Line Integrals. Partitioning the Curve. Estimating the Mass

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Line Integrals. Partitioning the Curve. Estimating the Mass"

Transcription

1 Line Integrls Suppose we hve curve in the xy plne nd ssocite density δ(p ) = δ(x, y) t ech point on the curve. urves, of course, do not hve density or mss, but it my sometimes be convenient or useful to construct model where we pretend curve does hve density nd mss, for exmple, when nlyzing wire. Although we re now looking curve in plne, tht is mere convenience; nlogs of our results will hold for curves in R 3. Prtitioning the urve If we wished to estimte the mss of the curve, we might prtition the curve into smll pieces nd estimte the mss of ech smll piece by multiplying its density times its length. Although the density my vry, it probbly won t vry much in smll piece of the curve, so we could use the density t ny point in the piece of the curve in our estimte. If the curve hs the prmetriztion x = x(t), y = y(t), t b, prtitioning the curve mounts to tking prtition P = {t 0, t 1, t 2,..., t n } of [, b]. Estimting the Mss For ech i, 1 i n, We could choose some t i [t i 1, t i ] nd use δ(x i, yi ), where x i = x(t i ), yi = y(t i ) s our estimte for the density. We hve previously estimted the rc length ( ) 2 ( ) 2 dy s i + t i, where the derivtives re evluted t t i. We could then estimte the mss m i of the i th piece of the curve by ( ) 2 ( ) 2 dy δ(x i, yi ) + t i, so s n estimte for the entire mss m we would get ( m = n i=1 m i ) 2 n i=1 δ(x i, yi ) + The Line Integrl 1 ( ) 2 dy t i.

2 ( ) 2 ( ) 2 n dy i=1 δ(x i, yi ) + t i is Riemnn Sum, which, if everything is continuous, will pproch the ordinry integrl ( ) 2 ( ) 2 b dy δ(x(t), y(t)) +. This integrl is clled line integrl nd is denoted by δ(x, y) ds. efinition of Line Integrl In generl, given curve with prmetriztion x = x(t), y = y(t), t b nd function f(x, y) defined on the curve, we define ( f(x, y) ds = ) 2 ( ) 2 b dy f(x(t), y(t)) +. In R 3, we would hve, with the nlogous sitution, ( f(x, y, z) ds = ) 2 b f(x(t), y(t), z(t)) + ( ) 2 dy + 2 ( ) 2 dz. Note: This generlizes in the obvious wy to higher dimensions nd there re other types of line integrls. Work Suppose force F(x) is exerted long curve : x(t), t b. Along short intervl of length s, the force won t chnge much nd the mount of work performed will pproximte the tngentil component of the force multiplied by the length of tht short piece of curve. The tngentil component of the force will equl F T, where T is the unit tngent. We thus conclude the totl mount of work my be clculted by the line integrl W = F T ds. Another Look t the Line Integrl Since T = nd ds =, when we evlute the line integrl we get

3 W = b F = b F, which we my wnt to write s F. Another Type of Line Integrl If we write F =< F x, F y > nd b (F x + F dy y ), or =<, dy >, reclling dy = nd = dy, we might write the integrl s F x + F y dy. This suggests nother type of line integrl, which we might write s P (x, y) + Q(x, y) dy. P (x, y) + Q(x, y) dy If we prtition curve, in ech piece of the curve from (x i 1, y i 1 ) to (x i, y i ) choose point (x i, yi ) nd clculte n i=1 P (x i, yi ) x i + Q(x i, yi ) y i, s limit we will get the line integrl P (x, y) + Q(x, y) dy. To clculte such line integrl, we tke prmetriztion nd clculte b P (x, y) + Q(x, y)dy. Sometimes, it s convenient to split the integrl into the sum P (x, y) + Q(x, y) dy nd use different prmetriztions for ech. Integrls Along Horizontl Line Segments onsider P (x, y) + Q(x, y) dy where is horizontl line segment y = k, x b. In this cse, we cn clculte P (x, y) +Q(x, y) dy = b P (x, k). To see this, use the prmetriztion x = t, y = k, t b, so = 1, dy = 0 nd P (x, y) +Q(x, y) dy = b dy P (x, y) +Q(x, y) = b P (t, k) 1 + Q(t, k) 0 = b P (t, k) = b P (x, k). Integrls Along Verticl Line Segments 3

