Homework 4. (1) If f R[a, b], show that f 3 R[a, b]. If f + (x) = max{f(x), 0}, is f + R[a, b]? Justify your answer.

Save this PDF as:

Size: px
Start display at page:

Download "Homework 4. (1) If f R[a, b], show that f 3 R[a, b]. If f + (x) = max{f(x), 0}, is f + R[a, b]? Justify your answer."

Transcription

1 Homework 4 (1) If f R[, b], show tht f 3 R[, b]. If f + (x) = mx{f(x), 0}, is f + R[, b]? Justify your nswer. (2) Let f be continuous function on [, b] tht is strictly positive except finitely mny points nd ϕ be nondecresing function on [, b]. If ρ is convex function on [0, ), show tht ρ(f) R ϕ [, b]. Moreover, if ϕ(b) ϕ() = 1, show tht (3) Q4 of Tutoril on integrls. (4) Let ρ( f(x)dϕ) ρ(f(x))dϕ. 1 f(x) = if x = m, m, n N nd m nd n hve no common divisor n n 0 otherwise Determine if f is Riemnn integrble on [0, 1]. (5) Let f : [, b] IR be continuous function nd n = ( tht sup{ f(x) : x [, b]} = lim n n. f(x) n dx) 1/n ). Show (6) Let f be bounded function on [, b] such tht f R[c, b] for ll < c < b nd lim c + c f(x)dx exists. Show tht f R[, b] nd f(x)dx = lim c + c. f(x)dx. 51

2 52 Riemnn-Stieltjes integrls ( quick introduction) We will follow Apostol Mthemticl Anlysis (but we will not cover ll). You could lso red the first chpter of Mesure nd integrl by Wheeden nd Zymund for more detil (if you re seriously interested nd hve time to spre). Let ϕ, f : [, b] IR be bounded functions. We would like to extend the Riemnn integrl to f(x)dϕ so tht it is just the usul Riemnn integrl when ϕ(x) = x. Definition: One simple wy is to define this extension s fdϕ =: lim f(ξi )(ϕ(x i ) ϕ(x i 1 )) (if it exists) P 0 where the limit cn be defined s before for the limit of Riemnn sums. However, for esier tretment, we will tke the limit in the following weker sense : for ll ε > 0, there exists prtition P ε of [, b] such tht if P = (P, ξ), P =: = x 0 < x 1 < < x n = b, ξ = {ξ i : i = 1,, n} with ξ i [x i 1, x i ] is tgged prtition of [, b] such tht P is refinement of P ε, then We will write S( P, f, ϕ) γ = f(ξ i )(ϕ(x i ) ϕ(x i 1 )) γ < ε. lim S( P, f, ϕ) = lim f(ξi )(ϕ(x i ) ϕ(x i 1 )) = γ P 0 P 0 nd f R ϕ [, b]. We will sy the Riemnn Stieltjes integrl fdϕ is equl to γ. Unfortuntely, this definition is not equivlent to the one we use before (or the one used in Mesure nd integrl by Wheeden nd Zymund). But they re equivlent in mny cses, for exmple, when ϕ(x) = x (nd do you think they re equivlent when ϕ is continuous?) Uniqueness of limits

3 53 Obviously, there is no reson to expect the limit to exist in generl nd we should expect the limit ro exist if both f nd ϕ re resonbly nice. For exmple, ϕ is usully ssumed to be of bounded vrition. Tht is, n sup{ ϕ(x i ) ϕ(x i 1 ) : = x 0 < x 1 < < x n = b, n N} <. i=1 Note tht piecewise differentible function on [, b] will be of bounded vrition on [, b]. On the other hnd, there is continuous function on [, b] tht is not of bounded vrition. A function is sid to be piecewise differentible on [, b] if there exists prtition P =: = x 0 < x 1 < x n = b such tht f is differentible on (x i 1, x i ) nd f is uniformly continuous on (x i 1, x i ) for ll i. Proof: It suffices to show the cse f is uniformly continuous on (, b). Clssifiction of functions of bounded vrition A function on [, b] is of bounded vrition if nd only if it is difference of two monotone functions on [, b]. Remrk We shll skip the proof s it is stndrd subject treted in Honours yer Anlysis. Exercise: Let ϕ be step function on [, b], tht is there exists prtition P s bove such tht ϕ is constnt on (x i 1, x i ) for ll i. Then show tht for ny continuous function f on [, b], n 1 n fdϕ = f(x i )(ϕ(x + i ) ϕ(x i )) + f(x i )(ϕ(x i ) ϕ(x i )). i=0 i=1 Give n exmple of f nd ϕ such tht f is not Riemnn Stieltjes integrble. Cn you give generl criteri for tht?

