Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!


 Allen Neal
 2 years ago
 Views:
Transcription
1 Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid  The German exam is the only valid version! All answers must be written on the regular exam sheets (which are in German).
2
3 Sessionsprüfung Regelungstechnik I Page Question (Modeling, Linarization) 8 Points g (Gravitation) x Water Droplet h Wind (System Input) Figure : Water Droplet Hovering in the Air In this exercise, a linearized model of the system presented in Figure has to be created. The System is a water droplet which is kept from falling by air streaming in vertically upwards direction. The droplet has a diameter of d = 2 [mm] and the water has a density of ρ W = [kg/m 3 ]. The droplet is accelerated by the gravitational force towards the ground with 9.8 [m/s 2 ]. Evaporation effects as well as movements of the droplet in horizontal direction can be neglected. The velocity of the air flow (wind) s(t) at ground level (at h = ) can be arbitrarily adjusted and is denoted with u(t) [m/s]. The magnitude of the flow velocity decreases as the height h [m] increases, the functional relationship is as follows: s(t) = u(t) α h [m/s], where α = [/s] is given as a constant parameter. The vertical position of the droplet is denoted by x. The variable h denotes the general coordinate in vertical direction. The force that pushes the water droplet upwards can be modeled as follows: F a = 2 ρ L c a A v 2 [N], where A [m 2 ] is the area of the droplet, c a =.445 [ ] is the drag coefficient, ρ L =.2 [kg/m 3 ] is the density of air, and v denotes the velocity with which the air flows towards the droplet. a) (3 points) Choose the state vector z(t) = [x(t), ẋ(t)] T and derive the nonlinear state space description of the form dz(t) dt = f(z(t), u(t)), w(t) = g(z(t), u(t)). Use the variable names z (t), z 2 (t), u(t), and w(t). b) (2 points) Calculate the flow velocity u e at ground level, which is necessary for the droplet to stay at the positon z,e = 3 [m] in a state of equilibrium.
4 Page 2 Sessionsprüfung Regelungstechnik I c) (3 points) Linearize the system equations around this equilibrium point (no normalization is required). Express the system equations in the standard form (state space description with the matrices {A, b, c, d}). Express the matrices in general form, i.e. use the variables of the system and do not use their corresponding numerical values.
5 Sessionsprüfung Regelungstechnik I Page 3 Question 2 (Frequency domain, time domain) 8 Points The openloop transfer functions (loop gain) L (s), L 2 (s), L 3 (s), L 4 (s) of 4 control systems are given (see table for solution). Furthermore, the Nyquist plots (see below the diagrams A, B, C and D; plotted for positive frequencies only) of these transfer functions, and the resulting step responses (see on the next page the step responses to 4) of the corresponding closed loop systems are given. Assign the correct Nyquist plot and the correct step response to each of the open loop transfer functions. Use the table provided on the solution page of this question for your solution. You do not need to justify your answers..5 Nyquist Plot A.5 Nyquist Plot B Im Im Re Re.5 Nyquist Plot C.5 Nyquist Plot D Im Im Re Re
6 Page 4 Sessionsprüfung Regelungstechnik I 2 Step Response 2 Step Response 2 Amplitude [ ].5 Amplitude [ ] Time [s] Time [s] 2 Step Response 3 2 Step Response 4 Amplitude [ ].5 Amplitude [ ] Time [s] Time [s]
7 Sessionsprüfung Regelungstechnik I Page 5 Question 3 (Controller Synthesis) 8 Points The department of modeling at your company has created a very accurate model of a system to be controlled. The corresponding dynamics are given by the following transfer function: P (s) = (s + 2 ) (s + 3 ) Your job is to control this system. All tasks of this question can be solved independently of each other. a) (3 points) You have to design a PIcontroller C P I (s) = k p ( + T i s ), with the following specifications on the contol system: The crossover frequency must be at ω c =.85 [rad/s]. The phase marigin must be 45. Calculate the values of the parameters {k p, T i } which lead to a control system that fulfills these specifications. b) (3 points) Your colleague suggests the following PDcontroller as an alternative controller: ( 5 C P D (s) = 2 s + ) 3 Your boss says she wants the one controller which leads to a faster rise time t 9 in a step response analysis. Which controller do you suggest? c) (2 points) Another colleague suggests two different Pcontrollers C P (s) = k p with the following specifications Controller Crossover Frequency ω c Phase Margin C P, = k p,.85 [rad/s] 45 C P,2 = k p,2.5 [rad/s] 45 Your boss supports his intentions as she wants to keep the structures of the controllers as simple as possible. What do you think of your colleagues suggestions? Justify your answer.