4 onsider P (x, y) + Q(x, y) dy where is verticl line segment x = k, y b. In this cse, we cn clculte P (x, y) +Q(x, y) dy = b P (k, y) dy. We cn see this using the prmetriztion x = k, y = t, t b. Integrls Along urves y = f(x) onsider P (x, y) + Q(x, y) dy where is curve y = f(x), x b. In this cse, we my clculte P (x, y) + Q(x, y) dy = b P (x, y) + Q(x, y) dy, where we replce y by f(x). This is shown immeditely using the cnonicl prmetriztion x = t, y = f(t), t b, getting P (x, y) + Q(x, y) dy = b P (x, y) + Q(x, y)dy = b P (x, y) 1 + Q(x, y) dy = b P (t, f(t)) + Q(t, f(t))f (t) = b P (x, f(x)) + Q(x, f(x))f (x). Independence of Pth If, in some domin, 1 P (x, y) + Q(x, y) dy = 2 P (x, y) + Q(x, y) dy whenever 1 nd 2 re piecewise smooth curves with the sme initil nd terminl points, we sy P (x, y) + Q(x, y) dy is independent of pth in. Independence of Pth nd losed urves A closed curve is curve for which the initil nd terminl points coincide. A circle is the simplest exmple of closed curve. It is esily seen tht n integrl P + Q dy is independent of pth in some domin if nd only if P + Q dy = 0 for every closed curve in the domin. The only if prt is obvious. To prove the if prt, suppose 1 nd 2 re two curves in the domin with the sme initl nd terminl points nd let be the curve obtined by first trveling long 1 nd then trveling bckwrds long 2. Then P + Q dy = 0, but lso P + Q dy = 1 P + Q dy 2 P +Q dy, so 1 P +Q dy 2 P +Q dy = 0 nd 1 P + Q dy = 2 P + Q dy. Independence of Pth nd Potentil Functions 4

5 It cn esily be shown tht P (x, y) + Q(x, y) dy is independent of pth if there exists some potentil function φ(x, y) such tht φ =< P, Q >, i.e. such tht φ x = P, φ y = Q. Suppose such function exists nd goes from (x 1, y 1 ) to (x 2, y 2 ). Let x = f(t), y = g(t), t b be prmetriztion of. We then clculte: P (x, y) + Q(x, y) dy = b φ φ + x y dy = b dφ = [φ(f(t), g(t))] b = φ(f(b), g(b)) φ(f(), g()) = φ(x 2, y 2 ) φ(x 1, y 1 ). This obviously doesn t depend on. A Necessry ondition If φ φ = P nd x y derivtives we get 2 φ y x = P y nd 2 φ x y = Q x. = Q, when we clculte the second prtil If these second prtils re continuous, then they must be equl, so P y = Q x. This is obviously necessry condition for the existence of potentil function φ. It cn be shown this is lso sufficient condition for the integrl P + Q dy to be independent of pth. This will be consequence of Green s Theorem. Green s Theorem Theorem 1 (Green s Theorem). Under suitble hypothesis, given plne region with boundry oriented positively, P +Q dy = Q x P y da. If we hve closed curve bounding region nd Q x = P y, it follows tht P + Q dy = the integrl is independent of pth. Proof of Green s Theorem Q x P y da = 0 da = 0, so 5

6 We will verify Green s Theorem for some specil curves, but will not give generl proof. We will first ssume region cn be described s {(x, y) f(x) y g(x), x b. We cn then prmetrize the boundry by the union = , with 1 is the curve y = f(x), with x going from to b, 2 is the verticl line segment x = b, with y going from f(b) to g(b), 3 is the curve y = g(x), with x going from b to nd 4 is the verticl line segment x =, with y going from g() to f(). Hlf the Integrl Now consider P. We cn split the integrl into four prts. P = 1 P + 2 P + 3 P + 4 P. The portions long the verticl line segments re obviously 0, so we re left with P = 1 P + 3 P = b P (x, f(x)) + P (x, g(x)) = b b P (x, f(x)) b P (x, g(x)) = b P (x, f(x)) P (x, g(x)). But P (x, f(x)) P (x, g(x)) = f(x) P dy, so g(x) y P = b f(x) P g(x) y dy = b g(x) P f(x) y dy = P y da. More on Green s Theorem Essentilly, we hve shown tht if region cn be divided up into verticl strips going between two curves, then P (x, y) = P y da. A similr clcultion shows tht if the sme region cn be divided up into horizontl strips going between two curves, then Q(x, y) dy = Q x da. If the region cn be divided up both wys, we cn dd these integrls together to get P (x, y) + Q(x, y) dy = Q x P y da. Simple losed urves nd Independence of Pth A curve for which the initil nd terminl points coincide is clled closed curve. If those re the only points which coincide, the curve is clled simple closed curve. We will ssume ll our curves re piecewise smooth. 6

7 lim 1. In domin, P (x, y) + Q(x, y) dy is independent of pth if nd only if P (x, y) + Q(x, y) dy = 0 over ll simple closed curves. lerly, if, P (x, y) +Q(x, y) dy is independent of pth, then for ny closed curve P (x, y) + Q(x, y) dy = 0 since the vlue of the integrl would be the sme if we used degenerte curve. On the other hnd, suppose P (x, y) + Q(x, y) dy = 0 over every simple closed curve nd consider curves 1, 2 with the sme ini- til nd terminl points. Let = 1 ( 2 ). By 2 we men the curve trcing over the sme points s 2 but going in the opposite direction. is closed curve, so P (x, y) + Q(x, y) dy = 0. But P (x, y) + Q(x, y) dy = 1 2 P (x, y) + Q(x, y) dy = 1 P (x, y) + Q(x, y) dy 2 P (x, y) + Q(x, y) dy. It follows tht 1 P (x, y) + Q(x, y) dy = 2 P (x, y) + Q(x, y) dy. Green s Theorem nd Independence of Pth If Q x = P, then over ny simple closed curve, which we my ssume trverses counterclockwise round the boundry of plne region y, P (x, y) + Q(x, y) dy = Q x = P y da = 0 da = 0. It follows immeditely tht if Q x = P y in, then P (x, y) + Q(x, y) dy is independent of pth in. The Other irection Theorem 2. If P (x, y) + Q(x, y) dy is independent of pth in, then Q x = P in. y We cn prove this by finding potentil function φ(x, y) such tht φ =< P, Q >, i.e. such tht φ x = P, φ y = Q. To define φ(x, y), tke n rbitrry point (x 0, y 0 ) in nd let φ(x, y) = P (x, y) +Q(x, y) dy, where is ny smooth curve in going from (x 0, y 0 ) to (x, y). This is n unmbiguous definition, since the integrl is independent of pth. If we tke curve where the lst prt is horizontl line segment, we x+h φ(x, y) φ(x + h, y) φ(x, y) P (t, y) x get = lim h 0 = lim h 0 x h h 7

