + 1)0

4 222 W. GAUTSCHI, E. TYCHOPOULOS, AND R. S. VARGA where a2, a2n+2 are as defined in (1.5). By symmetry, Let n 7/- (3.4) O,.--- n+12 Since cos 20 -> cos 20, for 0.<= O _-< O,, we have a 2 cos 2 (3.5).(o)_-<.(o.), 0-<o-<o., a,+2-1 where the equality on the right follows from cos 2(n + 1)O, cos ntr 1, since n is even. Differentiating (3.2) gives (3.6) [az,,+-cos2(n+l)o]tc,(o)+t,,(o) 2(n+l)sin2(n+l)O=2sinZO, from which it follows that (azn+-- 1)teen(On) 2 sin 20,, hence (3.7) Letting maxo_<_o=<=/2 t,(o)= t,(o*), we conclude from (3.5) and (3.7) that (3.8) O, < O* _-<-. 2 Differentiating (3.6) once more, and then setting O (3.9) 4 (a2n+2+ 1)to =(n+ 1) 2 a+ 1 azn+2 0, 7r/2, gives 1 (n+ 1) since a2+ 1 2a 2a,+. From the definition of p, (cf. (1.6)) and from the fact that a(p)/a,,+(p) for p > 1 decreases monotonically, we get from (3.9) that (3 10) "(/)0 iffpp.+. If 1 <p <p,+l, i.e., t, (Tr/2) > 0, it is clear from the second relation in (3.3) that O* < r/2 in (3.8), proving the second statement of the theorem. If p => p,+, i.e., tc, (Tr/2)=<0, we now show that (3.11) tc,(a)>0 for O,,<a<- (Opn+l). 2 We introduce the variable r by n A- o- 7r (3.12) O--- 0<o-< 1. n+l 2 Using (n+tr)/(n+ 1)= 1-(1-o-)/(n+ 1), we can rewrite (3.6) in the form a2n +2 cos tr.rr ]:z (3.13) K.(O) a2.+2- (n + 1)a2qn (r) q. (r), 2sin ((1 r)tr/(n + 1)) with qn(tr) and q.(tr) as defined in Lemmas 1 and 2, respectively. By the assumption P => P.+I, which implies a.+ => (n + 1)al, hence 2 a.+z 2an+l l>=2(n+l)a-l=(n+l)2(a:z+l)-l, al 1,

5 REMAINDER TERM FOR GAUSS-CHEBYSHEV QUADRATURE 223 and using Lemmas 1 and 2, we find that the right-hand side of (3.13) is larger than or equal to (n+ 1)2(a + 1)- 1 (n + 1)azq, (o-) q, (or) >(n+l)(a+l)-l-(n+l)az-[(n+l)2-1]=o, Therefore, (O) > 0 for O, < O < 7r/2, showing that 0"= 7r/2 in (3.8). 4. We precede the proof of Theorem 2 with the following lemma. LEMMA 3. With A, and Ix, as defined in Theorem 2, there holds (4.1) A. >/x,+ for all n >= 2. 0<r<l. Proof Since M,(/x), n=>2, in (1.10) has a unique positive zero /x,, and since M,(+c) +c, it is evident that M,+l(/X)> 0 implies /x>/x,+. It suffices, therefore, to show that (4.2) M,+I(A,) > 0 for n-> 2. This is clearly true when n 2, since A. 2 2 and M3(2) 1. We may thus assume that n=>3. We have - M,+l(&,)= A. A-(n+ 1)(2+ 1)=A 2n-(n+ 1)(A+ 1) -(n + l) + (n -1)& 2 I, n log 2n, there follows M,+(A,) -(n + 1)+(n 1) e 2 (n + 1)+(n 1)[1 + 21, + e 2,, -(1 + 21,)] When we write A, e,,, 2[-1 +(n- 1)1,] + (n- 1)[e,. (1 + 21,)]. Here, the expression in the last bracket is clearly positive, and an elementary calculation shows that -l+(n-1)l.=-l+(1-n-) log2n>o if n>=3. Proof of Theorem 2. To establish (1.9), it suffices to prove the inequalities (1.11), since combining them with the inequality in Lemma 3 immediately gives p, > A, > /x,+ > p,+ for all n _-> 2. Now (1.6) is equivalent to (4.3) L,(p) := pzn rip,+,_ np,- + 1 =0. Clearly, L, (by Descartes rule of signs) has at most two positive zeros. Since L,(0) 1, L,(1) 2-2n <0, and L,(+)= +, there are exactly two positive zeros, one in (0, 1) and the other in (1, c). (Because p and p- occur symmetrically in (1.6), one zero is the reciprocal of the other.) The larger of the two, as in Theorem 1, is denoted by We have L,(p) p2,+ pzn-z_pzn-2_ np,-,(p2+ 1)+ 1 p"-( o + ) p"- no"- ( p + ) +, so that the equation in (4.3), after division by p,-.(p2+ 1), can be written in the form n-1 n-1 /9 1 (4.4) P 2 n-1 p2 n. Since L,(p,) 0, dropping the third term on the left of (4.4), we arrive at n--1 Pn n+l 2 p, <n or p, -n(p,+l)<o.

