Chapter 7. Neural Networks

Size: px
Start display at page:

Download "Chapter 7. Neural Networks"

Transcription

1 Chapter 7. Neural Netwrks Wei Pan Divisin f Bistatistics, Schl f Public Health, University f Minnesta, Minneaplis, MN weip@bistat.umn.edu PubH 7475/8475 c Wei Pan

2 Intrductin Chapter 11. nly fcus n Feedfrward NNs. Related t prjectin pursuit regressin: f (x) = M m=1 g m(w mx), where each w m is a vectr f weights and g m is a smth nnparametric functin; t be estimated. really? Here: + CNN; but n recurrent NNs (fr seq data), autencders (unsupervised),... Gdfellw, Bengi, Curville (2016). Deep Learning. Tw high waves in 1960s and late 1980s-90s. McCullch & Pitts mdel (1943): n j (t) = I ( i j w ijn i (t 1) > θ j ). w ij can be > 0 (excitatry) r < 0 (inhibitry).

3 A bilgical neurn vs an artificial neurn (perceptrn). Ggle: images bilgical neural netwrk tutrial Minsky & Papert s (1969) XOR prblem: XOR(X 1, X 2 ) = 1 if X 1 X 2 ; = 0 /w. X 1, X 2 {0, 1}. Perceptrn: f = I (α 0 + α X > 0). Feldman s (1985) ne hundred step prgram : at mst 100 steps within a human reactin time. because a human can recgnize anther persn in 100 ms, while the prcessing time f a neurn is 1ms. = human brain wrks in a massively parallel and distributed way. Cgnitive science: human visin is perfrmed in a series f layers in the brain. Human can learn. Hebb (1949) mdel: w ij w ij + ηy i y j, reinfrcing learning by simultaneus activatins.

4 Feed-frward NNs Fig 11.2 Input: X A (hidden) layer: fr m = 1,..., M, Z m = σ(α 0m + α mx ), Z = (Z 1,..., Z M ). activatin functin: σ(v) = 1/(1 + exp( v)), sigmid (r lgit 1 ); hyperblic tangent: tanh(v) = 2σ(v) 1....(may have multiple (hidden) layers)... Output: f 1 (X ),..., f K (X ). T k = β 0k + β k Z, T = (T 1,..., T K ), f k (X ) = g k (T ). regressin: g k (T ) = T k ; classificatin: g k (T ) = exp(t k )/ K j=1 exp(t j); sftmax r multi-lgit 1 functin.

5 Elements f Statistical Learning (2nd Ed.) c Hastie, Tibshirani & Friedman 2009 Chap Y Y YK Y1 2 K Z 1 Z2 3 mm Z Z X X2 X3 X p-1 1 Xp FIGURE Schematic f a single hidden layer, feed-frward neural netwrk. X

6 Elements f Statistical Learning (2nd Ed.) c Hastie, Tibshirani & Friedman 2009 Chap 11 1/(1 + e v ) FIGURE Plt f the sigmid functin σ(v) = 1/(1 + exp( v)) (red curve), cmmnly used in the hidden layer f a neural netwrk. Included are σ(sv) fr s = 1 (blue curve) and s =10(purple curve). 2 The scale parameter s cntrls the activatin rate, and we can see that large s amunts t a hard activatin at v =0. Nte that σ(s(v v 0)) shifts the activatin threshld frm 0 t v 0. v

7 Hw t fit the mdel? Given training data: (Y i, X i ), i = 1,..., n. Fr regressin, minimize R(θ) = K k=1 n i=1 (Y ik f k (X i )) 2. Fr classificatin, minimize R(θ) = K n k=1 i=1 Y ik lg f k (X i ). And G(x) = arg max f k (x). Can use ther lss functins. Hw t minimize R(θ)? Gradient descent, called back-prpagatin Very ppular and appealing! recall Hebb mdel Other algrithms: Newtn s, cnjugate-gradient,...

8 Back-prpagatin algrithm Given: training data (Y i, X i ), i = 1,..., n. Gal: estimate α s and β s. Cnsider R(θ) = i k (Y ik f k (X i )) 2 := i R i := i r i 2. NN: input X i, utput (f 1 (X i ),..., f K (X i )). Z mi = σ(α 0m + α mx i ), Z i = (Z 1i,..., Z Mi ), T ki = β 0k + β k Z i, T i = (T 1i,..., T Ki ), f k (X i ) = g k (T i ) = T ki. Chain rule: R i = R i r i g k β km r i g k T i T i β km R i β km = 2(Y ik f k (X i ))g k (β k Z i)z mi := δ ki Z mi,

9 Back-prpagatin algrithm (cnt ed) R i = R i r i g k T i α ml r i g k T i Z i Z i α ml R i α ml = k 2(Y ik f k (X i ))g k (β k Z i)β km σ (α mx i )X il := s mi X il. where δ ki, s mi are errrs frm the current mdel. Update at step r + 1: β (r+1) km = β (r) km γ R i r β km, α (r+1) ml = α (r) ml γ r i β (r),α (r) i γ r : learning rate; a tuning parameter; can be fixed r selected/decayed. t large/small then... training epch: a cycle f updating R i α ml. β (r),α (r)

10 Sme issues Starting values: Existence f many lcal minima and saddle pints. Multiple tries; mdel averaging,... Data preprcessing: centering at 0 and scaling Stchastic gradient descent (SGD): use a minibatch (i.e. a randm subset) f the training data fr a few iteratins; minimbatch size: 32 r 64 r 128 r..., a tuning parameter. +: simple and intuitive; -: slw Mdificatins: SGD + Mmentum SGD: x t+1 = x t γ f (x t ). SGD+M: v t+1 = ρv t + f (x t ), x t+1 = x t γv t (AdaGrad, RMSPrp)... Adam, default (nw!)