8

Integrals along Curves.

Integrals along Curves. Integrls long Curves. 1. Pth integrls. Let : [, b] R n be continuous function nd let be the imge ([, b]) of. We refer to both nd s curve. If we need to distinguish between the two we cll the function the

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1 Difference Equtions to Differentil Equtions Section.8 Distnce, Position, nd the Length of Curves Although we motivted the definition of the definite integrl with the notion of re, there re mny pplictions

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

f (x)dx = f(b) f(a). a b f (x)dx is the limit of sums

f (x)dx = f(b) f(a). a b f (x)dx is the limit of sums Green s Theorem If f is funtion of one vrible x with derivtive f x) or df dx to the Fundmentl Theorem of lulus, nd [, b] is given intervl then, ording This is not trivil result, onsidering tht b b f x)dx

More information

Anonymous Math 361: Homework 5. x i = 1 (1 u i )

Anonymous Math 361: Homework 5. x i = 1 (1 u i ) Anonymous Mth 36: Homewor 5 Rudin. Let I be the set of ll u (u,..., u ) R with u i for ll i; let Q be the set of ll x (x,..., x ) R with x i, x i. (I is the unit cube; Q is the stndrd simplex in R ). Define

More information

Week 10: Riemann integral and its properties

Week 10: Riemann integral and its properties Clculus nd Liner Algebr for Biomedicl Engineering Week 10: Riemnn integrl nd its properties H. Führ, Lehrstuhl A für Mthemtik, RWTH Achen, WS 07 Motivtion: Computing flow from flow rtes 1 We observe the

More information

Math 554 Integration

Math 554 Integration Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we

More information

Section 14.3 Arc Length and Curvature

Section 14.3 Arc Length and Curvature Section 4.3 Arc Length nd Curvture Clculus on Curves in Spce In this section, we ly the foundtions for describing the movement of n object in spce.. Vector Function Bsics In Clc, formul for rc length in

More information

l 2 p2 n 4n 2, the total surface area of the

l 2 p2 n 4n 2, the total surface area of the Week 6 Lectures Sections 7.5, 7.6 Section 7.5: Surfce re of Revolution Surfce re of Cone: Let C be circle of rdius r. Let P n be n n-sided regulr polygon of perimeter p n with vertices on C. Form cone

More information

7.6 The Use of Definite Integrals in Physics and Engineering

7.6 The Use of Definite Integrals in Physics and Engineering Arknss Tech University MATH 94: Clculus II Dr. Mrcel B. Finn 7.6 The Use of Definite Integrls in Physics nd Engineering It hs been shown how clculus cn be pplied to find solutions to geometric problems

More information

Section 6.1 Definite Integral

Section 6.1 Definite Integral Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined

More information

Mapping the delta function and other Radon measures

Mapping the delta function and other Radon measures Mpping the delt function nd other Rdon mesures Notes for Mth583A, Fll 2008 November 25, 2008 Rdon mesures Consider continuous function f on the rel line with sclr vlues. It is sid to hve bounded support

More information

We know that if f is a continuous nonnegative function on the interval [a, b], then b

We know that if f is a continuous nonnegative function on the interval [a, b], then b 1 Ares Between Curves c 22 Donld Kreider nd Dwight Lhr We know tht if f is continuous nonnegtive function on the intervl [, b], then f(x) dx is the re under the grph of f nd bove the intervl. We re going

More information

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp. MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27-233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.

More information

Math 360: A primitive integral and elementary functions

Math 360: A primitive integral and elementary functions Mth 360: A primitive integrl nd elementry functions D. DeTurck University of Pennsylvni October 16, 2017 D. DeTurck Mth 360 001 2017C: Integrl/functions 1 / 32 Setup for the integrl prtitions Definition:

More information

STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0.

STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0. STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA STEPHEN SCHECTER. The unit step function nd piecewise continuous functions The Heviside unit step function u(t) is given by if t

More information

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows: Improper Integrls The First Fundmentl Theorem of Clculus, s we ve discussed in clss, goes s follows: If f is continuous on the intervl [, ] nd F is function for which F t = ft, then ftdt = F F. An integrl

More information

Practice final exam solutions

Practice final exam solutions University of Pennsylvni Deprtment of Mthemtics Mth 26 Honors Clculus II Spring Semester 29 Prof. Grssi, T.A. Asher Auel Prctice finl exm solutions 1. Let F : 2 2 be defined by F (x, y (x + y, x y. If

More information

(0.0)(0.1)+(0.3)(0.1)+(0.6)(0.1)+ +(2.7)(0.1) = 1.35

(0.0)(0.1)+(0.3)(0.1)+(0.6)(0.1)+ +(2.7)(0.1) = 1.35 7 Integrtion º½ ÌÛÓ Ü ÑÔÐ Up to now we hve been concerned with extrcting informtion bout how function chnges from the function itself. Given knowledge bout n object s position, for exmple, we wnt to know

More information

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by. NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with

More information

PDE Notes. Paul Carnig. January ODE s vs PDE s 1

PDE Notes. Paul Carnig. January ODE s vs PDE s 1 PDE Notes Pul Crnig Jnury 2014 Contents 1 ODE s vs PDE s 1 2 Section 1.2 Het diffusion Eqution 1 2.1 Fourier s w of Het Conduction............................. 2 2.2 Energy Conservtion.....................................

More information

Improper Integrals. Introduction. Type 1: Improper Integrals on Infinite Intervals. When we defined the definite integral.

Improper Integrals. Introduction. Type 1: Improper Integrals on Infinite Intervals. When we defined the definite integral. Improper Integrls Introduction When we defined the definite integrl f d we ssumed tht f ws continuous on [, ] where [, ] ws finite, closed intervl There re t lest two wys this definition cn fil to e stisfied:

More information

Line and Surface Integrals: An Intuitive Understanding

Line and Surface Integrals: An Intuitive Understanding Line nd Surfce Integrls: An Intuitive Understnding Joseph Breen Introduction Multivrible clculus is ll bout bstrcting the ides of differentition nd integrtion from the fmilir single vrible cse to tht of

More information

MATH Summary of Chapter 13

MATH Summary of Chapter 13 MATH 21-259 ummry of hpter 13 1. Vector Fields re vector functions of two or three vribles. Typiclly, vector field is denoted by F(x, y, z) = P (x, y, z)i+q(x, y, z)j+r(x, y, z)k where P, Q, R re clled

More information

5: The Definite Integral

5: The Definite Integral 5: The Definite Integrl 5.: Estimting with Finite Sums Consider moving oject its velocity (meters per second) t ny time (seconds) is given y v t = t+. Cn we use this informtion to determine the distnce

More information

Math 0230 Calculus 2 Lectures

Math 0230 Calculus 2 Lectures Mth Clculus Lectures Chpter 7 Applictions of Integrtion Numertion of sections corresponds to the text Jmes Stewrt, Essentil Clculus, Erly Trnscendentls, Second edition. Section 7. Ares Between Curves Two

More information

MAC-solutions of the nonexistent solutions of mathematical physics

MAC-solutions of the nonexistent solutions of mathematical physics Proceedings of the 4th WSEAS Interntionl Conference on Finite Differences - Finite Elements - Finite Volumes - Boundry Elements MAC-solutions of the nonexistent solutions of mthemticl physics IGO NEYGEBAUE

More information

Not for reproduction

Not for reproduction AREA OF A SURFACE OF REVOLUTION cut h FIGURE FIGURE πr r r l h FIGURE A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundry of solid of revolution of the type

More information

Lecture 1. Functional series. Pointwise and uniform convergence.

Lecture 1. Functional series. Pointwise and uniform convergence. 1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is

More information

x = a To determine the volume of the solid, we use a definite integral to sum the volumes of the slices as we let!x " 0 :

x = a To determine the volume of the solid, we use a definite integral to sum the volumes of the slices as we let!x  0 : Clculus II MAT 146 Integrtion Applictions: Volumes of 3D Solids Our gol is to determine volumes of vrious shpes. Some of the shpes re the result of rotting curve out n xis nd other shpes re simply given

More information

1 Error Analysis of Simple Rules for Numerical Integration

1 Error Analysis of Simple Rules for Numerical Integration cs41: introduction to numericl nlysis 11/16/10 Lecture 19: Numericl Integrtion II Instructor: Professor Amos Ron Scries: Mrk Cowlishw, Nthnel Fillmore 1 Error Anlysis of Simple Rules for Numericl Integrtion

More information

Chapter 4. Additional Variational Concepts

Chapter 4. Additional Variational Concepts Chpter 4 Additionl Vritionl Concepts 137 In the previous chpter we considered clculus o vrition problems which hd ixed boundry conditions. Tht is, in one dimension the end point conditions were speciied.

More information

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jckson 2.26 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: The two-dimensionl region, ρ, φ β, is bounded by conducting surfces t φ =, ρ =, nd φ = β held t zero

More information

Continuous Random Variables Class 5, Jeremy Orloff and Jonathan Bloom

Continuous Random Variables Class 5, Jeremy Orloff and Jonathan Bloom Lerning Gols Continuous Rndom Vriles Clss 5, 8.05 Jeremy Orloff nd Jonthn Bloom. Know the definition of continuous rndom vrile. 2. Know the definition of the proility density function (pdf) nd cumultive

More information

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1 3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

More information

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230 Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given

More information

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60.