4 54 The following theorems re esy consequences of the definition of the Riemnn- Stieltjes integrl. Linerity of Riemnn-Stieltjes integrls (9.2,9.3 Apostol) (i) If fdϕ exists, then so do cfdϕ nd fd(cϕ) for ny constnt c; moreover, cfdϕ = fd(cϕ) = c fdϕ. (ii) If both f 1dϕ nd f 2dϕ exist, then so does (f 1 + f 2 )dϕ, moreover, (f 1 + f 2 )dϕ = f 1 dϕ + f 2 dϕ. (iii) If both fdϕ 1 nd fdϕ 2 exist, then so does fd(ϕ 1 + ϕ 2 ), moreover, Proof. fd(ϕ 1 + ϕ 2 ) = fdϕ 1 + fdϕ 2.

5 Theorem (9.4 Apostol) : Let c (, b). If two of the following three integrls in ( ) exist, then the third lso exists nd we hve 55 fdϕ = c fdϕ + c fdϕ ( ). Remrk Unfortuntely, this is not true under the other definition of Riemnn Stieltjes integrls (see Wheeden nd Zygmund). Tht is, there re functions f nd ϕ such tht both 1 0 fdϕ nd 0 1 fdϕ exist but 1 1 fdϕ does not exist (under the other definition, the exmple cn be found in Wheeden nd Zygmund ). In generl, under our definition, if f R ϕ [, b], then f R ϕ [, c] nd lso in R ϕ [c, b]. Theorem (Integrtion by prts, Apostol 9.6) ϕdf nd b ϕdf = f(b)ϕ(b) f()ϕ() If fdϕ exists, then so does fdϕ. Proof. Here is key observtion: n n+1 ϕ(ξ i )(f(x i ) f(x i 1 )) = f(b)ϕ(b) f()ϕ() f(x i 1 )(ϕ(ξ i ) ϕ(ξ i 1 )) i=1 i=1 = f(b)ϕ(b) f()ϕ() n+1 i=1 with ξ 0 = nd ξ n+1 = b. Note tht f(x i 1 )[(ϕ(x i 1 ) ϕ(ξ i 1 )) + (ϕ(ξ i ) ϕ(x i 1 )] ( 1) P o =: ξ 0 = x 0 ξ 1 x 1 ξ n x n = ξ n+1 = b is prtition of [, b] nd refinement of P =: x 0 < < x n = b. Thus if P ε is prtition of [, b] such tht S(f, P, ϕ) γ < ε for ny tgged prtition P tht is refinement of P ε ( 2)

6 56 We my ssume P =: x 0 < < x n = b, ξ i [x i 1, x i ], i = 1,, n. Then P o s bove is refinement of P (nd hence refinement of P ε ). By ( 2), we hve n+1 i=1 f(x i 1 )[(ϕ(x i 1 ) ϕ(ξ i 1 )) + (ϕ(ξ i ) ϕ(x i 1 )] γ < ε. Theorem (9.26 Apostol) [, b]), then fdϕ exists. If f is continuous nd ϕ is of bounded vrition (on Chnge of vribles (9.7 Apostol) Let fdϕ exist nd let g be strictly monotonic continuous function on [c, d] (or [d, c] with = g(c), b = g(d). Let h = f(g(x)) nd β(x) = ϕ(g(x)). Then d c hdβ exists nd = integrl will pply. fdϕ. Note tht in cse c > d, stndrd interprettion of the Theorem (Apostol 9.8) If fdϕ exists nd ϕ is continuously differentible (on [, b]), then fϕ dx exists nd = fdϕ.

7 Riemnn integrls nd sequences of functions Let (f n ) R ϕ [, b] nd (f n ) converges uniformly to f on [, b]. If ϕ is of bounded vrition on [, b], then f 57 R ϕ [, b] nd Proof. fdϕ = lim f n (x)dϕ. n Exmple nd ppliction ( 1) k. Derivtive of 1 0 k sin(xt2 )dt. k=1

8 58 Finl Remrks (1) Uniform convergence is too stringent, indeed, the following is true (but difficult to prove using Riemnn theory). Bounded convergence theorem Let (f n ) R[, b] nd (f n ) converges (pointwise) to f on [, b]. If f R[, b] nd there exists M > 0 such tht f n (x) M for ll x [, b] nd n N. Then fdx = lim f n (x)dx. n Its proof is very simple using Lebesgue s theory but complicted using only elementry tool. One could lso chnge uniformly bounded to monotone. Note tht it is necessry to ssume its limit function to be Riemnn integrble (s limit function in these two cses need not be Riemnn integrble nd this is the min problem of Riemnn theory). I m sorry tht you re not llowed to use these two fcts (2) Necessry nd sufficient conditions for Riemnn integrbility A bounded function f on [, b] is Riemnn integrble if nd only if it is continuous t lmost every point in [, b]. Tht is, f is continuous on [, b] \ E such tht E hs mesure 0 (i.e., for ny ε > 0, there exists {( i, b i )} i=1, E i=1( i, b i ) nd i=1 b i i < ε. Exmple: the following function is Riemnn integrble on [0, 1]: 1, if x = 1/n, n N f(x) = 0, otherwise. As the proof using Lebesgue theory of integrtion is much simpler, we shll not prove it in this module. However, if you re interested (nd hve time to spre), you could tke look of proof of Theorem 6.18 nd 6.19 (which is elementry but complicted). I m sorry tht you re not llowed to use this theorem in this module.