11 Sme issues (cnt ed) Over-fitting? Universal Apprx Thm If add mre units r layers, then... 1) Early stpping! 2) Regularizatin: add a penalty term, e.g. Ridge; use R(θ) + λj(θ) with J(θ) = km β2 km + ml α2 ml ; called weight decay; Fig Perfrmance: Figs ) Regularizatin: Drput (randmly) a subset/prprtin f ndes/units r cnnectins during training; an ensemble; mre rbust. A main technical issue with a deep NN: gradients vanishing r explding, why? use ReLU: f (x) = max(0, x); batch nrmalizatin;... Transfer learning: reusing trained netwrks: why? http: //jmlr.rg/prceedings/papers/v32/dnahue14.pdf Example cde: ex7.1.r

12 Elements f Statistical Learning (2nd Ed.) c Hastie, Tibshirani & Friedman 2009 Chap 11 Neural Netwrk - 10 Units, N Weight Decay Training Errr: Test Errr: Bayes Errr: Neural Netwrk - 10 Units, Weight Decay= Training Errr: Test Errr: Bayes Errr: 0.210

13 Elements f Statistical Learning (2nd Ed.) c Hastie, Tibshirani & Friedman 2009 Chap 11 Sum f Sigmids Radial Test Errr Test Errr Number f Hidden Units Number f Hidden Units FIGURE Bxplts f test errr, fr simulated data example, relative t the Bayes errr (brken hrizntal line). True functin is a sum f tw sigmids n the left, and a radial functin is n the right. The test errr is displayed fr 10 different starting weights, fr a single hidden layer neural netwrk with the number f units as indicated.

14 Elements f Statistical Learning (2nd Ed.) c Hastie, Tibshirani & Friedman 2009 Chap 11 N Weight Decay Weight Decay=0.1 Test Errr Test Errr Number f Hidden Units Number f Hidden Units FIGURE Bxplts f test errr, fr simulated data example, relative t the Bayes errr. True functin is a sum f tw sigmids. The test errr is displayed fr ten different starting weights, fr a single hidden layer neural netwrk with the number units as indicated. The tw panels represent n weight decay (left) and strng weight decay λ = 0.1 (right).

15 Elements f Statistical Learning (2nd Ed.) c Hastie, Tibshirani & Friedman 2009 Chap 11 Sum f Sigmids, 10 Hidden Unit Mdel Test Errr Weight Decay Parameter FIGURE Bxplts f test errr, fr simulated data example. True functin is a sum f tw sigmids. The test errr is displayed fr ten different starting weights, fr a single hidden layer neural netwrk with ten hidden units and weight decay parameter value as indicated.

16 Current and future... Deep learning: deep NNs (Wikipedia; ggle) Facebk hired Yann LeCun at NYU; Ggle hired Geffrey Hintn at U Trnt; Bengi stays in U Mntreal; Baidu hired Andrew Ng, wh recently left;... Impressive applicatins: imaging recgnitin (Krizhevsky et al); playing the game f G (Silver et al 2016, Nature);... Keys: AlexNet (Krizhevsky et al), 60 millin parameters... f five cnvlutinal layers... three fully-cnnected layers witha final 1000-way sftmax. there are rughly 1.2 millin training images, 50,000 validatin images, and 150,000 testing images. Needs regularizatin t! Qs: anther wave? yes! just check cnstantly appearing papers n arxiv, ICLR, NIPS,...

17

18 Cnvlutinal NNs LeCun et al (1998, Prc f the IEEE); Keys: t ensure sme degree f shift, scale, and distrtin invariance: lcal receptive fields, shared weights... and spatial r tempral sub-sampling. Lcal crrelatins are the reasns fr the well-knwn advantages f extracting and cmbining lcal features... Hubel and Wiesel (1962): lcally-sensitive, rientatin-selective neurns in the cat s visual system. New: a cnvlutin layer uses rectified linear functin, ReLU(x) = max(0, x).

19 Figure: LeCun et al 1998, Prc f the IEEE.

20 Figure: Angermueller et al 2016, Ml Sys Bil.

21 Resurces Tday s standards : mstly in Pythn 1. Caffe (UC Berkeley) = Caffe2 (Facebk); 2. Trch (NYU/Facebk) = PyTrch (Facebk); 3. Thean(U Mntreal) = TensrFlw (Ggle); 3b. Keras: n tp f TensrFlw. Others: MXNet (Amazn), Paddle (Baidu), CNTK (Micrsft)... CPU vs GPU Matlab: CnvNet, DeepLearnTlBx, MatCnvNet,... Java: Deeplearning4j,... R packages: deepnet, darch, mxnet, h2,... nw...

19 Better Neural Network Training; Convolutional Neural Networks

19 Better Neural Network Training; Convolutional Neural Networks 108 Jnathan Richard Shewchuk 19 Better Neural Netwrk Training; Cnvlutinal Neural Netwrks [I m ging t talk abut a bunch f heuristics that make gradient descent faster, r make it find better lcal minima,

More information

Chapter 11: Neural Networks

Chapter 11: Neural Networks Chapter 11: Neural Netwrks DD3364 December 16, 2012 Prjectin Pursuit Regressin Prjectin Pursuit Regressin mdel: Prjectin Pursuit Regressin f(x) = M g m (wmx) t i=1 where X R p and have targets Y R. Additive

More information

Day 7: Optimization, regularization for NN

Day 7: Optimization, regularization for NN Day 7: Optimizatin, regularizatin fr NN Intrductin t Machine Learning Summer Schl June 18, 2018 - June 29, 2018, Chicag Instructr: Suriya Gunasekar, TTI Chicag 26 June 2018 Day 7: Tricks and tls Day 7:

More information

Artificial Neural Networks MLP, Backpropagation

Artificial Neural Networks MLP, Backpropagation Artificial Neural Netwrks MLP, Backprpagatin 01001110 01100101 01110101 01110010 01101111 01101110 01101111 01110110 01100001 00100000 01110011 01101011 01110101 01110000 01101001 01101110 01100001 00100000