8 Page 6 Sessionsprüfung Regelungstechnik I Question 4 (LaplaceTransformation) Points The following subtasks a), b) and c) can be solved independently. a) The two systems Σ and Σ 2 are connected in series. u(t) x(t) y(t) Σ Σ 2 Figure 2: System overview. The output x(t) of Σ is characterized by the following differential equation: ẍ(t) = 4 ẋ(t) 4 x(t) + u(t) with ẋ(t) = x(t) = u(t) =, t. The transfer function of Σ 2 (s) = Y (s) X(s) is given by: Σ 2 (s) = 3 s s + i) ( point) Determine the transfer function of the entire system Σ a (s) = Y (s) ii) iii) U(s). (2 points) The system Σ a (s) is subjected to a step excitation u(t) = h(t), calculate the time domain response y(t). (2 points) Illustrate the time response of ii) in the associated template on the solution page qualitatively. By doing that, also think about the following characteristics: What is the system s static gain? Does the system response overshoot? b) Consider the block diagram in figure 3. x x 2 x 3 y s u 5 s s 2 2 Figure 3: Block diagram. i) ( point) Determine the associated state space description A, B, C, D. ii) (2 points) Determine the transfer function Σ b = Y (s) U(s). c) The time response of another timeinvariant SISO system is given as: y(t) = ( e (t T ) cos (ω(t T ))) h(t T ) with T = ms, ω = π 3 rad/s. i) (2 points) Calculate the transfer function of the system Σ c (s).
9 Sessionsprüfung Regelungstechnik I Page 7 Question 5 (Stabilization / Performance & Robustness) 9 Points You would like to develop a controller for a plant with the following state space representation of its model. [ d 3 dt x(t) = y(t) = [ 4 4 ] [ ] a + 3 x(t) + u(t), x() = (a) a ] x(t). (b) The parameter a specifies the actuator. The larger you choose a in the permissible interval 2 a 2 the more expensive is the actuator. Figure 4 shows the setup of the control system. The control system is used in an environment where it is disturbed by a noise signal n(t) with a frequency of ω n 3 rad /s. r(t) C(s) u(t) P (s) y(t) n Figure 4: Control system with input and output signals. Remark: Solution of a) is required for the solutions of the subsequent questions b)d). But the questions b)e) can be partly solved indepedently from each other. a) (2 points) Determine the transfer function P (s) of the plant with the input signal u(t), output signal y(t) and state vector x(t) in function of the actuator parameter a. Determine also the pole(s) and zero(s) of the plant. b) (3 points) In which range the cross over frequency ω c should be selected such that an appropriate controller C(s) may be designed? Which cross over frequency do you choose if at the same time the actuator costs have to be minimized? Determine also the corresponding actuator parameter a that minimizes the actuator costs. Important remark: Based on a special offer you decide to purchase an actuator with a =. Use this value to solve the following questions c) to e). c) (2 points) You would like to stabilize the control system with a Pcontroller C(s) = k p. Justify why it is surely possible to stabilize the control system for negative values of k p in the range 2 < k p <.3. d) ( point) You use a Pcontroller according to point c) that stabilizes the control system. What is the amplification of a high frequent sensor noise (ω n ) at the output of the control system? e) ( point) Determine the steady state error of the control system for k p =.3.