6 224 W. GAUTSCHI, E. TYCHOPOULOS, AND R. S. VARGA In terms of the function M. in (1.10), this says M.(p.) <0, and hence implies the right inequality in (1.11). To prove the left inequality of (1.11), we will show that (4.5) L.(A.) < 0 for all n >- 2. We now express L.(p) from (4.3) as L, (p) 0" 2no no no p + Since I (2n) / e,,, =0 (O -2n)+l+no 2- p+ l n -1 log 2n, this gives L,(I,) 1 + 4n(1 cosh 1,) 1 2nl-4n[cosh 1, 1 -sl]. The expression in brackets, when expanded in Taylor s series, involves only positive terms and hence is positive, while 1-2nl=l-2(log2n)<O for all n_->2. This establishes (4.5) and completes the proof of Theorem 2. REFERENCE W. GAUTSCHI AND R. S. VA,GA, Error bounds for Gaussian quadrature of analytic functions, SIAM J. Numer. Anal., 20 (1983), pp

On the remainder term of Gauss Radau quadratures for analytic functions

On the remainder term of Gauss Radau quadratures for analytic functions Journal of Computational and Applied Mathematics 218 2008) 281 289 www.elsevier.com/locate/cam On the remainder term of Gauss Radau quadratures for analytic functions Gradimir V. Milovanović a,1, Miodrag

More information

MONOTONICITY OF THE ERROR TERM IN GAUSS TURÁN QUADRATURES FOR ANALYTIC FUNCTIONS

MONOTONICITY OF THE ERROR TERM IN GAUSS TURÁN QUADRATURES FOR ANALYTIC FUNCTIONS ANZIAM J. 48(27), 567 581 MONOTONICITY OF THE ERROR TERM IN GAUSS TURÁN QUADRATURES FOR ANALYTIC FUNCTIONS GRADIMIR V. MILOVANOVIĆ 1 and MIODRAG M. SPALEVIĆ 2 (Received March 19, 26) Abstract For Gauss

More information

Math 0230 Calculus 2 Lectures

Math 0230 Calculus 2 Lectures Math 00 Calculus Lectures Chapter 8 Series Numeration of sections corresponds to the text James Stewart, Essential Calculus, Early Transcendentals, Second edition. Section 8. Sequences A sequence is a

More information

Part II NUMERICAL MATHEMATICS

Part II NUMERICAL MATHEMATICS Part II NUMERICAL MATHEMATICS BIT 31 (1991). 438-446. QUADRATURE FORMULAE ON HALF-INFINITE INTERVALS* WALTER GAUTSCHI Department of Computer Sciences, Purdue University, West Lafayette, IN 47907, USA Abstract.

More information

FAMILIES OF ALGEBRAIC TEST EQUATIONS W. GAUTSCHI (I)

FAMILIES OF ALGEBRAIC TEST EQUATIONS W. GAUTSCHI (I) FAMILIES OF ALGEBRAIC TEST EQUATIONS W. GAUTSCHI (I) 1. Introduction. Test matrices have been in use for some time to scrutinize computer algorithms for solving linear algebraic systems and eigenvalue

More information

The Hardy-Littlewood Function: An Exercise in Slowly Convergent Series

The Hardy-Littlewood Function: An Exercise in Slowly Convergent Series The Hardy-Littlewood Function: An Exercise in Slowly Convergent Series Walter Gautschi Department of Computer Sciences Purdue University West Lafayette, IN 4797-66 U.S.A. Dedicated to Olav Njåstad on the

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. 52, 241-250 (1988) Numerische Mathematik 9 Springer-Verlag 1988 Lower Bounds for the Condition Number of Vandermonde Matrices* Walter Gautschi 1,** and Gabriele Inglese e 1 Department of Computer

More information

SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS

SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS SPRING 006 PRELIMINARY EXAMINATION SOLUTIONS 1A. Let G be the subgroup of the free abelian group Z 4 consisting of all integer vectors (x, y, z, w) such that x + 3y + 5z + 7w = 0. (a) Determine a linearly

More information

YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE fa it) On the Jacobi Polynomials PA ' Gregory Matviyenko Research Report YALETJ/DCS/RR-1076 June 13, 1995 DTI,* QUALITY DEFECTED 3 YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE & k.-. *,«.

More information

w = X ^ = ^ ^, (i*i < ix

w = X ^ = ^ ^, (i*i < ix A SUMMATION FORMULA FOR POWER SERIES USING EULERIAN FRACTIONS* Xinghua Wang Math. Department, Zhejiang University, Hangzhou 310028, China Leetsch C. Hsu Math. Institute, Dalian University of Technology,

More information

(1-2) fx\-*f(x)dx = ^^ Z f(x[n)) + R (f), a > - 1,

(1-2) fx\-*f(x)dx = ^^ Z f(x[n)) + R (f), a > - 1, MATHEMATICS OF COMPUTATION, VOLUME 29, NUMBER 129 JANUARY 1975, PAGES 93-99 Nonexistence of Chebyshev-Type Quadratures on Infinite Intervals* By Walter Gautschi Dedicated to D. H. Lehmer on his 10th birthday

More information

Polynomial Functions

Polynomial Functions Polynomial Functions Polynomials A Polynomial in one variable, x, is an expression of the form a n x 0 a 1 x n 1... a n 2 x 2 a n 1 x a n The coefficients represent complex numbers (real or imaginary),

More information

Error Estimates for the Clenshaw-Curtis Quadrature

Error Estimates for the Clenshaw-Curtis Quadrature Error Estimates for the Clenshaw-Curtis Quadrature By M. M. Chawla 1. Introduction. Clenshaw and Curtis [1] have proposed a quadrature scheme based on the "practical" abscissas x cos (iir/n), i = 0(l)n

More information

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1.