More information

COMP 551 Applied Machine Learning Lecture 4: Linear classification

COMP 551 Applied Machine Learning Lecture 4: Linear classification COMP 551 Applied Machine Learning Lecture 4: Linear classificatin Instructr: Jelle Pineau (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted

More information

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Sllabus Fri. 27.10. (1) 0. Intrductin A. Supervised Learning: Linear Mdels & Fundamentals Fri. 3.11. (2) A.1 Linear Regressin Fri. 10.11. (3) A.2 Linear Classificatin Fri. 17.11. (4) A.3 Regularizatin

More information

Feedforward Neural Networks

Feedforward Neural Networks Feedfrward Neural Netwrks Yagmur Gizem Cinar, Eric Gaussier AMA, LIG, Univ. Grenble Alpes 17 March 2017 Yagmur Gizem Cinar, Eric Gaussier Multilayer Perceptrns (MLP) 17 March 2017 1 / 42 Reference Bk Deep

More information

Enhancing Performance of MLP/RBF Neural Classifiers via an Multivariate Data Distribution Scheme

Enhancing Performance of MLP/RBF Neural Classifiers via an Multivariate Data Distribution Scheme Enhancing Perfrmance f / Neural Classifiers via an Multivariate Data Distributin Scheme Halis Altun, Gökhan Gelen Nigde University, Electrical and Electrnics Engineering Department Nigde, Turkey haltun@nigde.edu.tr

More information

k-nearest Neighbor How to choose k Average of k points more reliable when: Large k: noise in attributes +o o noise in class labels

k-nearest Neighbor How to choose k Average of k points more reliable when: Large k: noise in attributes +o o noise in class labels Mtivating Example Memry-Based Learning Instance-Based Learning K-earest eighbr Inductive Assumptin Similar inputs map t similar utputs If nt true => learning is impssible If true => learning reduces t

More information

IAML: Support Vector Machines

IAML: Support Vector Machines 1 / 22 IAML: Supprt Vectr Machines Charles Suttn and Victr Lavrenk Schl f Infrmatics Semester 1 2 / 22 Outline Separating hyperplane with maimum margin Nn-separable training data Epanding the input int

More information

Computational statistics

Computational statistics Computational statistics Lecture 3: Neural networks Thierry Denœux 5 March, 2016 Neural networks A class of learning methods that was developed separately in different fields statistics and artificial

More information

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017 Resampling Methds Crss-validatin, Btstrapping Marek Petrik 2/21/2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins in R (Springer, 2013) with

More information

COMP9444 Neural Networks and Deep Learning 3. Backpropagation

COMP9444 Neural Networks and Deep Learning 3. Backpropagation COMP9444 Neural Netwrks and Deep Learning 3. Backprpagatin Tetbk, Sectins 4.3, 5.2, 6.5.2 COMP9444 17s2 Backprpagatin 1 Outline Supervised Learning Ockham s Razr (5.2) Multi-Layer Netwrks Gradient Descent

More information

A Scalable Recurrent Neural Network Framework for Model-free

A Scalable Recurrent Neural Network Framework for Model-free A Scalable Recurrent Neural Netwrk Framewrk fr Mdel-free POMDPs April 3, 2007 Zhenzhen Liu, Itamar Elhanany Machine Intelligence Lab Department f Electrical and Cmputer Engineering The University f Tennessee

More information

the results to larger systems due to prop'erties of the projection algorithm. First, the number of hidden nodes must

the results to larger systems due to prop'erties of the projection algorithm. First, the number of hidden nodes must M.E. Aggune, M.J. Dambrg, M.A. El-Sharkawi, R.J. Marks II and L.E. Atlas, "Dynamic and static security assessment f pwer systems using artificial neural netwrks", Prceedings f the NSF Wrkshp n Applicatins

More information

NEURAL NETWORKS. Neural networks

NEURAL NETWORKS. Neural networks NEURAL NETWORKS Neural netwrks Mtivatin Humans are able t prcess cmplex tasks efficiently (perceptin, pattern recgnitin, reasning, etc.) Ability t learn frm examples Adaptability and fault tlerance Engineering

More information

x 1 Outline IAML: Logistic Regression Decision Boundaries Example Data

x 1 Outline IAML: Logistic Regression Decision Boundaries Example Data Outline IAML: Lgistic Regressin Charles Suttn and Victr Lavrenk Schl f Infrmatics Semester Lgistic functin Lgistic regressin Learning lgistic regressin Optimizatin The pwer f nn-linear basis functins Least-squares

More information

Artificial Neural Networks Backpropagation & Deep Neural Networks

Artificial Neural Networks Backpropagation & Deep Neural Networks Artificial Neural Netwrs Bacprpagatin & Deep Neural Netwrs Jan Drcal drcajan@fel.cvut.cz Cmputatinal Intelligence Grup Department f Cmputer Science and Engineering Faculty f Electrical Engineering Czec

More information

Slide04 (supplemental) Haykin Chapter 4 (both 2nd and 3rd ed): Multi-Layer Perceptrons

Slide04 (supplemental) Haykin Chapter 4 (both 2nd and 3rd ed): Multi-Layer Perceptrons Slide04 supplemental) Haykin Chapter 4 bth 2nd and 3rd ed): Multi-Layer Perceptrns CPSC 636-600 Instructr: Ynsuck Che Heuristic fr Making Backprp Perfrm Better 1. Sequential vs. batch update: fr large

More information

Pattern Recognition 2014 Support Vector Machines

Pattern Recognition 2014 Support Vector Machines Pattern Recgnitin 2014 Supprt Vectr Machines Ad Feelders Universiteit Utrecht Ad Feelders ( Universiteit Utrecht ) Pattern Recgnitin 1 / 55 Overview 1 Separable Case 2 Kernel Functins 3 Allwing Errrs (Sft

More information

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines COMP 551 Applied Machine Learning Lecture 11: Supprt Vectr Machines Instructr: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted fr this curse

More information

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification COMP 551 Applied Machine Learning Lecture 5: Generative mdels fr linear classificatin Instructr: Herke van Hf (herke.vanhf@mail.mcgill.ca) Slides mstly by: Jelle Pineau Class web page: www.cs.mcgill.ca/~hvanh2/cmp551

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

Part 3 Introduction to statistical classification techniques

Part 3 Introduction to statistical classification techniques Part 3 Intrductin t statistical classificatin techniques Machine Learning, Part 3, March 07 Fabi Rli Preamble ØIn Part we have seen that if we knw: Psterir prbabilities P(ω i / ) Or the equivalent terms

More information

Neural Networks. Haiming Zhou. Division of Statistics Northern Illinois University.