10 Page 8 Sessionsprüfung Regelungstechnik I Question 6 (BodeDiagram/Nyquist Criterion) Points The following subtasks a) and b) can be solved independently. a) The bodediagram of a critically damped plant with the transfer function P (s) was measured. Figure 5: Bodediagram of the plant with the corresponding transfer function P (s). i) (2 points) Determine the transfer function of the plant P (s) with the aid of the measured bodediagram in figure 5. ii) ( point) The system outlined in figure 6 is controlled using a proportional controller with the transfer function C (s) = k p =. The control system is subjected to a disturbance (unit step) on input w. Will the output of the system return to the original value, without a steady state error? Assume that the system was at equilibrium with r = and y =, prior to the disturbance. r +  C (s) + + w P (s) y Figure 6: Control system for the plant P (s). iii) iv) ( point) Determine the phase margin in case the plant P (s) of exercise i) is controlled by the controller C (s) = k p = according to the structure presented in figure 6 (w = ). ( point) Which structural changes would you consider to apply to C (s) firstly, in order to eliminate the steady state error?
11 Sessionsprüfung Regelungstechnik I Page 9 b) Another control system consists of the plant P 2 (s) and the controller C 2 (s). The transfer function P 2 (s) is known and the Nyquistdiagram of P 2 (s) is given in figure 8. P 2 (s) = s (s + ) 3 (2) Figure 8: Nyquistdiagram of the plant P 2 (s) Figure 7: Blockdiagram of the control system. r +  C 2 (s) P 2 (s) y i) (2 points) The Bodediagram of the controller C 2 (s) is given. Illustrate the according Nyquistdiagram as accurately as possible in the associated template on the solution page. It is not demanded to derive the exact transfer function. Figure 9: Bodediagram of the controller C 2 (s). ii) (3 points) Assume now that a simple Pcontroller C 2 (s) = k p is used. Make use of the Nyquistcriterion in order to calculate the range of k p that leads to an asymptotically stable system.
12 Page Sessionsprüfung Regelungstechnik I Question 7 (System Analysis) 7 Points Consider the model of a geosynchronous satellite as shown in Figure. The gravitational force of the earth is approximately equal to F g = MG r 2 m, where M > is the mass of the earth and G > is its gravitational constant. The mass of the satellite is described by m >. The distance from the satellite to the earth s center of mass is expressed with the radius r >. The centrifugal force counteracts to the gravitational force and is given by (3) F z = m r ω 2, (4) where ω is the rotational velocity of the satellite around the earth. F t ω m F z F g r M Figure : Geosynchronous satellite Assume a thruster with the force F t R is mounted tangential onto the satellite. As a result, the equations of motion for the geosynchronous satellite yield r = r ω 2 MG r 2, ω = F t r m. The linearization about the equilibria, r >, ω >, F t, =, leads to the system of linear equations, i.e. ω MG 2 r r x 3 ω ṙ = x + F t with x = r. (7) r m ω (5) (6)
13 Sessionsprüfung Regelungstechnik I Page a) ( point) State the system matrices {A, b, c, d} for the system of linear equations (7) with the assumption that the radius r and the rotational velocity ω are measured. b) (2 points) In the sense of Lyapunov, is the given system stable, asymptotically stable or unstable? Justify your answer mathematically. c) Given the tangential thruster, is the system controllable? i) (2 points) Make a point about the controllability of the system and justify your answer mathematically. ii) iii) ( point) Assume that the satellite has slightly approached the earth. Is the tangential thruster able to bring the satellite back onto its original orbit? ( point) If yes, does the thruster have to accelerate or decelerate the satellite? If no, why is the thruster not able to do so? d) ( point) How would the system matrices look like, if the tangential thruster was replaced by a radial thruster F r R that acts in the same direction than the centrifugal force? e) (2 points) Which statements hold about the Lyapunov stability, the observability, and the controllability of the new system?