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1. MTH4101 CALCULUS II REVISION NOTES 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) 1.1 Introduction Types of numbers (natural, integers, rationals, reals) The need to solve quadratic equations:

More information

INTEGRAL FORMULAS FOR CHEBYSHEV POLYNOMIALS AND THE ERROR TERM OF INTERPOLATORY QUADRATURE FORMULAE FOR ANALYTIC FUNCTIONS

INTEGRAL FORMULAS FOR CHEBYSHEV POLYNOMIALS AND THE ERROR TERM OF INTERPOLATORY QUADRATURE FORMULAE FOR ANALYTIC FUNCTIONS MATHEMATICS OF COMPUTATION Volume 75 Number 255 July 2006 Pages 27 23 S 0025-578(06)0859-X Article electronically published on May 2006 INTEGRAL FORMULAS FOR CHEBYSHEV POLYNOMIALS AND THE ERROR TERM OF

More information

CITY UNIVERSITY LONDON. BEng (Hons) in Electrical and Electronic Engineering PART 2 EXAMINATION. ENGINEERING MATHEMATICS 2 (resit) EX2003

CITY UNIVERSITY LONDON. BEng (Hons) in Electrical and Electronic Engineering PART 2 EXAMINATION. ENGINEERING MATHEMATICS 2 (resit) EX2003 No: CITY UNIVERSITY LONDON BEng (Hons) in Electrical and Electronic Engineering PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2003 Date: August 2004 Time: 3 hours Attempt Five out of EIGHT questions

More information

Let s Get Series(ous)

Let s Get Series(ous) Department of Mathematics, Computer Science, and Statistics Bloomsburg University Bloomsburg, Pennsylvania 785 Let s Get Series(ous) Summary Presenting infinite series can be (used to be) a tedious and

More information

AS PURE MATHS REVISION NOTES

AS PURE MATHS REVISION NOTES AS PURE MATHS REVISION NOTES 1 SURDS A root such as 3 that cannot be written exactly as a fraction is IRRATIONAL An expression that involves irrational roots is in SURD FORM e.g. 2 3 3 + 2 and 3-2 are

More information

10.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1.

10.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1. 10.1 Sequences Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1 Examples: EX1: Find a formula for the general term a n of the sequence,

More information

Chapter 1. Complex Numbers. Dr. Pulak Sahoo

Chapter 1. Complex Numbers. Dr. Pulak Sahoo Chapter 1 Complex Numbers BY Dr. Pulak Sahoo Assistant Professor Department of Mathematics University Of Kalyani West Bengal, India E-mail : sahoopulak1@gmail.com 1 Module-1: Basic Ideas 1 Introduction

More information

1) The line has a slope of ) The line passes through (2, 11) and. 6) r(x) = x + 4. From memory match each equation with its graph.

1) The line has a slope of ) The line passes through (2, 11) and. 6) r(x) = x + 4. From memory match each equation with its graph. Review Test 2 Math 1314 Name Write an equation of the line satisfying the given conditions. Write the answer in standard form. 1) The line has a slope of - 2 7 and contains the point (3, 1). Use the point-slope

More information

Completion Date: Monday February 11, 2008

Completion Date: Monday February 11, 2008 MATH 4 (R) Winter 8 Intermediate Calculus I Solutions to Problem Set #4 Completion Date: Monday February, 8 Department of Mathematical and Statistical Sciences University of Alberta Question. [Sec..9,

More information

H NT Z N RT L 0 4 n f lt r h v d lt n r n, h p l," "Fl d nd fl d " ( n l d n l tr l t nt r t t n t nt t nt n fr n nl, th t l n r tr t nt. r d n f d rd n t th nd r nt r d t n th t th n r lth h v b n f

More information

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method COURSE 7 3. Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method The presence of derivatives in the remainder difficulties in applicability to practical problems

More information

Objective Mathematics

Objective Mathematics Multiple choice questions with ONE correct answer : ( Questions No. 1-5 ) 1. If the equation x n = (x + ) is having exactly three distinct real solutions, then exhaustive set of values of 'n' is given

More information

Homework. Basic properties of real numbers. Adding, subtracting, multiplying and dividing real numbers. Solve one step inequalities with integers.