Neural Networks. Haiming Zhou. Division of Statistics Northern Illinois University. Neural Networks Haiming Zhou Division of Statistics Northern Illinois University zhouh@niu.edu Neural Networks The term neural network has evolved to encompass a large class of models and learning methods.

More information

Tree Structured Classifier

Tree Structured Classifier Tree Structured Classifier Reference: Classificatin and Regressin Trees by L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stne, Chapman & Hall, 98. A Medical Eample (CART): Predict high risk patients

More information

Simple Linear Regression (single variable)

Simple Linear Regression (single variable) Simple Linear Regressin (single variable) Intrductin t Machine Learning Marek Petrik January 31, 2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins

More information

COMP 551 Applied Machine Learning Lecture 9: Support Vector Machines (cont d)

COMP 551 Applied Machine Learning Lecture 9: Support Vector Machines (cont d) COMP 551 Applied Machine Learning Lecture 9: Supprt Vectr Machines (cnt d) Instructr: Herke van Hf (herke.vanhf@mail.mcgill.ca) Slides mstly by: Class web page: www.cs.mcgill.ca/~hvanh2/cmp551 Unless therwise

More information

Chapter 3: Cluster Analysis

Chapter 3: Cluster Analysis Chapter 3: Cluster Analysis } 3.1 Basic Cncepts f Clustering 3.1.1 Cluster Analysis 3.1. Clustering Categries } 3. Partitining Methds 3..1 The principle 3.. K-Means Methd 3..3 K-Medids Methd 3..4 CLARA

More information

Deep Captioning with Multimodal Recurrent Neural Networks (m-rnn)

Deep Captioning with Multimodal Recurrent Neural Networks (m-rnn) Deep Captining with Multimdal Recurrent Neural Netwrks (m-rnn) http://www.stat.ucla.edu/~junhua.ma/m-rnn.html Junhua Ma 1,2, Wei Xu 1, Yi Yang 1, Jiang Wang 1, Zhiheng Huang 1, Alan Yuille 2 1 Baidu Research

More information

Analysis on the Stability of Reservoir Soil Slope Based on Fuzzy Artificial Neural Network

Analysis on the Stability of Reservoir Soil Slope Based on Fuzzy Artificial Neural Network Research Jurnal f Applied Sciences, Engineering and Technlgy 5(2): 465-469, 2013 ISSN: 2040-7459; E-ISSN: 2040-7467 Maxwell Scientific Organizatin, 2013 Submitted: May 08, 2012 Accepted: May 29, 2012 Published:

More information

Distributions, spatial statistics and a Bayesian perspective

Distributions, spatial statistics and a Bayesian perspective Distributins, spatial statistics and a Bayesian perspective Dug Nychka Natinal Center fr Atmspheric Research Distributins and densities Cnditinal distributins and Bayes Thm Bivariate nrmal Spatial statistics

More information

initially lcated away frm the data set never win the cmpetitin, resulting in a nnptimal nal cdebk, [2] [3] [4] and [5]. Khnen's Self Organizing Featur

initially lcated away frm the data set never win the cmpetitin, resulting in a nnptimal nal cdebk, [2] [3] [4] and [5]. Khnen's Self Organizing Featur Cdewrd Distributin fr Frequency Sensitive Cmpetitive Learning with One Dimensinal Input Data Aristides S. Galanpuls and Stanley C. Ahalt Department f Electrical Engineering The Ohi State University Abstract

More information

Prediction of Municipal Solid Waste Generation by Use of Artificial Neural Network: A Case Study of Mashhad

Prediction of Municipal Solid Waste Generation by Use of Artificial Neural Network: A Case Study of Mashhad Int. J. Envirn. Res., 2(1): 13-22, Winter 2008 ISSN: 1735-6865 Predictin f Municipal Slid Waste Generatin by Use f Artificial Neural Netwrk: A Case Study f Mashhad Jalili Ghazi Zade, M. 1 and Nri, R. 2*

More information

Chapter 15 & 16: Random Forests & Ensemble Learning

Chapter 15 & 16: Random Forests & Ensemble Learning Chapter 15 & 16: Randm Frests & Ensemble Learning DD3364 Nvember 27, 2012 Ty Prblem fr Bsted Tree Bsted Tree Example Estimate this functin with a sum f trees with 9-terminal ndes by minimizing the sum

More information

In SMV I. IAML: Support Vector Machines II. This Time. The SVM optimization problem. We saw:

In SMV I. IAML: Support Vector Machines II. This Time. The SVM optimization problem. We saw: In SMV I IAML: Supprt Vectr Machines II Nigel Gddard Schl f Infrmatics Semester 1 We sa: Ma margin trick Gemetry f the margin and h t cmpute it Finding the ma margin hyperplane using a cnstrained ptimizatin

More information

Agenda. What is Machine Learning? Learning Type of Learning: Supervised, Unsupervised and semi supervised Classification

Agenda. What is Machine Learning? Learning Type of Learning: Supervised, Unsupervised and semi supervised Classification Agenda Artificial Intelligence and its applicatins Lecture 6 Supervised Learning Prfessr Daniel Yeung danyeung@ieee.rg Dr. Patrick Chan patrickchan@ieee.rg Suth China University f Technlgy, China Learning

More information

Big Data Analytics! Special Topics for Computer Science CSE CSE Mar 31

Big Data Analytics! Special Topics for Computer Science CSE CSE Mar 31 Bg Data Analytcs! Specal Tpcs fr Cmputer Scence CSE 4095-001 CSE 5095-005! Mar 31 Fe Wang Asscate Prfessr Department f Cmputer Scence and Engneerng fe_wang@ucnn.edu Intrductn t Deep Learnng Perceptrn In

More information

Data Mining: Concepts and Techniques. Classification and Prediction. Chapter February 8, 2007 CSE-4412: Data Mining 1

Data Mining: Concepts and Techniques. Classification and Prediction. Chapter February 8, 2007 CSE-4412: Data Mining 1 Data Mining: Cncepts and Techniques Classificatin and Predictin Chapter 6.4-6 February 8, 2007 CSE-4412: Data Mining 1 Chapter 6 Classificatin and Predictin 1. What is classificatin? What is predictin?