14 Page 2 Sessionsprüfung Regelungstechnik I Question 8 (MultipleChoice) 8 Points Decide whether the following statements are true or false and check the corresponding check box with an X ( ) on the solution page of this question. You are not required to justify your answers. All questions are equally weighted ( Point). There will be a reduction of one point for a wrong answer. Unanswered questions will get points. The minimum sum for all questions is points. a) The differential equation δẋ = δx + 4 δu is the linearization of the nonlinear system ẋ = 4 x + + 3x + u 2 around the equilibrium point {x e =, u e = 2}. b) A constant signal u(t) = at the input of a system with the transfer function Σ(s) = produces for t a constant output signal of 2. s s 2 +6s+5 c) An unstable system with the transfer function s (s 2) C(s) = k p (k p R). can be stabilized by a Pcontroller d) The state space representation {A, b, c, d} of a second order system has the transfer function P (s) = s+3. The system is completely controllable and observable. s 2 +s 6 e) The following state space model {A, b, c, d} represents a realization for a system with the transfer function Σ(s) = s s 3 : [ ] [ ] 2 A =, b =, 3 2 c = [ ], D = [ ] f) The Matlab instruction P = zpk(,[i +i 3],2) defines in Matlab a system with the transfer function P (s) = 2s (s 3)(s 2 2s+2). g) The system with the transfer function Σ(s) = s+7 + s 4 has no system zeros. h) The transfer function of a closed loop system from the reference signal to the output y is T (s) = s+ (complementary sensitivity). The loop gain of the control system is s 2 +4s+ L(s) = s+ s(s+3). Be aware of this fact!
Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!
Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 3.. 24 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid 
More informationPrüfung Regelungstechnik I (Control Systems I) Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!
Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 29. 8. 2 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid
More informationÜbersetzungshilfe / Translation aid (English) To be returned at the end of the exam!
Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 5. 2. 2 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid 
More informationÜbersetzungshilfe / Translation aid (English) To be returned at the end of the exam!
Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 9. 8. 2 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid 
More informationExam. 135 minutes + 15 minutes reading time
Exam January 23, 27 Control Systems I (559L) Prof. Emilio Frazzoli Exam Exam Duration: 35 minutes + 5 minutes reading time Number of Problems: 45 Number of Points: 53 Permitted aids: Important: 4 pages
More informationExam. 135 minutes, 15 minutes reading time
Exam August 15, 2017 Control Systems I (151059100L) Prof Emilio Frazzoli Exam Exam Duration: 135 minutes, 15 minutes reading time Number of Problems: 44 Number of Points: 52 Permitted aids: Important:
More informationClassify a transfer function to see which order or ramp it can follow and with which expected error.
Dr. J. Tani, Prof. Dr. E. Frazzoli 505900 Control Systems I (Autumn 208) Exercise Set 0 Topic: Specifications for Feedback Systems Discussion: 30.. 208 Learning objectives: The student can grizzi@ethz.ch,
More informationControls Problems for Qualifying Exam  Spring 2014
Controls Problems for Qualifying Exam  Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function
More informationModeling and Analysis of Dynamic Systems
Modeling and Analysis of Dynamic Systems Dr. Guillaume Ducard Fall 2017 Institute for Dynamic Systems and Control ETH Zurich, Switzerland G. Ducard c 1 / 54 Outline 1 G. Ducard c 2 / 54 Outline 1 G. Ducard
More informationMAS107 Control Theory Exam Solutions 2008
MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve
More informationExam. 135 minutes, 15 minutes reading time
Exam August 6, 208 Control Systems II (5059000) Dr. Jacopo Tani Exam Exam Duration: 35 minutes, 5 minutes reading time Number of Problems: 35 Number of Points: 47 Permitted aids: 0 pages (5 sheets) A4.