9 59 Improper integrls It seems too stringent to require function to be bounded before we could define integrls. Menwhile, we would lso like to define integrl on unbounded intervls. For these two purposes, We will need to extend Riemnn integrls to unbounded functions nd/or unbounded domins. First, we will define integrls for (possibly) unbounded functions. Let us recll n obvious fct: If f R[, b], then f(x)dx = lim f(x)dx. We will now define improper inte- c + c grls. Let f : (, b] IR be such tht f R[c, b] for ll < c < b. We could define the integrl by tking limit: f(x)dx = lim f(x)dx r + r nd we will sy the improper integrl converges if the limit exists. Otherwise, we shll sy the improper integrl diverges (even if the limit equls to or ). Exmple f(x) = sin x x, g(x) = 1, h(x) = 1 x x.

10 60 Of course, Similr definition cn be defined if f R[, c] for ll < c < b. Exmple Next, if there exists c (, b) such tht f R[, c ε] nd f R[c + ε, b] for ll ε > 0 such tht < c ε nd c + ε < b, we will define r fdx = lim f(x)dx + lim f(x)dx if both limits exist. r c r c + c We could then extend the bove definition to more complicted cses. Next, we define integrls on unbounded intervls. Let us ssume f : [, ) IR such tht f R[, b] for ll b >. Then we define K f(x)dx = lim f(x)dx if the limit exists K nd we shll sy the improper integrl converges. Similr definition cn be defined for functions on (, b].

11 However, on (, ), if f R[, b] for ll [, b] (, ) nd tht both the limits we define K lim K 0 f(x)dx, lim K 0 K f(x)dx exist K 0 f(x)dx = lim f(x)dx + lim f(x)dx K 0 K K nd we will then sy the improper integrl exists. Note tht the choice of 0 s intermedite point is just for convenient, one could certinly just use ny point other thn Exmple Finl Remrk: Essentil questions (1) Why the choice of intermedite point cn be rbitrry? (2) Why integrl test for infinite series work? (3) Is there n lternting integrl test insted of lternting series test? Hint: use integrtion by prts. (4) Why does Cuchy criterion work for improper integrl? It is needed when we do not know the limit nd for comprison test to work.

12 62 Tutoril (1) Let lim f(x)/g(x) = L 0 nd f(x), g(x) re nonnegtive continuous func- x b tions on [, b). If g(x)dx converges, show tht (2) Test of convergence of ech of the following improper integrls: 1 xdx 1 (i) 0 1 (ii) (log x) 2 dx x 0 (iii) e t2 t 2 sin x dt (iv) dx x (3) (v) (vii) 0 1 e cos x x dx (vi) sin x cos 2x dx 0 x e t sin tdt (viii) e t2 t 2 dt f(x)dx lso converges. (ix) log xdx (x) x log xdx 0 0 ( ) sin x 2 (xi) dx 0 x f(x, t)dx is sid to converge to F (t) uniformly on I if given ny ε > 0, there exists N > 0 such tht r f(x, t)dx F (t) < ε for ll r N, t I. Of course we re ssuming f t (x) = f(x, t) R[, c] for ll c > nd t I. Similr definition cn then be defined for improper integrls on [, b]. Test of uniform convergence of ech of the following improper integrls on the indicted intervls: (i) (ii) (iii) (iv) 1 0 (log t) 3 dt, x 0; 1 + xt x sin xy dy, x for ny > 0; x + y te xt dt, x for ny > 0; sin xt dt, t x IR.

Chapter 6. Riemann Integral

Introduction to Riemnn integrl Chpter 6. Riemnn Integrl Won-Kwng Prk Deprtment of Mthemtics, The College of Nturl Sciences Kookmin University Second semester, 2015 1 / 41 Introduction to Riemnn integrl

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60.

Mth 104: finl informtion The finl exm will tke plce on Fridy My 11th from 8m 11m in Evns room 60. The exm will cover ll prts of the course with equl weighting. It will cover Chpters 1 5, 7 15, 17 21, 23

Lecture 1. Functional series. Pointwise and uniform convergence.