Homework. Basic properties of real numbers. Adding, subtracting, multiplying and dividing real numbers. Solve one step inequalities with integers. Morgan County School District Re-3 A.P. Calculus August What is the language of algebra? Graphing real numbers. Comparing and ordering real numbers. Finding absolute value. September How do you solve one

More information

Alexander Ostrowski

Alexander Ostrowski Ostrowski p. 1/3 Alexander Ostrowski 1893 1986 Walter Gautschi wxg@cs.purdue.edu Purdue University Ostrowski p. 2/3 Collected Mathematical Papers Volume 1 Determinants Linear Algebra Algebraic Equations

More information

Math 220A Homework 4 Solutions

Math 220A Homework 4 Solutions Math 220A Homework 4 Solutions Jim Agler 26. (# pg. 73 Conway). Prove the assertion made in Proposition 2. (pg. 68) that g is continuous. Solution. We wish to show that if g : [a, b] [c, d] C is a continuous

More information

Polynomial expansions in the Borel region

Polynomial expansions in the Borel region Polynomial expansions in the Borel region By J. T. HURT and L. R. FORD, Rice Institute, Houston, Texas. (Received 22nd August, 1936. Read 6th November, 1936.) This paper deals with certain expansions of

More information

AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period:

AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period: WORKSHEET: Series, Taylor Series AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period: 1 Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.) 1. The

More information

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o u l d a l w a y s b e t a k e n, i n c l u d f o l

More information

Mathematical Induction Assignments

Mathematical Induction Assignments 1 Mathematical Induction Assignments Prove the Following using Principle of Mathematical induction 1) Prove that for any positive integer number n, n 3 + 2 n is divisible by 3 2) Prove that 1 3 + 2 3 +

More information

Simultaneous Gaussian quadrature for Angelesco systems

Simultaneous Gaussian quadrature for Angelesco systems for Angelesco systems 1 KU Leuven, Belgium SANUM March 22, 2016 1 Joint work with Doron Lubinsky Introduced by C.F. Borges in 1994 Introduced by C.F. Borges in 1994 (goes back to Angelesco 1918). Introduced

More information

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 = Chapter 5 Sequences and series 5. Sequences Definition 5. (Sequence). A sequence is a function which is defined on the set N of natural numbers. Since such a function is uniquely determined by its values

More information

INTEGRATION WORKSHOP 2004 COMPLEX ANALYSIS EXERCISES

INTEGRATION WORKSHOP 2004 COMPLEX ANALYSIS EXERCISES INTEGRATION WORKSHOP 2004 COMPLEX ANALYSIS EXERCISES PHILIP FOTH 1. Cauchy s Formula and Cauchy s Theorem 1. Suppose that γ is a piecewise smooth positively ( counterclockwise ) oriented simple closed

More information

A Note on Extended Gaussian Quadrature

A Note on Extended Gaussian Quadrature MATHEMATICS OF COMPUTATION, VOLUME 30, NUMBER 136 OCTOBER 1976, PAGES 812-817 A Note on Extended Gaussian Quadrature Rules By Giovanni Monegato* Abstract. Extended Gaussian quadrature rules of the type

More information

GENERALIZED GAUSS RADAU AND GAUSS LOBATTO FORMULAE

GENERALIZED GAUSS RADAU AND GAUSS LOBATTO FORMULAE BIT 0006-3835/98/3804-0101 $12.00 2000, Vol., No., pp. 1 14 c Swets & Zeitlinger GENERALIZED GAUSS RADAU AND GAUSS LOBATTO FORMULAE WALTER GAUTSCHI 1 1 Department of Computer Sciences, Purdue University,

More information

NAME DATE PERIOD. Power and Radical Functions. New Vocabulary Fill in the blank with the correct term. positive integer.

NAME DATE PERIOD. Power and Radical Functions. New Vocabulary Fill in the blank with the correct term. positive integer. 2-1 Power and Radical Functions What You ll Learn Scan Lesson 2-1. Predict two things that you expect to learn based on the headings and Key Concept box. 1. 2. Lesson 2-1 Active Vocabulary extraneous solution

More information

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd n r t d n 20 20 0 : 0 T P bl D n, l d t z d http:.h th tr t. r pd l 4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n,

More information

AN INEQUALITY OF TURAN TYPE FOR JACOBI POLYNOMIALS

AN INEQUALITY OF TURAN TYPE FOR JACOBI POLYNOMIALS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 32, Number 2, April 1972 AN INEQUALITY OF TURAN TYPE FOR JACOBI POLYNOMIALS GEORGE GASPER Abstract. For Jacobi polynomials P^^Hx), a, ß> 1, let RAX)

More information

Chapter 2 Formulas and Definitions:

Chapter 2 Formulas and Definitions: Chapter 2 Formulas and Definitions: (from 2.1) Definition of Polynomial Function: Let n be a nonnegative integer and let a n,a n 1,...,a 2,a 1,a 0 be real numbers with a n 0. The function given by f (x)

More information

MOMENTS OF THE LIFETIME OF CONDITIONED BROWNIAN MOTION IN CONES BURGESS DAVIS AND BIAO ZHANG. (Communicated by Lawrence F. Gray)

MOMENTS OF THE LIFETIME OF CONDITIONED BROWNIAN MOTION IN CONES BURGESS DAVIS AND BIAO ZHANG. (Communicated by Lawrence F. Gray) proceedings of the american mathematical society Volume 121, Number 3, July 1994 MOMENTS OF THE LIFETIME OF CONDITIONED BROWNIAN MOTION IN CONES BURGESS DAVIS AND BIAO ZHANG (Communicated by Lawrence F.