More informationOutline. Classical Control. Lecture 1
Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review
Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the splane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics
More informationRepresent this system in terms of a block diagram consisting only of. g From Newton s law: 2 : θ sin θ 9 θ ` T
Exercise (Block diagram decomposition). Consider a system P that maps each input to the solutions of 9 4 ` 3 9 Represent this system in terms of a block diagram consisting only of integrator systems, represented
More informationState Regulator. Advanced Control. design of controllers using pole placement and LQ design rules
Advanced Control State Regulator Scope design of controllers using pole placement and LQ design rules Keywords pole placement, optimal control, LQ regulator, weighting matrixes Prerequisites Contact state
More informationAutomatic Control A. A.A. 2016/2017 July 7, Corso di Laurea Magistrale in Ingegneria Meccanica. Prof. Luca Bascetta.
Corso di Laurea Magistrale in Ingegneria Meccanica Automatic Control A Prof. Luca Bascetta A.A. 2016/2017 July 7, 2017 Name: Surname: University ID number: Signature: This file consists of 8 pages (including
More informationAnalysis and Synthesis of SingleInput SingleOutput Control Systems
Lino Guzzella Analysis and Synthesis of SingleInput SingleOutput Control Systems l+kja» \Uja>)W2(ja»\ um Contents 1 Definitions and Problem Formulations 1 1.1 Introduction 1 1.2 Definitions 1 1.2.1 Systems
More informationRichiami di Controlli Automatici
Richiami di Controlli Automatici Gianmaria De Tommasi 1 1 Università degli Studi di Napoli Federico II detommas@unina.it Ottobre 2012 Corsi AnsaldoBreda G. De Tommasi (UNINA) Richiami di Controlli Automatici
More informationControl Systems I Lecture 10: System Specifications
Control Systems I Lecture 10: System Specifications Readings: Guzzella, Chapter 10 Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich November 24, 2017 E. Frazzoli (ETH) Lecture
More informationFEEDBACK CONTROL SYSTEMS
FEEDBAC CONTROL SYSTEMS. Control System Design. Open and ClosedLoop Control Systems 3. Why ClosedLoop Control? 4. Case Study  Speed Control of a DC Motor 5. SteadyState Errors in Unity Feedback Control
More informationsc Control Systems Design Q.1, Sem.1, Ac. Yr. 2010/11
sc46  Control Systems Design Q Sem Ac Yr / Mock Exam originally given November 5 9 Notes: Please be reminded that only an A4 paper with formulas may be used during the exam no other material is to be
More informationAutomatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year
Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21211 1 / 39 Feedback
More informationExam in Systems Engineering/Process Control
Department of AUTOMATIC CONTROL Exam in Systems Engineering/Process Control 76 Points and grading All answers must include a clear motivation. Answers may be given in English or Swedish. The total number
More informationControl Systems I. Lecture 2: Modeling. Suggested Readings: Åström & Murray Ch. 23, Guzzella Ch Emilio Frazzoli
Control Systems I Lecture 2: Modeling Suggested Readings: Åström & Murray Ch. 23, Guzzella Ch. 23 Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich September 29, 2017 E. Frazzoli
More informationLecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design.