1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is

Properties of the Riemann Stieltjes Integral

Properties of the Riemnn Stieltjes Integrl Theorem (Linerity Properties) Let < c < d < b nd A,B IR nd f,g,α,β : [,b] IR. () If f,g R(α) on [,b], then Af +Bg R(α) on [,b] nd [ ] b Af +Bg dα A +B (b) If

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE 1. Pointwise Convergence of Sequence Let E be set nd Y be metric spce. Consider functions f n : E Y for n = 1, 2,.... We sy tht the sequence

MATH 409 Advanced Calculus I Lecture 19: Riemann sums. Properties of integrals.

MATH 409 Advnced Clculus I Lecture 19: Riemnn sums. Properties of integrls. Drboux sums Let P = {x 0,x 1,...,x n } be prtition of n intervl [,b], where x 0 = < x 1 < < x n = b. Let f : [,b] R be bounded

Math 554 Integration

Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we

Sections 5.2: The Definite Integral

Sections 5.2: The Definite Integrl In this section we shll formlize the ides from the lst section to functions in generl. We strt with forml definition.. The Definite Integrl Definition.. Suppose f(x)

MAT612-REAL ANALYSIS RIEMANN STIELTJES INTEGRAL

MAT612-REAL ANALYSIS RIEMANN STIELTJES INTEGRAL DR. RITU AGARWAL MALVIYA NATIONAL INSTITUTE OF TECHNOLOGY, JAIPUR, INDIA-302017 Tble of Contents Contents Tble of Contents 1 1. Introduction 1 2. Prtition

Chapter 4. Lebesgue Integration

4.2. Lebesgue Integrtion 1 Chpter 4. Lebesgue Integrtion Section 4.2. Lebesgue Integrtion Note. Simple functions ply the sme role to Lebesgue integrls s step functions ply to Riemnn integrtion. Definition.

1 i n x i x i 1. Note that kqk kp k. In addition, if P and Q are partition of [a, b], P Q is finer than both P and Q.

Chpter 6 Integrtion In this chpter we define the integrl. Intuitively, it should be the re under curve. Not surprisingly, fter mny exmples, counter exmples, exceptions, generliztions, the concept of the

Mapping the delta function and other Radon measures

Mpping the delt function nd other Rdon mesures Notes for Mth583A, Fll 2008 November 25, 2008 Rdon mesures Consider continuous function f on the rel line with sclr vlues. It is sid to hve bounded support

Integrals along Curves.

Integrls long Curves. 1. Pth integrls. Let : [, b] R n be continuous function nd let be the imge ([, b]) of. We refer to both nd s curve. If we need to distinguish between the two we cll the function the

Lecture 3. Limits of Functions and Continuity

Lecture 3 Limits of Functions nd Continuity Audrey Terrs April 26, 21 1 Limits of Functions Notes I m skipping the lst section of Chpter 6 of Lng; the section bout open nd closed sets We cn probbly live

Week 7 Riemann Stieltjes Integration: Lectures 19-21

Week 7 Riemnn Stieltjes Integrtion: Lectures 19-21 Lecture 19 Throughout this section α will denote monotoniclly incresing function on n intervl [, b]. Let f be bounded function on [, b]. Let P = { = 0

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b

CHAPTER 5. INTEGRALS 61 where nd x = b n x i = 1 (x i 1 + x i ) = midpoint of [x i 1, x i ]. Problem 168 (Exercise 1, pge 377). Use the Midpoint Rule with the n = 4 to pproximte 5 1 x e x dx. Some quick

Week 10: Riemann integral and its properties

Clculus nd Liner Algebr for Biomedicl Engineering Week 10: Riemnn integrl nd its properties H. Führ, Lehrstuhl A für Mthemtik, RWTH Achen, WS 07 Motivtion: Computing flow from flow rtes 1 We observe the

Line Integrals. Partitioning the Curve. Estimating the Mass

Line Integrls Suppose we hve curve in the xy plne nd ssocite density δ(p ) = δ(x, y) t ech point on the curve. urves, of course, do not hve density or mss, but it my sometimes be convenient or useful to

New Expansion and Infinite Series

Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06-073 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University

MATH 409 Advanced Calculus I Lecture 22: Improper Riemann integrals.

MATH 409 Advned Clulus I Leture 22: Improper Riemnn integrls. Improper Riemnn integrl If funtion f : [,b] R is integrble on [,b], then the funtion F(x) = x f(t)dt is well defined nd ontinuous on [,b].

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further

Riemann Integrals and the Fundamental Theorem of Calculus

Riemnn Integrls nd the Fundmentl Theorem of Clculus Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University September 16, 2013 Outline Grphing Riemnn Sums

Big idea in Calculus: approximation

Big ide in Clculus: pproximtion Derivtive: f (x) = df dx f f(x +h) f(x) =, x h rte of chnge is pproximtely the rtio of chnges in the function vlue nd in the vrible in very short time Liner pproximtion:

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

Math 324 Course Notes: Brief description

Brief description These re notes for Mth 324, n introductory course in Mesure nd Integrtion. Students re dvised to go through ll sections in detil nd ttempt ll problems. These notes will be modified nd

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.

NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with

Lecture 19: Continuous Least Squares Approximation

Lecture 19: Continuous Lest Squres Approximtion 33 Continuous lest squres pproximtion We begn 31 with the problem of pproximting some f C[, b] with polynomil p P n t the discrete points x, x 1,, x m for

We know that if f is a continuous nonnegative function on the interval [a, b], then b

1 Ares Between Curves c 22 Donld Kreider nd Dwight Lhr We know tht if f is continuous nonnegtive function on the intervl [, b], then f(x) dx is the re under the grph of f nd bove the intervl. We re going

Mathematical Analysis: Supplementary notes I

Mthemticl Anlysis: Supplementry notes I 0 FIELDS The rel numbers, R, form field This mens tht we hve set, here R, nd two binry opertions ddition, + : R R R, nd multipliction, : R R R, for which the xioms

Introduction to Real Analysis (Math 315) Martin Bohner

ntroduction to Rel Anlysis (Mth 315) Spring 2005 Lecture Notes Mrtin Bohner Author ddress: Version from April 20, 2005 Deprtment of Mthemtics nd Sttistics, University of Missouri Roll, Roll, Missouri 65409-0020

Euler-Maclaurin Summation Formula 1

Jnury 9, Euler-Mclurin Summtion Formul Suppose tht f nd its derivtive re continuous functions on the closed intervl [, b]. Let ψ(x) {x}, where {x} x [x] is the frctionl prt of x. Lemm : If < b nd, b Z,

a n+2 a n+1 M n a 2 a 1. (2)

Rel Anlysis Fll 004 Tke Home Finl Key 1. Suppose tht f is uniformly continuous on set S R nd {x n } is Cuchy sequence in S. Prove tht {f(x n )} is Cuchy sequence. (f is not ssumed to be continuous outside

Best Approximation in the 2-norm

Jim Lmbers MAT 77 Fll Semester 1-11 Lecture 1 Notes These notes correspond to Sections 9. nd 9.3 in the text. Best Approximtion in the -norm Suppose tht we wish to obtin function f n (x) tht is liner combintion

Math Calculus with Analytic Geometry II

orem of definite Mth 5.0 with Anlytic Geometry II Jnury 4, 0 orem of definite If < b then b f (x) dx = ( under f bove x-xis) ( bove f under x-xis) Exmple 8 0 3 9 x dx = π 3 4 = 9π 4 orem of definite Problem

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Czechoslovk Mthemticl Journl, 55 (130) (2005), 933 940 ESTIMATES OF THE REMAINDER IN TAYLOR S THEOREM USING THE HENSTOCK-KURZWEIL INTEGRAL, Abbotsford (Received Jnury 22, 2003) Abstrct. When rel-vlued

Necessary and Sufficient Conditions for Differentiating Under the Integral Sign

Necessry nd Sufficient Conditions for Differentiting Under the Integrl Sign Erik Tlvil 1. INTRODUCTION. When we hve n integrl tht depends on prmeter, sy F(x f (x, y dy, it is often importnt to know when

(0.0)(0.1)+(0.3)(0.1)+(0.6)(0.1)+ +(2.7)(0.1) = 1.35

7 Integrtion º½ ÌÛÓ Ü ÑÔÐ Up to now we hve been concerned with extrcting informtion bout how function chnges from the function itself. Given knowledge bout n object s position, for exmple, we wnt to know

Math 113 Exam 2 Practice

Mth Em Prctice Februry, 8 Em will cover sections 6.5, 7.-7.5 nd 7.8. This sheet hs three sections. The first section will remind you bout techniques nd formuls tht you should know. The second gives number

Anonymous Math 361: Homework 5. x i = 1 (1 u i )

Anonymous Mth 36: Homewor 5 Rudin. Let I be the set of ll u (u,..., u ) R with u i for ll i; let Q be the set of ll x (x,..., x ) R with x i, x i. (I is the unit cube; Q is the stndrd simplex in R ). Define

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27-233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.

Best Approximation. Chapter The General Case

Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given

MATH 409 Advanced Calculus I Lecture 18: Darboux sums. The Riemann integral.

MATH 409 Advnced Clculus I Lecture 18: Drboux sums. The Riemnn integrl. Prtitions of n intervl Definition. A prtition of closed bounded intervl [, b] is finite subset P [,b] tht includes the endpoints

Math 360: A primitive integral and elementary functions

Mth 360: A primitive integrl nd elementry functions D. DeTurck University of Pennsylvni October 16, 2017 D. DeTurck Mth 360 001 2017C: Integrl/functions 1 / 32 Setup for the integrl prtitions Definition:

Math 113 Exam 1-Review

Mth 113 Exm 1-Review September 26, 2016 Exm 1 covers 6.1-7.3 in the textbook. It is dvisble to lso review the mteril from 5.3 nd 5.5 s this will be helpful in solving some of the problems. 6.1 Are Between