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60. Mth 104: finl informtion The finl exm will tke plce on Fridy My 11th from 8m 11m in Evns room 60. The exm will cover ll prts of the course with equl weighting. It will cover Chpters 1 5, 7 15, 17 21, 23

More information

Test , 8.2, 8.4 (density only), 8.5 (work only), 9.1, 9.2 and 9.3 related test 1 material and material from prior classes

Test , 8.2, 8.4 (density only), 8.5 (work only), 9.1, 9.2 and 9.3 related test 1 material and material from prior classes Test 2 8., 8.2, 8.4 (density only), 8.5 (work only), 9., 9.2 nd 9.3 relted test mteril nd mteril from prior clsses Locl to Globl Perspectives Anlyze smll pieces to understnd the big picture. Exmples: numericl

More information

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction Czechoslovk Mthemticl Journl, 55 (130) (2005), 933 940 ESTIMATES OF THE REMAINDER IN TAYLOR S THEOREM USING THE HENSTOCK-KURZWEIL INTEGRAL, Abbotsford (Received Jnury 22, 2003) Abstrct. When rel-vlued

More information

Week 7 Riemann Stieltjes Integration: Lectures 19-21

Week 7 Riemann Stieltjes Integration: Lectures 19-21 Week 7 Riemnn Stieltjes Integrtion: Lectures 19-21 Lecture 19 Throughout this section α will denote monotoniclly incresing function on n intervl [, b]. Let f be bounded function on [, b]. Let P = { = 0

More information

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE 1. Pointwise Convergence of Sequence Let E be set nd Y be metric spce. Consider functions f n : E Y for n = 1, 2,.... We sy tht the sequence

More information

Best Approximation. Chapter The General Case

Best Approximation. Chapter The General Case Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given

More information

Numerical integration

Numerical integration 2 Numericl integrtion This is pge i Printer: Opque this 2. Introduction Numericl integrtion is problem tht is prt of mny problems in the economics nd econometrics literture. The orgniztion of this chpter

More information

Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon

Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon Phys463.nb 49 7 Energy Bnds Ref: textbook, Chpter 7 Q: Why re there insultors nd conductors? Q: Wht will hppen when n electron moves in crystl? In the previous chpter, we discussed free electron gses,

More information

MATH 174A: PROBLEM SET 5. Suggested Solution

MATH 174A: PROBLEM SET 5. Suggested Solution MATH 174A: PROBLEM SET 5 Suggested Solution Problem 1. Suppose tht I [, b] is n intervl. Let f 1 b f() d for f C(I; R) (i.e. f is continuous rel-vlued function on I), nd let L 1 (I) denote the completion

More information

5.5 The Substitution Rule

5.5 The Substitution Rule 5.5 The Substitution Rule Given the usefulness of the Fundmentl Theorem, we wnt some helpful methods for finding ntiderivtives. At the moment, if n nti-derivtive is not esily recognizble, then we re in

More information

A. Limits - L Hopital s Rule ( ) How to find it: Try and find limits by traditional methods (plugging in). If you get 0 0 or!!, apply C.! 1 6 C.

A. Limits - L Hopital s Rule ( ) How to find it: Try and find limits by traditional methods (plugging in). If you get 0 0 or!!, apply C.! 1 6 C. A. Limits - L Hopitl s Rule Wht you re finding: L Hopitl s Rule is used to find limits of the form f ( x) lim where lim f x x! c g x ( ) = or lim f ( x) = limg( x) = ". ( ) x! c limg( x) = 0 x! c x! c

More information

MTH 122 Fall 2008 Essex County College Division of Mathematics Handout Version 10 1 October 14, 2008

MTH 122 Fall 2008 Essex County College Division of Mathematics Handout Version 10 1 October 14, 2008 MTH 22 Fll 28 Essex County College Division of Mthemtics Hndout Version October 4, 28 Arc Length Everyone should be fmilir with the distnce formul tht ws introduced in elementry lgebr. It is bsic formul

More information

10. AREAS BETWEEN CURVES

10. AREAS BETWEEN CURVES . AREAS BETWEEN CURVES.. Ares etween curves So res ove the x-xis re positive nd res elow re negtive, right? Wrong! We lied! Well, when you first lern out integrtion it s convenient fiction tht s true in

More information

Conducting Ellipsoid and Circular Disk

Conducting Ellipsoid and Circular Disk 1 Problem Conducting Ellipsoid nd Circulr Disk Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 (September 1, 00) Show tht the surfce chrge density σ on conducting ellipsoid,

More information

Math 324 Course Notes: Brief description

Math 324 Course Notes: Brief description Brief description These re notes for Mth 324, n introductory course in Mesure nd Integrtion. Students re dvised to go through ll sections in detil nd ttempt ll problems. These notes will be modified nd

More information

The Dirac distribution

The Dirac distribution A DIRAC DISTRIBUTION A The Dirc distribution A Definition of the Dirc distribution The Dirc distribution δx cn be introduced by three equivlent wys Dirc [] defined it by reltions δx dx, δx if x The distribution

More information

Convex Sets and Functions

Convex Sets and Functions B Convex Sets nd Functions Definition B1 Let L, +, ) be rel liner spce nd let C be subset of L The set C is convex if, for ll x,y C nd ll [, 1], we hve 1 )x+y C In other words, every point on the line

More information

Problem Set 3

Problem Set 3 14.102 Problem Set 3 Due Tuesdy, October 18, in clss 1. Lecture Notes Exercise 208: Find R b log(t)dt,where0

More information

MATH 409 Advanced Calculus I Lecture 19: Riemann sums. Properties of integrals.