More information

The Kullback-Leibler Kernel as a Framework for Discriminant and Localized Representations for Visual Recognition

The Kullback-Leibler Kernel as a Framework for Discriminant and Localized Representations for Visual Recognition The Kullback-Leibler Kernel as a Framewrk fr Discriminant and Lcalized Representatins fr Visual Recgnitin Nun Vascncels Purdy H Pedr Mren ECE Department University f Califrnia, San Dieg HP Labs Cambridge

More information

Checking the resolved resonance region in EXFOR database

Checking the resolved resonance region in EXFOR database Checking the reslved resnance regin in EXFOR database Gttfried Bertn Sciété de Calcul Mathématique (SCM) Oscar Cabells OECD/NEA Data Bank JEFF Meetings - Sessin JEFF Experiments Nvember 0-4, 017 Bulgne-Billancurt,

More information

* o * * o o 1.5. o o. o * 0.5 * * o * * o. o o. oo o. * * * o * 0.5. o o * * * o o. * * oo. o o o o. * o * * o* o

* o * * o o 1.5. o o. o * 0.5 * * o * * o. o o. oo o. * * * o * 0.5. o o * * * o o. * * oo. o o o o. * o * * o* o Pseudinverse Learning Algrithm fr Feedfrward Neural Netwrs Λ PING GUO and MICHAEL R. LYU Department f Cmputer Science and Engineering, The Chinese University f Hng Kng, Shatin, NT, Hng Kng. SAR f P.R.

More information

What is Statistical Learning?

What is Statistical Learning? What is Statistical Learning? Sales 5 10 15 20 25 Sales 5 10 15 20 25 Sales 5 10 15 20 25 0 50 100 200 300 TV 0 10 20 30 40 50 Radi 0 20 40 60 80 100 Newspaper Shwn are Sales vs TV, Radi and Newspaper,

More information

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007 CS 477/677 Analysis f Algrithms Fall 2007 Dr. Gerge Bebis Curse Prject Due Date: 11/29/2007 Part1: Cmparisn f Srting Algrithms (70% f the prject grade) The bjective f the first part f the assignment is

More information

Midwest Big Data Summer School: Machine Learning I: Introduction. Kris De Brabanter

Midwest Big Data Summer School: Machine Learning I: Introduction. Kris De Brabanter Midwest Big Data Summer Schl: Machine Learning I: Intrductin Kris De Brabanter kbrabant@iastate.edu Iwa State University Department f Statistics Department f Cmputer Science June 24, 2016 1/24 Outline

More information

Neural Networks with Wavelet Based Denoising Layers for Time Series Prediction

Neural Networks with Wavelet Based Denoising Layers for Time Series Prediction Neural Netwrks with Wavelet Based Denising Layers fr Time Series Predictin UROS LOTRIC 1 AND ANDREJ DOBNIKAR University f Lublana, Faculty f Cmputer and Infrmatin Science, Slvenia, e-mail: {urs.ltric,

More information

INTRODUCTION TO ARTIFICIAL INTELLIGENCE

INTRODUCTION TO ARTIFICIAL INTELLIGENCE v=1 v= 1 v= 1 v= 1 v= 1 v=1 optima 2) 3) 5) 6) 7) 8) 9) 12) 11) 13) INTRDUCTIN T ARTIFICIAL INTELLIGENCE DATA15001 EPISDE 8: NEURAL NETWRKS TDAY S MENU 1. NEURAL CMPUTATIN 2. FEEDFRWARD NETWRKS (PERCEPTRN)

More information

Elements of Machine Intelligence - I

Elements of Machine Intelligence - I ECE-175A Elements f Machine Intelligence - I Ken Kreutz-Delgad Nun Vascncels ECE Department, UCSD Winter 2011 The curse The curse will cver basic, but imprtant, aspects f machine learning and pattern recgnitin

More information

MINIMIZATION OF ACTUATOR REPOSITIONING USING NEURAL NETWORKS WITH APPLICATION IN NONLINEAR HVAC 1 SYSTEMS

MINIMIZATION OF ACTUATOR REPOSITIONING USING NEURAL NETWORKS WITH APPLICATION IN NONLINEAR HVAC 1 SYSTEMS MINIMIZATION OF ACTUATOR REPOSITIONING USING NEURAL NETWORKS WITH APPLICATION IN NONLINEAR HVAC SYSTEMS M. J. Yazdanpanah *, E. Semsar, C. Lucas * yazdan@ut.ac.ir, semsar@chamran.ut.ac.ir, lucas@ipm.ir

More information

The Research on Flux Linkage Characteristic Based on BP and RBF Neural Network for Switched Reluctance Motor

The Research on Flux Linkage Characteristic Based on BP and RBF Neural Network for Switched Reluctance Motor Prgress In Electrmagnetics Research M, Vl. 35, 5 6, 24 The Research n Flux Linkage Characteristic Based n BP and RBF Neural Netwrk fr Switched Reluctance Mtr Yan Cai, *, Siyuan Sun, Chenhui Wang, and Cha

More information

Data Mining with Linear Discriminants. Exercise: Business Intelligence (Part 6) Summer Term 2014 Stefan Feuerriegel