ISS0031 Modeling and Identification Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design. Aleksei Tepljakov, Ph.D. September 30, 2015 Linear Dynamic Systems Definition
More informationTime Response Analysis (Part II)
Time Response Analysis (Part II). A critically damped, continuoustime, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary
More informationDesign and Tuning of Fractionalorder PID Controllers for Timedelayed Processes
Design and Tuning of Fractionalorder PID Controllers for Timedelayed Processes Emmanuel Edet Technology and Innovation Centre University of Strathclyde 99 George Street Glasgow, United Kingdom emmanuel.edet@strath.ac.uk
More informationTopic # Feedback Control Systems
Topic #1 16.31 Feedback Control Systems Motivation Basic Linear System Response Fall 2007 16.31 1 1 16.31: Introduction r(t) e(t) d(t) y(t) G c (s) G(s) u(t) Goal: Design a controller G c (s) so that the
More informationECE 486 Control Systems
ECE 486 Control Systems Spring 208 Midterm #2 Information Issued: April 5, 208 Updated: April 8, 208 ˆ This document is an info sheet about the second exam of ECE 486, Spring 208. ˆ Please read the following
More informationDesign Methods for Control Systems
Design Methods for Control Systems Maarten Steinbuch TU/e Gjerrit Meinsma UT Dutch Institute of Systems and Control Winter term 20022003 Schedule November 25 MSt December 2 MSt Homework # 1 December 9
More informationLecture 1: Feedback Control Loop
Lecture : Feedback Control Loop Loop Transfer function The standard feedback control system structure is depicted in Figure. This represend(t) n(t) r(t) e(t) u(t) v(t) η(t) y(t) F (s) C(s) P (s) Figure
More informationME 132, Fall 2017, UC Berkeley, A. Packard 334 # 6 # 7 # 13 # 15 # 14
ME 132, Fall 2017, UC Berkeley, A. Packard 334 30.3 Fall 2017 Final # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 NAME 20 15 20 15 15 18 15 20 # 9 # 10 # 11 # 12 # 13 # 14 # 15 # 16 18 12 12 15 12 20 18 15 Facts: 1.
More informationDr Ian R. Manchester
Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the splane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign
More informationControl Systems II. ETH, MAVT, IDSC, Lecture 4 17/03/2017. G. Ducard
Control Systems II ETH, MAVT, IDSC, Lecture 4 17/03/2017 Lecture plan: Control Systems II, IDSC, 2017 SISO Control Design 24.02 Lecture 1 Recalls, Introductory case study 03.03 Lecture 2 Cascaded Control
More informationIC6501 CONTROL SYSTEMS
DHANALAKSHMI COLLEGE OF ENGINEERING CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING YEAR/SEMESTER: II/IV IC6501 CONTROL SYSTEMS UNIT I SYSTEMS AND THEIR REPRESENTATION 1. What is the mathematical
More informationControl Systems I. Lecture 2: Modeling and Linearization. Suggested Readings: Åström & Murray Ch Jacopo Tani
Control Systems I Lecture 2: Modeling and Linearization Suggested Readings: Åström & Murray Ch. 23 Jacopo Tani Institute for Dynamic Systems and Control DMAVT ETH Zürich September 28, 2018 J. Tani, E.
More informationExercises Automatic Control III 2015
Exercises Automatic Control III 205 Foreword This exercise manual is designed for the course "Automatic Control III", given by the Division of Systems and Control. The numbering of the chapters follows
More information100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =
1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot
More information1 x(k +1)=(Φ LH) x(k) = T 1 x 2 (k) x1 (0) 1 T x 2(0) T x 1 (0) x 2 (0) x(1) = x(2) = x(3) =
567 This is often referred to as Þnite settling time or deadbeat design because the dynamics will settle in a Þnite number of sample periods. This estimator always drives the error to zero in time 2T or
More informationIntroduction to Process Control
Introduction to Process Control For more visit : www.mpgirnari.in By: M. P. Girnari (SSEC, Bhavnagar) For more visit: www.mpgirnari.in 1 Contents: Introduction Process control Dynamics Stability The
More informationLABORATORY INSTRUCTION MANUAL CONTROL SYSTEM I LAB EE 593
LABORATORY INSTRUCTION MANUAL CONTROL SYSTEM I LAB EE 593 ELECTRICAL ENGINEERING DEPARTMENT JIS COLLEGE OF ENGINEERING (AN AUTONOMOUS INSTITUTE) KALYANI, NADIA CONTROL SYSTEM I LAB. MANUAL EE 593 EXPERIMENT
More informationAnalysis and Design of Control Systems in the Time Domain
Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.