MATH 409 Advanced Calculus I Lecture 19: Riemann sums. Properties of integrals. MATH 409 Advnced Clculus I Lecture 19: Riemnn sums. Properties of integrls. Drboux sums Let P = {x 0,x 1,...,x n } be prtition of n intervl [,b], where x 0 = < x 1 < < x n = b. Let f : [,b] R be bounded

More information

7 - Continuous random variables

7 - Continuous random variables 7-1 Continuous rndom vribles S. Lll, Stnford 2011.01.25.01 7 - Continuous rndom vribles Continuous rndom vribles The cumultive distribution function The uniform rndom vrible Gussin rndom vribles The Gussin

More information

1 i n x i x i 1. Note that kqk kp k. In addition, if P and Q are partition of [a, b], P Q is finer than both P and Q.

1 i n x i x i 1. Note that kqk kp k. In addition, if P and Q are partition of [a, b], P Q is finer than both P and Q. Chpter 6 Integrtion In this chpter we define the integrl. Intuitively, it should be the re under curve. Not surprisingly, fter mny exmples, counter exmples, exceptions, generliztions, the concept of the

More information

3.4 Numerical integration

3.4 Numerical integration 3.4. Numericl integrtion 63 3.4 Numericl integrtion In mny economic pplictions it is necessry to compute the definite integrl of relvlued function f with respect to "weight" function w over n intervl [,

More information

DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS

DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS 3 DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS This chpter summrizes few properties of Cli ord Algebr nd describe its usefulness in e ecting vector rottions. 3.1 De nition of Associtive

More information

Partial Differential Equations

Partial Differential Equations Prtil Differentil Equtions Notes by Robert Piché, Tmpere University of Technology reen s Functions. reen s Function for One-Dimensionl Eqution The reen s function provides complete solution to boundry

More information

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature Lecture notes on Vritionl nd Approximte Methods in Applied Mthemtics - A Peirce UBC Lecture 6: Singulr Integrls, Open Qudrture rules, nd Guss Qudrture (Compiled 6 August 7) In this lecture we discuss the

More information

Notes on Calculus II Integral Calculus. Miguel A. Lerma

Notes on Calculus II Integral Calculus. Miguel A. Lerma Notes on Clculus II Integrl Clculus Miguel A. Lerm November 22, 22 Contents Introduction 5 Chpter. Integrls 6.. Ares nd Distnces. The Definite Integrl 6.2. The Evlution Theorem.3. The Fundmentl Theorem

More information

Chapter 2. Constraints, Lagrange s equations

Chapter 2. Constraints, Lagrange s equations Chpter Constrints, Lgrnge s equtions Section Constrints The position of the prticle or system follows certin rules due to constrints: Holonomic constrint: f (r. r,... r n, t) = 0 Constrints tht re not

More information

The Basic Functional 2 1

The Basic Functional 2 1 2 The Bsic Functionl 2 1 Chpter 2: THE BASIC FUNCTIONAL TABLE OF CONTENTS Pge 2.1 Introduction..................... 2 3 2.2 The First Vrition.................. 2 3 2.3 The Euler Eqution..................

More information

dx dt dy = G(t, x, y), dt where the functions are defined on I Ω, and are locally Lipschitz w.r.t. variable (x, y) Ω.

dx dt dy = G(t, x, y), dt where the functions are defined on I Ω, and are locally Lipschitz w.r.t. variable (x, y) Ω. Chpter 8 Stility theory We discuss properties of solutions of first order two dimensionl system, nd stility theory for specil clss of liner systems. We denote the independent vrile y t in plce of x, nd

More information

x ) dx dx x sec x over the interval (, ).

x ) dx dx x sec x over the interval (, ). Curve on 6 For -, () Evlute the integrl, n (b) check your nswer by ifferentiting. ( ). ( ). ( ).. 6. sin cos 7. sec csccot 8. sec (sec tn ) 9. sin csc. Evlute the integrl sin by multiplying the numertor

More information

Math 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1)

Math 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1) Green s Theorem Mth 3B isussion Session Week 8 Notes Februry 8 nd Mrh, 7 Very shortly fter you lerned how to integrte single-vrible funtions, you lerned the Fundmentl Theorem of lulus the wy most integrtion

More information

Continuous Random Variables

Continuous Random Variables STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is rel-vlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht

More information

Linear Systems with Constant Coefficients

Linear Systems with Constant Coefficients Liner Systems with Constnt Coefficients 4-3-05 Here is system of n differentil equtions in n unknowns: x x + + n x n, x x + + n x n, x n n x + + nn x n This is constnt coefficient liner homogeneous system

More information

Chapter 4. Lebesgue Integration

Chapter 4. Lebesgue Integration 4.2. Lebesgue Integrtion 1 Chpter 4. Lebesgue Integrtion Section 4.2. Lebesgue Integrtion Note. Simple functions ply the sme role to Lebesgue integrls s step functions ply to Riemnn integrtion. Definition.