Calculus and linear algebra for biomedical engineering Week 11: The Riemann integral and its properties

Clculus nd liner lgebr for biomedicl engineering Week 11: The Riemnn integrl nd its properties Hrtmut Führ fuehr@mth.rwth-chen.de Lehrstuhl A für Mthemtik, RWTH Achen Jnury 9, 2009 Overview 1 Motivtion:

MA Handout 2: Notation and Background Concepts from Analysis

MA350059 Hndout 2: Nottion nd Bckground Concepts from Anlysis This hndout summrises some nottion we will use nd lso gives recp of some concepts from other units (MA20023: PDEs nd CM, MA20218: Anlysis 2A,

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula.

Generliztions of the Ostrowski s inequlity K. S. Anstsiou Aristides I. Kechriniotis B. A. Kotsos Technologicl Eductionl Institute T.E.I.) of Lmi 3rd Km. O.N.R. Lmi-Athens Lmi 3500 Greece Abstrct Using

38 Riemann sums and existence of the definite integral.

38 Riemnn sums nd existence of the definite integrl. In the clcultion of the re of the region X bounded by the grph of g(x) = x 2, the x-xis nd 0 x b, two sums ppered: ( n (k 1) 2) b 3 n 3 re(x) ( n These

More Properties of the Riemann Integral

More Properties of the Riemnn Integrl Jmes K. Peterson Deprtment of Biologil Sienes nd Deprtment of Mthemtil Sienes Clemson University Februry 15, 2018 Outline More Riemnn Integrl Properties The Fundmentl

NOTES AND PROBLEMS: INTEGRATION THEORY

NOTES AND PROBLEMS: INTEGRATION THEORY SAMEER CHAVAN Abstrct. These re the lecture notes prepred for prticipnts of AFS-I to be conducted t Kumun University, Almor from 1st to 27th December, 2014. Contents

Math 8 Winter 2015 Applications of Integration

Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

20 MATHEMATICS POLYNOMIALS

0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of

FINALTERM EXAMINATION 2011 Calculus &. Analytical Geometry-I

FINALTERM EXAMINATION 011 Clculus &. Anlyticl Geometry-I Question No: 1 { Mrks: 1 ) - Plese choose one If f is twice differentible function t sttionry point x 0 x 0 nd f ''(x 0 ) > 0 then f hs reltive...

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions.

Rel Vribles, Fll 2014 Problem set 5 Solution suggestions Exerise 1. Let f be bsolutely ontinuous on [, b] Show tht nd T b (f) P b (f) f (x) dx [f ] +. Conlude tht if f is in AC then it is the differene

Calculus MATH 172-Fall 2017 Lecture Notes

Clculus MATH 172-Fll 2017 Lecture Notes These notes re concise summry of wht hs been covered so fr during the lectures. All the definitions must be memorized nd understood. Sttements of importnt theorems

The Wave Equation I. MA 436 Kurt Bryan

1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

The Riemann-Stieltjes Integral

Chpter 6 The Riemnn-Stieltjes Integrl 6.1. Definition nd Eistene of the Integrl Definition 6.1. Let, b R nd < b. ( A prtition P of intervl [, b] is finite set of points P = { 0, 1,..., n } suh tht = 0

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).

The Fundmentl Theorems of Clculus Mth 4, Section 0, Spring 009 We now know enough bout definite integrls to give precise formultions of the Fundmentl Theorems of Clculus. We will lso look t some bsic emples

Math 115 ( ) Yum-Tong Siu 1. Lagrange Multipliers and Variational Problems with Constraints. F (x,y,y )dx

Mth 5 2006-2007) Yum-Tong Siu Lgrnge Multipliers nd Vritionl Problems with Constrints Integrl Constrints. Consider the vritionl problem of finding the extremls for the functionl J[y] = F x,y,y )dx with

13.3 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS

33 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS As simple ppliction of the results we hve obtined on lgebric extensions, nd in prticulr on the multiplictivity of extension degrees, we cn nswer (in

Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be rel-vlues nd smooth The pproximtion of n integrl by numericl

2 Definitions and Basic Properties of Extended Riemann Stieltjes Integrals

2 Definitions nd Bsic Properties of Extended Riemnn Stieltjes Integrls 2.1 Regulted nd Intervl Functions Regulted functions Let X be Bnch spce, nd let J be nonempty intervl in R, which my be bounded or

MATH 174A: PROBLEM SET 5. Suggested Solution

MATH 174A: PROBLEM SET 5 Suggested Solution Problem 1. Suppose tht I [, b] is n intervl. Let f 1 b f() d for f C(I; R) (i.e. f is continuous rel-vlued function on I), nd let L 1 (I) denote the completion