More informationProblem 1: Ship PathFollowing Control System (35%)
Problem 1: Ship PathFollowing Control System (35%) Consider the kinematic equations: Figure 1: NTNU s research vessel, R/V Gunnerus, and Nomoto model: T ṙ + r = Kδ (1) with T = 22.0 s and K = 0.1 s 1.
More informationGEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels)
GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 09Dec13 COURSE: ECE 3084A (Prof. Michaels) NAME: STUDENT #: LAST, FIRST Write your name on the front page
More informationRaktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries
. AERO 632: of Advance Flight Control System. Preliminaries Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. Preliminaries Signals & Systems Laplace
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.04A Systems and Controls Spring 2013
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.04A Systems and Controls Spring 2013 Problem Set #4 Posted: Thursday, Mar. 7, 13 Due: Thursday, Mar. 14, 13 1. Sketch the Root
More informationECE 388 Automatic Control
Lead Compensator and PID Control Associate Prof. Dr. of Mechatronics Engineeering Çankaya University Compulsory Course in Electronic and Communication Engineering Credits (2/2/3) Course Webpage: http://ece388.cankaya.edu.tr
More informationLecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science  Bangalore
Lecture 6 Classical Control Overview IV Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science  Bangalore Lead Lag Compensator Design Dr. Radhakant Padhi Asst.
More informationEECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.
Name: SID: EECS C28/ ME C34 Final Wed. Dec. 5, 2 8 am Closed book. Two pages of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 2 2 6 3 4 4 5 6 6 7 8 2 Total
More informationx(t) = x(t h), x(t) 2 R ), where is the time delay, the transfer function for such a e s Figure 1: Simple Time Delay Block Diagram e i! =1 \e i!t =!
1 TimeDelay Systems 1.1 Introduction Recitation Notes: Time Delays and Nyquist Plots Review In control systems a challenging area is operating in the presence of delays. Delays can be attributed to acquiring
More informationFrequency domain analysis
Automatic Control 2 Frequency domain analysis Prof. Alberto Bemporad University of Trento Academic year 20102011 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 20102011
More informationCDS 101/110a: Lecture 81 Frequency Domain Design
CDS 11/11a: Lecture 81 Frequency Domain Design Richard M. Murray 17 November 28 Goals: Describe canonical control design problem and standard performance measures Show how to use loop shaping to achieve
More informationVALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6405 CONTROL SYSTEM ENGINEERING SEM / YEAR: IV / II year
More informationComputer Aided Control Design
Computer Aided Control Design ProjectLab 3 Automatic Control Basic Course, EL1000/EL1100/EL1120 Revised August 18, 2008 Modified version of laboration developed by Håkan Fortell and Svante Gunnarsson
More informationME 132, Fall 2017, UC Berkeley, A. Packard 317. G 1 (s) = 3 s + 6, G 2(s) = s + 2
ME 132, Fall 2017, UC Berkeley, A. Packard 317 Be sure to check that all of your matrix manipulations have the correct dimensions, and that the concatenations have compatible dimensions (horizontal concatenations
More information(a) Find the transfer function of the amplifier. Ans.: G(s) =
126 INTRDUCTIN T CNTR ENGINEERING 10( s 1) (a) Find the transfer function of the amplifier. Ans.: (. 02s 1)(. 001s 1) (b) Find the expected percent overshoot for a step input for the closedloop system
More informationLab 3: Model based Position Control of a Cart
I. Objective Lab 3: Model based Position Control of a Cart The goal of this lab is to help understand the methodology to design a controller using the given plant dynamics. Specifically, we would do position
More informationGoodwin, Graebe, Salgado, Prentice Hall Chapter 11. Chapter 11. Dealing with Constraints