Data Mining with Linear Discriminants. Exercise: Business Intelligence (Part 6) Summer Term 2014 Stefan Feuerriegel Data Mining with Linear Discriminants Exercise: Business Intelligence (Part 6) Summer Term 2014 Stefan Feuerriegel Tday s Lecture Objectives 1 Recgnizing the ideas f artificial neural netwrks and their

More information

Tips for Deep Learning

Tips for Deep Learning Tips for Deep Learning Recipe of Deep Learning Step : define a set of function Step : goodness of function Step 3: pick the best function NO Overfitting! NO YES Good Results on Testing Data? YES Good Results

More information

MACHINE LEARNING FOR CLUSTER- GALAXY CLASSIFICATION

MACHINE LEARNING FOR CLUSTER- GALAXY CLASSIFICATION MACHINE LEARNING FOR CLUSTER- GALAXY CLASSIFICATION Silvia de Castr García Directres: Dr. Ricard Pérez Martínez, Dra. Ana María Pérez García 16/03/2018 Machine Learning fr cluster-galaxy classificatin

More information

Training Algorithms for Recurrent Neural Networks

Training Algorithms for Recurrent Neural Networks raining Algrithms fr Recurrent Neural Netwrks SUWARIN PAAAVORAKUN UYN NGOC PIEN Cmputer Science Infrmatin anagement Prgram Asian Institute f echnlgy P.O. Bx 4, Klng Luang, Pathumthani 12120 AILAND http://www.ait.ac.th

More information

Multiple Source Multiple. using Network Coding

Multiple Source Multiple. using Network Coding Multiple Surce Multiple Destinatin Tplgy Inference using Netwrk Cding Pegah Sattari EECS, UC Irvine Jint wrk with Athina Markpulu, at UCI, Christina Fraguli, at EPFL, Lausanne Outline Netwrk Tmgraphy Gal,

More information

CS 109 Lecture 23 May 18th, 2016

CS 109 Lecture 23 May 18th, 2016 CS 109 Lecture 23 May 18th, 2016 New Datasets Heart Ancestry Netflix Our Path Parameter Estimatin Machine Learning: Frmally Many different frms f Machine Learning We fcus n the prblem f predictin Want

More information

EVERYTHING YOU NEED TO KNOW TO BUILD YOUR FIRST CONVOLUTIONAL NEURAL NETWORK (CNN)

EVERYTHING YOU NEED TO KNOW TO BUILD YOUR FIRST CONVOLUTIONAL NEURAL NETWORK (CNN) EVERYTHING YOU NEED TO KNOW TO BUILD YOUR FIRST CONVOLUTIONAL NEURAL NETWORK (CNN) TARGETED PIECES OF KNOWLEDGE Linear regression Activation function Multi-Layers Perceptron (MLP) Stochastic Gradient Descent

More information

Logistic Regression. and Maximum Likelihood. Marek Petrik. Feb

Logistic Regression. and Maximum Likelihood. Marek Petrik. Feb Lgistic Regressin and Maximum Likelihd Marek Petrik Feb 09 2017 S Far in ML Regressin vs Classificatin Linear regressin Bias-variance decmpsitin Practical methds fr linear regressin Simple Linear Regressin

More information

Introduction to Deep Learning

Introduction to Deep Learning Introduction to Deep Learning A. G. Schwing & S. Fidler University of Toronto, 2015 A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2015 1 / 39 Outline 1 Universality of Neural Networks

More information

Physical Layer: Outline

Physical Layer: Outline 18-: Intrductin t Telecmmunicatin Netwrks Lectures : Physical Layer Peter Steenkiste Spring 01 www.cs.cmu.edu/~prs/nets-ece Physical Layer: Outline Digital Representatin f Infrmatin Characterizatin f Cmmunicatin

More information

Activity Guide Loops and Random Numbers

Activity Guide Loops and Random Numbers Unit 3 Lessn 7 Name(s) Perid Date Activity Guide Lps and Randm Numbers CS Cntent Lps are a relatively straightfrward idea in prgramming - yu want a certain chunk f cde t run repeatedly - but it takes a

More information

COMP9414/ 9814/ 3411: Artificial Intelligence. 14. Course Review. COMP3411 c UNSW, 2014

COMP9414/ 9814/ 3411: Artificial Intelligence. 14. Course Review. COMP3411 c UNSW, 2014 COMP9414/ 9814/ 3411: Artificial Intelligence 14. Curse Review COMP9414/9814/3411 14s1 Review 1 Assessment Assessable cmpnents f the curse: Assignment 1 10% Assignment 2 8% Assignment 3 12% Written Eam

More information

Data mining/machine learning large data sets. STA 302 or 442 (Applied Statistics) :, 1

Data mining/machine learning large data sets. STA 302 or 442 (Applied Statistics) :, 1 Data mining/machine learning large data sets STA 302 r 442 (Applied Statistics) :, 1 Data mining/machine learning large data sets high dimensinal spaces STA 302 r 442 (Applied Statistics) :, 2 Data mining/machine

More information

The general linear model and Statistical Parametric Mapping I: Introduction to the GLM

The general linear model and Statistical Parametric Mapping I: Introduction to the GLM The general linear mdel and Statistical Parametric Mapping I: Intrductin t the GLM Alexa Mrcm and Stefan Kiebel, Rik Hensn, Andrew Hlmes & J-B J Pline Overview Intrductin Essential cncepts Mdelling Design

More information

DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY

DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY 1 On-line Resources http://neuralnetworksanddeeplearning.com/index.html Online book by Michael Nielsen http://matlabtricks.com/post-5/3x3-convolution-kernelswith-online-demo

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 4: Mdel checing fr ODE mdels In Petre Department f IT, Åb Aademi http://www.users.ab.fi/ipetre/cmpmd/ Cntent Stichimetric matrix Calculating the mass cnservatin relatins

More information

Reinforcement Learning" CMPSCI 383 Nov 29, 2011!