More information

APPROXIMATION TO REAL IRRATIONALS BY CERTAIN CLASSES OF RATIONAL FRACTIONS 1

APPROXIMATION TO REAL IRRATIONALS BY CERTAIN CLASSES OF RATIONAL FRACTIONS 1 APPROXIMATION TO REAL IRRATIONALS BY CERTAIN CLASSES OF RATIONAL FRACTIONS 1 W. T. SCOTT 1. Introduction. Hurwitz proved that if co is a real irrational number, then the inequality (1) *>-#/?

More information

Review of Power Series

Review of Power Series Review of Power Series MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Introduction In addition to the techniques we have studied so far, we may use power

More information

A NOTE ON RATIONAL OPERATOR MONOTONE FUNCTIONS. Masaru Nagisa. Received May 19, 2014 ; revised April 10, (Ax, x) 0 for all x C n.

A NOTE ON RATIONAL OPERATOR MONOTONE FUNCTIONS. Masaru Nagisa. Received May 19, 2014 ; revised April 10, (Ax, x) 0 for all x C n. Scientiae Mathematicae Japonicae Online, e-014, 145 15 145 A NOTE ON RATIONAL OPERATOR MONOTONE FUNCTIONS Masaru Nagisa Received May 19, 014 ; revised April 10, 014 Abstract. Let f be oeprator monotone

More information

b n x n + b n 1 x n b 1 x + b 0

b n x n + b n 1 x n b 1 x + b 0 Math Partial Fractions Stewart 7.4 Integrating basic rational functions. For a function f(x), we have examined several algebraic methods for finding its indefinite integral (antiderivative) F (x) = f(x)

More information

Mu Sequences and Series Topic Test Solutions FAMAT State Convention 2018

Mu Sequences and Series Topic Test Solutions FAMAT State Convention 2018 . E The first term of the sum has a division by 0 and therefore the entire expression is undefined.. C We can pair off the elements in the sum, 008 008 ( (k + ) + (k + )) = 3. D We can once again pair

More information

Variable-precision recurrence coefficients for nonstandard orthogonal polynomials

Variable-precision recurrence coefficients for nonstandard orthogonal polynomials Numer Algor (29) 52:49 418 DOI 1.17/s1175-9-9283-2 ORIGINAL RESEARCH Variable-precision recurrence coefficients for nonstandard orthogonal polynomials Walter Gautschi Received: 6 January 29 / Accepted:

More information

PRECALCULUS BISHOP KELLY HIGH SCHOOL BOISE, IDAHO. Prepared by Kristina L. Gazdik. March 2005

PRECALCULUS BISHOP KELLY HIGH SCHOOL BOISE, IDAHO. Prepared by Kristina L. Gazdik. March 2005 PRECALCULUS BISHOP KELLY HIGH SCHOOL BOISE, IDAHO Prepared by Kristina L. Gazdik March 2005 1 TABLE OF CONTENTS Course Description.3 Scope and Sequence 4 Content Outlines UNIT I: FUNCTIONS AND THEIR GRAPHS

More information

A NOTE ON THE LOCATION OF CRITICAL POINTS OF POLYNOMIALS

A NOTE ON THE LOCATION OF CRITICAL POINTS OF POLYNOMIALS PROCEEDINGS OF THE AMERICAN MATHEMATICAL Volume 27, No. 2, February 1971 SOCIETY A NOTE ON THE LOCATION OF CRITICAL POINTS OF POLYNOMIALS E. B. SAFF AND J. B. TWOMEY Abstract. Let(P(a, 3) denote the set

More information

SOME FINITE IDENTITIES CONNECTED WITH POISSON'S SUMMATION FORMULA

SOME FINITE IDENTITIES CONNECTED WITH POISSON'S SUMMATION FORMULA SOME FINITE IDENTITIES CONNECTED WITH POISSON'S SUMMATION FORMULA by A. P. GUINAND (Received 1st September 1959) 1. Introduction It is known that there is a connexion between the functional equation of

More information

FINAL EXAM { SOLUTION

FINAL EXAM { SOLUTION United Arab Emirates University ollege of Sciences Department of Mathematical Sciences FINAL EXAM { SOLUTION omplex Analysis I MATH 5 SETION 0 RN 56 9:0 { 0:45 on Monday & Wednesday Date: Wednesday, January

More information

AP Calculus Testbank (Chapter 9) (Mr. Surowski)

AP Calculus Testbank (Chapter 9) (Mr. Surowski) AP Calculus Testbank (Chapter 9) (Mr. Surowski) Part I. Multiple-Choice Questions n 1 1. The series will converge, provided that n 1+p + n + 1 (A) p > 1 (B) p > 2 (C) p >.5 (D) p 0 2. The series

More information

Procedure for Graphing Polynomial Functions

Procedure for Graphing Polynomial Functions Procedure for Graphing Polynomial Functions P(x) = a nx n + a n-1x n-1 + + a 1x + a 0 To graph P(x): As an example, we will examine the following polynomial function: P(x) = 2x 3 3x 2 23x + 12 1. Determine

More information

On the Lebesgue constant of subperiodic trigonometric interpolation

On the Lebesgue constant of subperiodic trigonometric interpolation On the Lebesgue constant of subperiodic trigonometric interpolation Gaspare Da Fies and Marco Vianello November 4, 202 Abstract We solve a recent conjecture, proving that the Lebesgue constant of Chebyshev-like