Henstock Kurzweil delta and nabla integrals

Henstock Kurzweil delt nd nbl integrls Alln Peterson nd Bevn Thompson Deprtment of Mthemtics nd Sttistics, University of Nebrsk-Lincoln Lincoln, NE 68588-0323 peterso@mth.unl.edu Mthemtics, SPS, The University

A Convergence Theorem for the Improper Riemann Integral of Banach Space-valued Functions

Interntionl Journl of Mthemticl Anlysis Vol. 8, 2014, no. 50, 2451-2460 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/10.12988/ijm.2014.49294 A Convergence Theorem for the Improper Riemnn Integrl of Bnch

Math 3B Final Review

Mth 3B Finl Review Written by Victori Kl vtkl@mth.ucsb.edu SH 6432u Office Hours: R 9:45-10:45m SH 1607 Mth Lb Hours: TR 1-2pm Lst updted: 12/06/14 This is continution of the midterm review. Prctice problems

For a continuous function f : [a; b]! R we wish to define the Riemann integral

Supplementry Notes for MM509 Topology II 2. The Riemnn Integrl Andrew Swnn For continuous function f : [; b]! R we wish to define the Riemnn integrl R b f (x) dx nd estblish some of its properties. This

Riemann Stieltjes Integration - Definition and Existence of Integral

- Definition nd Existence of Integrl Dr. Adity Kushik Directorte of Distnce Eduction Kurukshetr University, Kurukshetr Hryn 136119 Indi. Prtition Riemnn Stieltjes Sums Refinement Definition Given closed

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:

Improper Integrls The First Fundmentl Theorem of Clculus, s we ve discussed in clss, goes s follows: If f is continuous on the intervl [, ] nd F is function for which F t = ft, then ftdt = F F. An integrl

STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0.

STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA STEPHEN SCHECTER. The unit step function nd piecewise continuous functions The Heviside unit step function u(t) is given by if t

Continuous Random Variables

STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is rel-vlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1

Difference Equtions to Differentil Equtions Section.8 Distnce, Position, nd the Length of Curves Although we motivted the definition of the definite integrl with the notion of re, there re mny pplictions

Test 3 Review. Jiwen He. I will replace your lowest test score with the percentage grade from the final exam (provided it is higher).

Test 3 Review Jiwen He Test 3 Test 3: Dec. 4-6 in CASA Mteril - Through 6.3. No Homework (Thnksgiving) No homework this week! Hve GREAT Thnksgiving! Finl Exm Finl Exm: Dec. 14-17 in CASA You Might Be Interested

MTH 122 Fall 2008 Essex County College Division of Mathematics Handout Version 10 1 October 14, 2008

MTH 22 Fll 28 Essex County College Division of Mthemtics Hndout Version October 4, 28 Arc Length Everyone should be fmilir with the distnce formul tht ws introduced in elementry lgebr. It is bsic formul

Numerical integration

2 Numericl integrtion This is pge i Printer: Opque this 2. Introduction Numericl integrtion is problem tht is prt of mny problems in the economics nd econometrics literture. The orgniztion of this chpter

CS667 Lecture 6: Monte Carlo Integration 02/10/05

CS667 Lecture 6: Monte Crlo Integrtion 02/10/05 Venkt Krishnrj Lecturer: Steve Mrschner 1 Ide The min ide of Monte Crlo Integrtion is tht we cn estimte the vlue of n integrl by looking t lrge number of

440-2 Geometry/Topology: Differentiable Manifolds Northwestern University Solutions of Practice Problems for Final Exam

440-2 Geometry/Topology: Differentible Mnifolds Northwestern University Solutions of Prctice Problems for Finl Exm 1) Using the cnonicl covering of RP n by {U α } 0 α n, where U α = {[x 0 : : x n ] RP

different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s).

Mth 1A with Professor Stnkov Worksheet, Discussion #41; Wednesdy, 12/6/217 GSI nme: Roy Zho Problems 1. Write the integrl 3 dx s limit of Riemnn sums. Write it using 2 intervls using the 1 x different

Math 4200: Homework Problems

Mth 4200: Homework Problems Gregor Kovčič 1. Prove the following properties of the binomil coefficients ( n ) ( n ) (i) 1 + + + + 1 2 ( n ) (ii) 1 ( n ) ( n ) + 2 + 3 + + n 2 3 ( ) n ( n + = 2 n 1 n) n,

Improper Integrals. Introduction. Type 1: Improper Integrals on Infinite Intervals. When we defined the definite integral.