Reinforcement Learning CMPSCI 383 Nov 29, 2011! Reinfrcement Learning" CMPSCI 383 Nv 29, 2011! 1 Tdayʼs lecture" Review f Chapter 17: Making Cmple Decisins! Sequential decisin prblems! The mtivatin and advantages f reinfrcement learning.! Passive learning!

More information

Learning to Control an Unstable System with Forward Modeling

Learning to Control an Unstable System with Forward Modeling 324 Jrdan and Jacbs Learning t Cntrl an Unstable System with Frward Mdeling Michael I. Jrdan Brain and Cgnitive Sciences MIT Cambridge, MA 02139 Rbert A. Jacbs Cmputer and Infrmatin Sciences University

More information

Early detection of mining truck failure by modelling its operation with neural networks classification algorithms

Early detection of mining truck failure by modelling its operation with neural networks classification algorithms RU, Rand GOLOSINSKI, T.S. Early detectin f mining truck failure by mdelling its peratin with neural netwrks classificatin algrithms. Applicatin f Cmputers and Operatins Research ill the Minerals Industries,

More information

Introduction to Deep Learning

Introduction to Deep Learning Introduction to Deep Learning A. G. Schwing & S. Fidler University of Toronto, 2014 A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 1 / 35 Outline 1 Universality of Neural Networks

More information

Turing Machines. Human-aware Robotics. 2017/10/17 & 19 Chapter 3.2 & 3.3 in Sipser Ø Announcement:

Turing Machines. Human-aware Robotics. 2017/10/17 & 19 Chapter 3.2 & 3.3 in Sipser Ø Announcement: Turing Machines Human-aware Rbtics 2017/10/17 & 19 Chapter 3.2 & 3.3 in Sipser Ø Annuncement: q q q q Slides fr this lecture are here: http://www.public.asu.edu/~yzhan442/teaching/cse355/lectures/tm-ii.pdf

More information

Resampling Methods. Chapter 5. Chapter 5 1 / 52

Resampling Methods. Chapter 5. Chapter 5 1 / 52 Resampling Methds Chapter 5 Chapter 5 1 / 52 1 51 Validatin set apprach 2 52 Crss validatin 3 53 Btstrap Chapter 5 2 / 52 Abut Resampling An imprtant statistical tl Pretending the data as ppulatin and

More information

David HORN and Irit OPHER. School of Physics and Astronomy. Raymond and Beverly Sackler Faculty of Exact Sciences

David HORN and Irit OPHER. School of Physics and Astronomy. Raymond and Beverly Sackler Faculty of Exact Sciences Cmplex Dynamics f Neurnal Threshlds David HORN and Irit OPHER Schl f Physics and Astrnmy Raymnd and Beverly Sackler Faculty f Exact Sciences Tel Aviv University, Tel Aviv 69978, Israel hrn@neurn.tau.ac.il

More information

You need to be able to define the following terms and answer basic questions about them:

You need to be able to define the following terms and answer basic questions about them: CS440/ECE448 Sectin Q Fall 2017 Midterm Review Yu need t be able t define the fllwing terms and answer basic questins abut them: Intr t AI, agents and envirnments Pssible definitins f AI, prs and cns f

More information

Statistics, Numerical Models and Ensembles

Statistics, Numerical Models and Ensembles Statistics, Numerical Mdels and Ensembles Duglas Nychka, Reinhard Furrer,, Dan Cley Claudia Tebaldi, Linda Mearns, Jerry Meehl and Richard Smith (UNC). Spatial predictin and data assimilatin Precipitatin

More information

Neural Networks: Optimization & Regularization

Neural Networks: Optimization & Regularization Neural Networks: Optimization & Regularization Shan-Hung Wu shwu@cs.nthu.edu.tw Department of Computer Science, National Tsing Hua University, Taiwan Machine Learning Shan-Hung Wu (CS, NTHU) NN Opt & Reg

More information

Neural networks (NN) 1

Neural networks (NN) 1 Neural networks (NN) 1 Hedibert F. Lopes Insper Institute of Education and Research São Paulo, Brazil 1 Slides based on Chapter 11 of Hastie, Tibshirani and Friedman s book The Elements of Statistical

More information

Module 3: Gaussian Process Parameter Estimation, Prediction Uncertainty, and Diagnostics

Module 3: Gaussian Process Parameter Estimation, Prediction Uncertainty, and Diagnostics Mdule 3: Gaussian Prcess Parameter Estimatin, Predictin Uncertainty, and Diagnstics Jerme Sacks and William J Welch Natinal Institute f Statistical Sciences and University f British Clumbia Adapted frm

More information

Tips for Deep Learning

Tips for Deep Learning Tips for Deep Learning Recipe of Deep Learning Step : define a set of function Step : goodness of function Step 3: pick the best function NO Overfitting! NO YES Good Results on Testing Data? YES Good Results

More information

10. Artificial Neural Networks

10. Artificial Neural Networks Foundations of Machine Learning CentraleSupélec Fall 217 1. Artificial Neural Networks Chloé-Agathe Azencot Centre for Computational Biology, Mines ParisTech chloe-agathe.azencott@mines-paristech.fr Learning

More information

Linear Classification

Linear Classification Linear Classificatin CS 54: Machine Learning Slides adapted frm Lee Cper, Jydeep Ghsh, and Sham Kakade Review: Linear Regressin CS 54 [Spring 07] - H Regressin Given an input vectr x T = (x, x,, xp), we

More information

SGD and Deep Learning

SGD and Deep Learning SGD and Deep Learning Subgradients Lets make the gradient cheating more formal. Recall that the gradient is the slope of the tangent. f(w 1 )+rf(w 1 ) (w w 1 ) Non differentiable case? w 1 Subgradients

More information

INSTRUMENTAL VARIABLES

INSTRUMENTAL VARIABLES INSTRUMENTAL VARIABLES Technical Track Sessin IV Sergi Urzua University f Maryland Instrumental Variables and IE Tw main uses f IV in impact evaluatin: 1. Crrect fr difference between assignment f treatment