More information

Proof of the Fermat s Last Theorem

Proof of the Fermat s Last Theorem Proof of the Fermat s Last Theorem Michael Pogorsky mpogorsky@yahoo.com Abstract This is one of the versions of proof of the Theorem developed by means of general algebra based on polynomials ; ; their

More information

8.5 Taylor Polynomials and Taylor Series

8.5 Taylor Polynomials and Taylor Series 8.5. TAYLOR POLYNOMIALS AND TAYLOR SERIES 50 8.5 Taylor Polynomials and Taylor Series Motivating Questions In this section, we strive to understand the ideas generated by the following important questions:

More information

A quadrature rule of interpolatory type for Cauchy integrals

A quadrature rule of interpolatory type for Cauchy integrals Journal of Computational and Applied Mathematics 126 (2000) 207 220 www.elsevier.nl/locate/cam A quadrature rule of interpolatory type for Cauchy integrals Philsu Kim, U. Jin Choi 1 Department of Mathematics,

More information

Part 3.3 Differentiation Taylor Polynomials

Part 3.3 Differentiation Taylor Polynomials Part 3.3 Differentiation 3..3.1 Taylor Polynomials Definition 3.3.1 Taylor 1715 and Maclaurin 1742) If a is a fixed number, and f is a function whose first n derivatives exist at a then the Taylor polynomial

More information

Section Taylor and Maclaurin Series

Section Taylor and Maclaurin Series Section.0 Taylor and Maclaurin Series Ruipeng Shen Feb 5 Taylor and Maclaurin Series Main Goal: How to find a power series representation for a smooth function us assume that a smooth function has a power

More information

Taylor and Maclaurin Series. Copyright Cengage Learning. All rights reserved.

Taylor and Maclaurin Series. Copyright Cengage Learning. All rights reserved. 11.10 Taylor and Maclaurin Series Copyright Cengage Learning. All rights reserved. We start by supposing that f is any function that can be represented by a power series f(x)= c 0 +c 1 (x a)+c 2 (x a)

More information

Extra FP3 past paper - A

Extra FP3 past paper - A Mark schemes for these "Extra FP3" papers at https://mathsmartinthomas.files.wordpress.com/04//extra_fp3_markscheme.pdf Extra FP3 past paper - A More FP3 practice papers, with mark schemes, compiled from

More information

Almost Sure Convergence in Extreme Value Theory

Almost Sure Convergence in Extreme Value Theory Math. Nachr. 190 (1998), 43-50 Almost Sure Convergence in Extreme Value Theory By SHIHONG CHENG of Beijing, LIANG PENG of Rotterdam, and YONGCHENG &I of Beijing (Received April 18, 1995) (Revised Version

More information

1. The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions.

1. The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions. Complex Analysis Qualifying Examination 1 The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions 2 ANALYTIC FUNCTIONS:

More information

or - CHAPTER 7 Applications of Integration Section 7.1 Area of a Region Between Two Curves 1. A= ~2[0- (x :2-6x)] dr=-~2(x 2-6x) dr

or - CHAPTER 7 Applications of Integration Section 7.1 Area of a Region Between Two Curves 1. A= ~2[0- (x :2-6x)] dr=-~2(x 2-6x) dr CHAPTER 7 Applications of Integration Section 7.1 Area of a Region Between Two Curves 1. A= ~[0- (x : 6x)] dr=-~(x 6x) dr 6~ 1356 or - 6. A: ~[(x- 1) 3 -(x-1)]dx 11. [~/3 ( - see x) dx 5- - 3 - I 1 3 5

More information

Worksheet 9. Topics: Taylor series; using Taylor polynomials for approximate computations. Polar coordinates.

Worksheet 9. Topics: Taylor series; using Taylor polynomials for approximate computations. Polar coordinates. ATH 57H Spring 0 Worksheet 9 Topics: Taylor series; using Taylor polynomials for approximate computations. Polar coordinates.. Let f(x) = +x. Find f (00) (0) - the 00th derivative of f at point x = 0.

More information

(2m)-TH MEAN BEHAVIOR OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS UNDER PARAMETRIC PERTURBATIONS

(2m)-TH MEAN BEHAVIOR OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS UNDER PARAMETRIC PERTURBATIONS (2m)-TH MEAN BEHAVIOR OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS UNDER PARAMETRIC PERTURBATIONS Svetlana Janković and Miljana Jovanović Faculty of Science, Department of Mathematics, University

More information

Complex Variables...Review Problems (Residue Calculus Comments)...Fall Initial Draft

Complex Variables...Review Problems (Residue Calculus Comments)...Fall Initial Draft Complex Variables........Review Problems Residue Calculus Comments)........Fall 22 Initial Draft ) Show that the singular point of fz) is a pole; determine its order m and its residue B: a) e 2z )/z 4,

More information

l f t n nd bj t nd x f r t l n nd rr n n th b nd p phl t f l br r. D, lv l, 8. h r t,., 8 6. http://hdl.handle.net/2027/miun.aey7382.0001.001 P bl D n http://www.hathitrust.org/access_use#pd Th r n th