Improper Integrls Introduction When we defined the definite integrl f d we ssumed tht f ws continuous on [, ] where [, ] ws finite, closed intervl There re t lest two wys this definition cn fil to e stisfied:

arxiv: v1 [math.ca] 9 Jun 2011

Men vlue integrl inequlities rxiv:1106.1807v1 [mth.ca] 9 Jun 2011 June, 2011 Rodrigo López Pouso Deprtment of Mthemticl Anlysis Fculty of Mthemtics, University of Sntigo de Compostel, 15782 Sntigo de Compostel,

Orthogonal Polynomials and Least-Squares Approximations to Functions

Chpter Orthogonl Polynomils nd Lest-Squres Approximtions to Functions **4/5/3 ET. Discrete Lest-Squres Approximtions Given set of dt points (x,y ), (x,y ),..., (x m,y m ), norml nd useful prctice in mny

7 - Continuous random variables

7-1 Continuous rndom vribles S. Lll, Stnford 2011.01.25.01 7 - Continuous rndom vribles Continuous rndom vribles The cumultive distribution function The uniform rndom vrible Gussin rndom vribles The Gussin

Functions of bounded variation

Division for Mthemtics Mrtin Lind Functions of bounded vrition Mthemtics C-level thesis Dte: 2006-01-30 Supervisor: Viktor Kold Exminer: Thoms Mrtinsson Krlstds universitet 651 88 Krlstd Tfn 054-700 10

1 Error Analysis of Simple Rules for Numerical Integration

cs41: introduction to numericl nlysis 11/16/10 Lecture 19: Numericl Integrtion II Instructor: Professor Amos Ron Scries: Mrk Cowlishw, Nthnel Fillmore 1 Error Anlysis of Simple Rules for Numericl Integrtion

Lecture notes on Vritionl nd Approximte Methods in Applied Mthemtics - A Peirce UBC Lecture 6: Singulr Integrls, Open Qudrture rules, nd Guss Qudrture (Compiled 6 August 7) In this lecture we discuss the

Journal of Inequalities in Pure and Applied Mathematics

Journl of Inequlities in Pure nd Applied Mthemtics GENERALIZATIONS OF THE TRAPEZOID INEQUALITIES BASED ON A NEW MEAN VALUE THEOREM FOR THE REMAINDER IN TAYLOR S FORMULA volume 7, issue 3, rticle 90, 006.

KOÇ UNIVERSITY MATH 106 FINAL EXAM JANUARY 6, 2013

KOÇ UNIVERSITY MATH 6 FINAL EXAM JANUARY 6, 23 Durtion of Exm: 2 minutes INSTRUCTIONS: No clcultors nd no cell phones my be used on the test. No questions, nd tlking llowed. You must lwys explin your nswers

u(t)dt + i a f(t)dt f(t) dt b f(t) dt (2) With this preliminary step in place, we are ready to define integration on a general curve in C.

Lecture 4 Complex Integrtion MATH-GA 2451.001 Complex Vriles 1 Construction 1.1 Integrting complex function over curve in C A nturl wy to construct the integrl of complex function over curve in the complex

The problems that follow illustrate the methods covered in class. They are typical of the types of problems that will be on the tests.

ADVANCED CALCULUS PRACTICE PROBLEMS JAMES KEESLING The problems tht follow illustrte the methods covered in clss. They re typicl of the types of problems tht will be on the tests. 1. Riemnn Integrtion

Summer MTH142 College Calculus 2. Section J. Lecture Notes. Yin Su University at Buffalo

Summer 6 MTH4 College Clculus Section J Lecture Notes Yin Su University t Bufflo yinsu@bufflo.edu Contents Bsic techniques of integrtion 3. Antiderivtive nd indefinite integrls..............................................

Section 6.1 Definite Integral

Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined

3.4 Numerical integration

3.4. Numericl integrtion 63 3.4 Numericl integrtion In mny economic pplictions it is necessry to compute the definite integrl of relvlued function f with respect to "weight" function w over n intervl [,

If u = g(x) is a differentiable function whose range is an interval I and f is continuous on I, then f(g(x))g (x) dx = f(u) du

Integrtion by Substitution: The Fundmentl Theorem of Clculus demonstrted the importnce of being ble to find nti-derivtives. We now introduce some methods for finding ntiderivtives: If u = g(x) is differentible

Practice final exam solutions

University of Pennsylvni Deprtment of Mthemtics Mth 26 Honors Clculus II Spring Semester 29 Prof. Grssi, T.A. Asher Auel Prctice finl exm solutions 1. Let F : 2 2 be defined by F (x, y (x + y, x y. If

LECTURE 19. Numerical Integration. Z b. is generally thought of as representing the area under the graph of fèxè between the points x = a and

LECTURE 9 Numericl Integrtion Recll from Clculus I tht denite integrl is generlly thought of s representing the re under the grph of fèxè between the points x = nd x = b, even though this is ctully only

Chapter 7 Notes, Stewart 8e. 7.1 Integration by Parts Trigonometric Integrals Evaluating sin m x cos n (x) dx...

Contents 7.1 Integrtion by Prts................................... 2 7.2 Trigonometric Integrls.................................. 8 7.2.1 Evluting sin m x cos n (x)......................... 8 7.2.2 Evluting