More information

2 Definitions and Basic Properties of Extended Riemann Stieltjes Integrals

2 Definitions and Basic Properties of Extended Riemann Stieltjes Integrals 2 Definitions nd Bsic Properties of Extended Riemnn Stieltjes Integrls 2.1 Regulted nd Intervl Functions Regulted functions Let X be Bnch spce, nd let J be nonempty intervl in R, which my be bounded or

More information

Math 211A Homework. Edward Burkard. = tan (2x + z)

Math 211A Homework. Edward Burkard. = tan (2x + z) Mth A Homework Ewr Burkr Eercises 5-C Eercise 8 Show tht the utonomous system: 5 Plne Autonomous Systems = e sin 3y + sin cos + e z, y = sin ( + 3y, z = tn ( + z hs n unstble criticl point t = y = z =

More information

Numerical Integration

Numerical Integration Chpter 1 Numericl Integrtion Numericl differentition methods compute pproximtions to the derivtive of function from known vlues of the function. Numericl integrtion uses the sme informtion to compute numericl

More information

Lecture 14: Quadrature

Lecture 14: Quadrature Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be rel-vlues nd smooth The pproximtion of n integrl by numericl

More information

2 b. , a. area is S= 2π xds. Again, understand where these formulas came from (pages ).

2 b. , a. area is S= 2π xds. Again, understand where these formulas came from (pages ). AP Clculus BC Review Chpter 8 Prt nd Chpter 9 Things to Know nd Be Ale to Do Know everything from the first prt of Chpter 8 Given n integrnd figure out how to ntidifferentite it using ny of the following

More information

If u = g(x) is a differentiable function whose range is an interval I and f is continuous on I, then f(g(x))g (x) dx = f(u) du

If u = g(x) is a differentiable function whose range is an interval I and f is continuous on I, then f(g(x))g (x) dx = f(u) du Integrtion by Substitution: The Fundmentl Theorem of Clculus demonstrted the importnce of being ble to find nti-derivtives. We now introduce some methods for finding ntiderivtives: If u = g(x) is differentible

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics SCHOOL OF ENGINEERING & BUIL ENVIRONMEN Mthemtics An Introduction to Mtrices Definition of Mtri Size of Mtri Rows nd Columns of Mtri Mtri Addition Sclr Multipliction of Mtri Mtri Multipliction 7 rnspose

More information

Numerical quadrature based on interpolating functions: A MATLAB implementation

Numerical quadrature based on interpolating functions: A MATLAB implementation SEMINAR REPORT Numericl qudrture bsed on interpolting functions: A MATLAB implementtion by Venkt Ayylsomyjul A seminr report submitted in prtil fulfillment for the degree of Mster of Science (M.Sc) in

More information

Theoretische Physik 2: Elektrodynamik (Prof. A.-S. Smith) Home assignment 4

Theoretische Physik 2: Elektrodynamik (Prof. A.-S. Smith) Home assignment 4 WiSe 1 8.1.1 Prof. Dr. A.-S. Smith Dipl.-Phys. Ellen Fischermeier Dipl.-Phys. Mtthis Sb m Lehrstuhl für Theoretische Physik I Deprtment für Physik Friedrich-Alexnder-Universität Erlngen-Nürnberg Theoretische

More information

Normal Distribution. Lecture 6: More Binomial Distribution. Properties of the Unit Normal Distribution. Unit Normal Distribution

Normal Distribution. Lecture 6: More Binomial Distribution. Properties of the Unit Normal Distribution. Unit Normal Distribution Norml Distribution Lecture 6: More Binomil Distribution If X is rndom vrible with norml distribution with men µ nd vrince σ 2, X N (µ, σ 2, then P(X = x = f (x = 1 e 1 (x µ 2 2 σ 2 σ Sttistics 104 Colin

More information

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions

More information

Homework Assignment 3 Solution Set

Homework Assignment 3 Solution Set Homework Assignment 3 Solution Set PHYCS 44 6 Ferury, 4 Prolem 1 (Griffiths.5(c The potentil due to ny continuous chrge distriution is the sum of the contriutions from ech infinitesiml chrge in the distriution.

More information

Summary of Elementary Calculus

Summary of Elementary Calculus Summry of Elementry Clculus Notes by Wlter Noll (1971) 1 The rel numbers The set of rel numbers is denoted by R. The set R is often visulized geometriclly s number-line nd its elements re often referred

More information

a a a a a a a a a a a a a a a a a a a a a a a a In this section, we introduce a general formula for computing determinants.

a a a a a a a a a a a a a a a a a a a a a a a a In this section, we introduce a general formula for computing determinants. Section 9 The Lplce Expnsion In the lst section, we defined the determinnt of (3 3) mtrix A 12 to be 22 12 21 22 2231 22 12 21. In this section, we introduce generl formul for computing determinnts. Rewriting

More information

COSC 3361 Numerical Analysis I Numerical Integration and Differentiation (III) - Gauss Quadrature and Adaptive Quadrature

COSC 3361 Numerical Analysis I Numerical Integration and Differentiation (III) - Gauss Quadrature and Adaptive Quadrature COSC 336 Numericl Anlysis I Numericl Integrtion nd Dierentition III - Guss Qudrture nd Adptive Qudrture Edgr Griel Fll 5 COSC 336 Numericl Anlysis I Edgr Griel Summry o the lst lecture I For pproximting

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journl of Inequlities in Pure nd Applied Mthemtics GENERALIZATIONS OF THE TRAPEZOID INEQUALITIES BASED ON A NEW MEAN VALUE THEOREM FOR THE REMAINDER IN TAYLOR S FORMULA volume 7, issue 3, rticle 90, 006.