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Neural networks Daniel Hennes 21.01.2018 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Logistic regression Neural networks Perceptron

More information

Data Analysis, Statistics, Machine Learning

Data Analysis, Statistics, Machine Learning Data Analysis, Statistics, Machine Learning Leland Wilkinsn Adjunct Prfessr UIC Cmputer Science Chief Scien

More information

Introduction to Convolutional Neural Networks (CNNs)

Introduction to Convolutional Neural Networks (CNNs) Introduction to Convolutional Neural Networks (CNNs) nojunk@snu.ac.kr http://mipal.snu.ac.kr Department of Transdisciplinary Studies Seoul National University, Korea Jan. 2016 Many slides are from Fei-Fei

More information

Online Handwritten Character Recognition Using an Optical Backpropagation Neural Network

Online Handwritten Character Recognition Using an Optical Backpropagation Neural Network Issues in Infrming Science and Infrmatin Tecnlgy Online Handwritten Caracter Recgnitin Using an Optical Backprpagatin Neural Netwrk Walid A Salame Princess Summaya University fr Science and Tecnlgy, Amman,

More information

4th Indian Institute of Astrophysics - PennState Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur. Correlation and Regression

4th Indian Institute of Astrophysics - PennState Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur. Correlation and Regression 4th Indian Institute f Astrphysics - PennState Astrstatistics Schl July, 2013 Vainu Bappu Observatry, Kavalur Crrelatin and Regressin Rahul Ry Indian Statistical Institute, Delhi. Crrelatin Cnsider a tw

More information

Maximum A Posteriori (MAP) CS 109 Lecture 22 May 16th, 2016

Maximum A Posteriori (MAP) CS 109 Lecture 22 May 16th, 2016 Maximum A Psteriri (MAP) CS 109 Lecture 22 May 16th, 2016 Previusly in CS109 Game f Estimatrs Maximum Likelihd Nn spiler: this didn t happen Side Plt argmax argmax f lg Mther f ptimizatins? Reviving an

More information

3.4 Shrinkage Methods Prostate Cancer Data Example (Continued) Ridge Regression

3.4 Shrinkage Methods Prostate Cancer Data Example (Continued) Ridge Regression 3.3.4 Prstate Cancer Data Example (Cntinued) 3.4 Shrinkage Methds 61 Table 3.3 shws the cefficients frm a number f different selectin and shrinkage methds. They are best-subset selectin using an all-subsets

More information

Master Recherche IAC TC2: Apprentissage Statistique & Optimisation

Master Recherche IAC TC2: Apprentissage Statistique & Optimisation Master Recherche IAC TC2: Apprentissage Statistique & Optimisation Alexandre Allauzen Anne Auger Michèle Sebag LIMSI LRI Oct. 4th, 2012 This course Bio-inspired algorithms Classical Neural Nets History

More information

Machine Learning for Large-Scale Data Analysis and Decision Making A. Neural Networks Week #6

Machine Learning for Large-Scale Data Analysis and Decision Making A. Neural Networks Week #6 Machine Learning for Large-Scale Data Analysis and Decision Making 80-629-17A Neural Networks Week #6 Today Neural Networks A. Modeling B. Fitting C. Deep neural networks Today s material is (adapted)

More information

Optimization for Training I. First-Order Methods Training algorithm

Optimization for Training I. First-Order Methods Training algorithm Optimization for Training I First-Order Methods Training algorithm 2 OPTIMIZATION METHODS Topics: Types of optimization methods. Practical optimization methods breakdown into two categories: 1. First-order

More information

Churn Prediction using Dynamic RFM-Augmented node2vec

Churn Prediction using Dynamic RFM-Augmented node2vec Churn Predictin using Dynamic RFM-Augmented nde2vec Sandra Mitrvić, Jchen de Weerdt, Bart Baesens & Wilfried Lemahieu Department f Decisin Sciences and Infrmatin Management, KU Leuven 18 September 2017,

More information

Statistical Machine Learning (BE4M33SSU) Lecture 5: Artificial Neural Networks

Statistical Machine Learning (BE4M33SSU) Lecture 5: Artificial Neural Networks Statistical Machine Learning (BE4M33SSU) Lecture 5: Artificial Neural Networks Jan Drchal Czech Technical University in Prague Faculty of Electrical Engineering Department of Computer Science Topics covered

More information

Comparing Several Means: ANOVA. Group Means and Grand Mean

Comparing Several Means: ANOVA. Group Means and Grand Mean STAT 511 ANOVA and Regressin 1 Cmparing Several Means: ANOVA Slide 1 Blue Lake snap beans were grwn in 12 pen-tp chambers which are subject t 4 treatments 3 each with O 3 and SO 2 present/absent. The ttal

More information

Stats Classification Ji Zhu, Michigan Statistics 1. Classification. Ji Zhu 445C West Hall

Stats Classification Ji Zhu, Michigan Statistics 1. Classification. Ji Zhu 445C West Hall Stats 415 - Classificatin Ji Zhu, Michigan Statistics 1 Classificatin Ji Zhu 445C West Hall 734-936-2577 jizhu@umich.edu Stats 415 - Classificatin Ji Zhu, Michigan Statistics 2 Examples f Classificatin

More information

Computational Methods CMSC/AMSC/MAPL 460. Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Ramani Duraiswami, Dept. of Computer Science Cmputatinal Methds CMSC/AMSC/MAPL 460 Ramani Duraiswami, Dept. f Cmputer Science Curse Gals Intrductin t the use f scientific cmputing techniques t slve prblems in varius dmains Understand principles behind

More information

Misc. ArcMap Stuff Andrew Phay

Misc. ArcMap Stuff Andrew Phay Misc. ArcMap Stuff Andrew Phay aphay@whatcmcd.rg Prjectins Used t shw a spherical surface n a flat surface Distrtin Shape Distance True Directin Area Different Classes Thse that minimize distrtin in shape

More information