More information

ON BLEIMANN-BUTZER-HAHN OPERATORS FOR EXPONENTIAL FUNCTIONS ULRICH ABEL AND MIRCEA IVAN

ON BLEIMANN-BUTZER-HAHN OPERATORS FOR EXPONENTIAL FUNCTIONS ULRICH ABEL AND MIRCEA IVAN BULL. AUSTRAL. MATH. SOC. VOL. 75 (2007) [409-415] 41A36, 05A19, 05A20 ON BLEIMANN-BUTZER-HAHN OPERATORS FOR EXPONENTIAL FUNCTIONS ULRICH ABEL AND MIRCEA IVAN Some inequalities involving the binomial coefficients

More information

ON UNICITY OF COMPLEX POLYNOMIAL L, -APPROXIMATION ALONG CURVES

ON UNICITY OF COMPLEX POLYNOMIAL L, -APPROXIMATION ALONG CURVES PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 86, Number 3, November 1982 ON UNICITY OF COMPLEX POLYNOMIAL L, -APPROXIMATION ALONG CURVES A. KROÓ Abstract. We study the unicity of best polynomial

More information

ECM Calculus and Geometry. Revision Notes

ECM Calculus and Geometry. Revision Notes ECM1702 - Calculus and Geometry Revision Notes Joshua Byrne Autumn 2011 Contents 1 The Real Numbers 1 1.1 Notation.................................................. 1 1.2 Set Notation...............................................

More information

Error formulas for divided difference expansions and numerical differentiation

Error formulas for divided difference expansions and numerical differentiation Error formulas for divided difference expansions and numerical differentiation Michael S. Floater Abstract: We derive an expression for the remainder in divided difference expansions and use it to give

More information

Solutions, 2004 NCS/MAA TEAM COMPETITION

Solutions, 2004 NCS/MAA TEAM COMPETITION Solutions, 004 NCS/MAA TEAM COMPETITION Each problem number is followed by an 11-tuple (a 10, a 9, a 8, a 7, a 6, a 5, a 4, a 3, a, a 1, a 0 ), where a k is the number of teams that scored k points on

More information

x 2 + 6x 18 x + 2 Name: Class: Date: 1. Find the coordinates of the local extreme of the function y = x 2 4 x.

x 2 + 6x 18 x + 2 Name: Class: Date: 1. Find the coordinates of the local extreme of the function y = x 2 4 x. 1. Find the coordinates of the local extreme of the function y = x 2 4 x. 2. How many local maxima and minima does the polynomial y = 8 x 2 + 7 x + 7 have? 3. How many local maxima and minima does the

More information

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial.

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial. Lecture 3 Usual complex functions MATH-GA 245.00 Complex Variables Polynomials. Construction f : z z is analytic on all of C since its real and imaginary parts satisfy the Cauchy-Riemann relations and

More information

1 Res z k+1 (z c), 0 =

1 Res z k+1 (z c), 0 = 32. COMPLEX ANALYSIS FOR APPLICATIONS Mock Final examination. (Monday June 7..am 2.pm) You may consult your handwritten notes, the book by Gamelin, and the solutions and handouts provided during the Quarter.

More information

3 + 4i 2 + 3i. 3 4i Fig 1b

3 + 4i 2 + 3i. 3 4i Fig 1b The introduction of complex numbers in the 16th century was a natural step in a sequence of extensions of the positive integers, starting with the introduction of negative numbers (to solve equations of

More information

,. *â â > V>V. â ND * 828.

,. *â â > V>V. â ND * 828. BL D,. *â â > V>V Z V L. XX. J N R â J N, 828. LL BL D, D NB R H â ND T. D LL, TR ND, L ND N. * 828. n r t d n 20 2 2 0 : 0 T http: hdl.h ndl.n t 202 dp. 0 02802 68 Th N : l nd r.. N > R, L X. Fn r f,

More information

THE RADICAL OF A NON-ASSOCIATIVE ALGEBRA

THE RADICAL OF A NON-ASSOCIATIVE ALGEBRA THE RADICAL OF A NON-ASSOCIATIVE ALGEBRA A. A. ALBERT 1. Introduction. An algebra 21 is said to be nilpotent of index r if every product of r quantities of 21 is zero, and is said to be a zero algebra

More information

On Some Estimates of the Remainder in Taylor s Formula

On Some Estimates of the Remainder in Taylor s Formula Journal of Mathematical Analysis and Applications 263, 246 263 (2) doi:.6/jmaa.2.7622, available online at http://www.idealibrary.com on On Some Estimates of the Remainder in Taylor s Formula G. A. Anastassiou

More information

King Fahd University of Petroleum and Minerals Prep-Year Math Program Math Term 161 Recitation (R1, R2)

King Fahd University of Petroleum and Minerals Prep-Year Math Program Math Term 161 Recitation (R1, R2) Math 001 - Term 161 Recitation (R1, R) Question 1: How many rational and irrational numbers are possible between 0 and 1? (a) 1 (b) Finite (c) 0 (d) Infinite (e) Question : A will contain how many elements

More information

Elementary linear algebra

Elementary linear algebra Chapter 1 Elementary linear algebra 1.1 Vector spaces Vector spaces owe their importance to the fact that so many models arising in the solutions of specific problems turn out to be vector spaces. The