More information

Line Integrals and Entire Functions

Line Integrals and Entire Functions Line Integrls nd Entire Funtions Defining n Integrl for omplex Vlued Funtions In the following setions, our min gol is to show tht every entire funtion n be represented s n everywhere onvergent power series

More information

Lecture 7 notes Nodal Analysis

Lecture 7 notes Nodal Analysis Lecture 7 notes Nodl Anlysis Generl Network Anlysis In mny cses you hve multiple unknowns in circuit, sy the voltges cross multiple resistors. Network nlysis is systemtic wy to generte multiple equtions

More information

Discrete Least-squares Approximations

Discrete Least-squares Approximations Discrete Lest-squres Approximtions Given set of dt points (x, y ), (x, y ),, (x m, y m ), norml nd useful prctice in mny pplictions in sttistics, engineering nd other pplied sciences is to construct curve

More information

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula.

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula. Generliztions of the Ostrowski s inequlity K. S. Anstsiou Aristides I. Kechriniotis B. A. Kotsos Technologicl Eductionl Institute T.E.I.) of Lmi 3rd Km. O.N.R. Lmi-Athens Lmi 3500 Greece Abstrct Using

More information

The Bernoulli Numbers John C. Baez, December 23, x k. x e x 1 = n 0. B k n = n 2 (n + 1) 2

The Bernoulli Numbers John C. Baez, December 23, x k. x e x 1 = n 0. B k n = n 2 (n + 1) 2 The Bernoulli Numbers John C. Bez, December 23, 2003 The numbers re defined by the eqution e 1 n 0 k. They re clled the Bernoulli numbers becuse they were first studied by Johnn Fulhber in book published

More information

Orthogonal Polynomials and Least-Squares Approximations to Functions

Orthogonal Polynomials and Least-Squares Approximations to Functions Chpter Orthogonl Polynomils nd Lest-Squres Approximtions to Functions **4/5/3 ET. Discrete Lest-Squres Approximtions Given set of dt points (x,y ), (x,y ),..., (x m,y m ), norml nd useful prctice in mny

More information

Distance And Velocity

Distance And Velocity Unit #8 - The Integrl Some problems nd solutions selected or dpted from Hughes-Hllett Clculus. Distnce And Velocity. The grph below shows the velocity, v, of n object (in meters/sec). Estimte the totl

More information

Problem Set 9. Figure 1: Diagram. This picture is a rough sketch of the 4 parabolas that give us the area that we need to find. The equations are:

Problem Set 9. Figure 1: Diagram. This picture is a rough sketch of the 4 parabolas that give us the area that we need to find. The equations are: (x + y ) = y + (x + y ) = x + Problem Set 9 Discussion: Nov., Nov. 8, Nov. (on probbility nd binomil coefficients) The nme fter the problem is the designted writer of the solution of tht problem. (No one

More information

dy ky, dt where proportionality constant k may be positive or negative

dy ky, dt where proportionality constant k may be positive or negative Section 1.2 Autonomous DEs of the form 0 The DE y is mthemticl model for wide vriety of pplictions. Some of the pplictions re descried y sying the rte of chnge of y(t) is proportionl to the mount present.

More information

Topic 1 Notes Jeremy Orloff

Topic 1 Notes Jeremy Orloff Topic 1 Notes Jerem Orloff 1 Introduction to differentil equtions 1.1 Gols 1. Know the definition of differentil eqution. 2. Know our first nd second most importnt equtions nd their solutions. 3. Be ble

More information

Analytically, vectors will be represented by lowercase bold-face Latin letters, e.g. a, r, q.

Analytically, vectors will be represented by lowercase bold-face Latin letters, e.g. a, r, q. 1.1 Vector Alger 1.1.1 Sclrs A physicl quntity which is completely descried y single rel numer is clled sclr. Physiclly, it is something which hs mgnitude, nd is completely descried y this mgnitude. Exmples

More information

u( t) + K 2 ( ) = 1 t > 0 Analyzing Damped Oscillations Problem (Meador, example 2-18, pp 44-48): Determine the equation of the following graph.

u( t) + K 2 ( ) = 1 t > 0 Analyzing Damped Oscillations Problem (Meador, example 2-18, pp 44-48): Determine the equation of the following graph. nlyzing Dmped Oscilltions Prolem (Medor, exmple 2-18, pp 44-48): Determine the eqution of the following grph. The eqution is ssumed to e of the following form f ( t) = K 1 u( t) + K 2 e!"t sin (#t + $

More information