More information

Symmetric polynomials and symmetric mean inequalities

Symmetric polynomials and symmetric mean inequalities Symmetric polynomials and symmetric mean inequalities Karl Mahlburg Department of Mathematics Louisiana State University Baton Rouge, LA 70803, U.S.A. mahlburg@math.lsu.edu Clifford Smyth Department of

More information

March Algebra 2 Question 1. March Algebra 2 Question 1

March Algebra 2 Question 1. March Algebra 2 Question 1 March Algebra 2 Question 1 If the statement is always true for the domain, assign that part a 3. If it is sometimes true, assign it a 2. If it is never true, assign it a 1. Your answer for this question

More information

E.J. Barbeau. Polynomials. With 36 Illustrations. Springer

E.J. Barbeau. Polynomials. With 36 Illustrations. Springer E.J. Barbeau Polynomials With 36 Illustrations Springer Contents Preface Acknowledgment of Problem Sources vii xiii 1 Fundamentals 1 /l.l The Anatomy of a Polynomial of a Single Variable 1 1.1.5 Multiplication

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson JUST THE MATHS UNIT NUMBER.5 DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) by A.J.Hobson.5. Maclaurin s series.5. Standard series.5.3 Taylor s series.5.4 Exercises.5.5 Answers to exercises

More information

1 Solving equations 1.1 Kick off with CAS 1. Polynomials 1. Trigonometric symmetry properties 1.4 Trigonometric equations and general solutions 1.5 Literal and simultaneous equations 1.6 Review 1.1 Kick

More information

A. Incorrect! Apply the rational root test to determine if any rational roots exist.

A. Incorrect! Apply the rational root test to determine if any rational roots exist. College Algebra - Problem Drill 13: Zeros of Polynomial Functions No. 1 of 10 1. Determine which statement is true given f() = 3 + 4. A. f() is irreducible. B. f() has no real roots. C. There is a root

More information

MAE 545: Lecture 4 (9/29) Statistical mechanics of proteins

MAE 545: Lecture 4 (9/29) Statistical mechanics of proteins MAE 545: Lecture 4 (9/29) Statistical mechanics of proteins Ideal freely jointed chain N identical unstretchable links (Kuhn segments) of length a with freely rotating joints ~r 2 a ~r ~R ~r N In first

More information

Reading Mathematical Expressions & Arithmetic Operations Expression Reads Note

Reading Mathematical Expressions & Arithmetic Operations Expression Reads Note Math 001 - Term 171 Reading Mathematical Expressions & Arithmetic Operations Expression Reads Note x A x belongs to A,x is in A Between an element and a set. A B A is a subset of B Between two sets. φ

More information

A Note on the Recursive Calculation of Incomplete Gamma Functions

A Note on the Recursive Calculation of Incomplete Gamma Functions A Note on the Recursive Calculation of Incomplete Gamma Functions WALTER GAUTSCHI Purdue University It is known that the recurrence relation for incomplete gamma functions a n, x, 0 a 1, n 0,1,2,..., when

More information

Algebra. Pang-Cheng, Wu. January 22, 2016

Algebra. Pang-Cheng, Wu. January 22, 2016 Algebra Pang-Cheng, Wu January 22, 2016 Abstract For preparing competitions, one should focus on some techniques and important theorems. This time, I want to talk about a method for solving inequality

More information

Higher-order ordinary differential equations

Higher-order ordinary differential equations Higher-order ordinary differential equations 1 A linear ODE of general order n has the form a n (x) dn y dx n +a n 1(x) dn 1 y dx n 1 + +a 1(x) dy dx +a 0(x)y = f(x). If f(x) = 0 then the equation is called

More information

AP Calculus Chapter 9: Infinite Series

AP Calculus Chapter 9: Infinite Series AP Calculus Chapter 9: Infinite Series 9. Sequences a, a 2, a 3, a 4, a 5,... Sequence: A function whose domain is the set of positive integers n = 2 3 4 a n = a a 2 a 3 a 4 terms of the sequence Begin

More information

Chapter 11 - Sequences and Series

Chapter 11 - Sequences and Series Calculus and Analytic Geometry II Chapter - Sequences and Series. Sequences Definition. A sequence is a list of numbers written in a definite order, We call a n the general term of the sequence. {a, a

More information

Math 370 Semester Review Name

Math 370 Semester Review Name Math 370 Semester Review Name These problems will give you an idea of what may be included on the final exam. Don't worry! The final exam will not be this long! 1) State the following theorems: (a) Remainder

More information

Numerische MathemalJk

Numerische MathemalJk Numer. Math. 44, 53-6 (1984) Numerische MathemalJk 9 Springer-Verlag 1984 Discrete Approximations to Spherically Symmetric Distributions* Dedicated to Fritz Bauer on the occasion of his 6th birthday Walter

More information

Optimal global rates of convergence for interpolation problems with random design

Optimal global rates of convergence for interpolation problems with random design Optimal global rates of convergence for interpolation problems with random design Michael Kohler 1 and Adam Krzyżak 2, 1 Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstr. 7, 64289

More information

Rational Trigonometry. Rational Trigonometry

Rational Trigonometry. Rational Trigonometry There are an infinite number of points on the unit circle whose coordinates are each rational numbers. Indeed every Pythagorean triple gives one! 3 65 64 65 7 5 4 5 03 445 396 445 3 4 5 5 75 373 5 373

More information