Chapter 11 Dealing with Constraints Topics to be covered An ubiquitous problem in control is that all real actuators have limited authority. This implies that they are constrained in amplitude and/or rate
More informationCONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version
CONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version Norman S. Nise California State Polytechnic University, Pomona John Wiley fir Sons, Inc. Contents PREFACE, vii 1. INTRODUCTION, 1
More informationActive Control? Contact : Website : Teaching
Active Control? Contact : bmokrani@ulb.ac.be Website : http://scmero.ulb.ac.be Teaching Active Control? Disturbances System Measurement Control Controler. Regulator.,,, Aims of an Active Control Disturbances
More informationGEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels)
GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30Apr14 COURSE: ECE 3084A (Prof. Michaels) NAME: STUDENT #: LAST, FIRST Write your name on the front page
More informationLecture 5 Classical Control Overview III. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science  Bangalore
Lecture 5 Classical Control Overview III Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science  Bangalore A Fundamental Problem in Control Systems Poles of open
More informationModeling and Analysis of Dynamic Systems
Modeling and Analysis of Dynamic Systems by Dr. Guillaume Ducard Fall 2016 Institute for Dynamic Systems and Control ETH Zurich, Switzerland based on script from: Prof. Dr. Lino Guzzella 1/33 Outline 1
More information6.1 Sketch the zdomain root locus and find the critical gain for the following systems K., the closedloop characteristic equation is K + z 0.
6. Sketch the zdomain root locus and find the critical gain for the following systems K (i) Gz () z 4. (ii) Gz K () ( z+ 9. )( z 9. ) (iii) Gz () Kz ( z. )( z ) (iv) Gz () Kz ( + 9. ) ( z. )( z 8. ) (i)
More informationLinear Control Systems Lecture #3  Frequency Domain Analysis. Guillaume Drion Academic year
Linear Control Systems Lecture #3  Frequency Domain Analysis Guillaume Drion Academic year 20182019 1 Goal and Outline Goal: To be able to analyze the stability and robustness of a closedloop system
More informationExam  TTK 4190 Guidance & Control Eksamen  TTK 4190 Fartøysstyring
Page 1 of 6 Norges teknisk naturvitenskapelige universitet Institutt for teknisk kybernetikk Faglig kontakt / contact person: Navn: Morten Pedersen, Universitetslektor Tlf.: 41602135 Exam  TTK 4190 Guidance
More informationLinear State Feedback Controller Design
Assignment For EE5101  Linear Systems Sem I AY2010/2011 Linear State Feedback Controller Design Phang Swee King A0033585A Email: king@nus.edu.sg NGS/ECE Dept. Faculty of Engineering National University
More informationAutomatic Control II Computer exercise 3. LQG Design
Uppsala University Information Technology Systems and Control HN,FS,KN 200010 Last revised by HR August 16, 2017 Automatic Control II Computer exercise 3 LQG Design Preparations: Read Chapters 5 and 9
More informationExam in Systems Engineering/Process Control
Department of AUTOMATIC CONTROL Exam in Systems Engineering/Process Control 2762 Points and grading All answers must include a clear motivation. Answers may be given in English or Swedish. The total
More informationThe loop shaping paradigm. Lecture 7. Loop analysis of feedback systems (2) Essential specifications (2)
Lecture 7. Loop analysis of feedback systems (2). Loop shaping 2. Performance limitations The loop shaping paradigm. Estimate performance and robustness of the feedback system from the loop transfer L(jω)
More informationControl Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Jacopo Tani. Institute for Dynamic Systems and Control DMAVT ETH Zürich
Control Systems I Lecture 7: Feedback and the Root Locus method Readings: Jacopo Tani Institute for Dynamic Systems and Control DMAVT ETH Zürich November 2, 2018 J. Tani, E. Frazzoli (ETH) Lecture 7:
More informationFirstOrder LowPass Filter
Filters, Cost Functions, and Controller Structures Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 218! Dynamic systems as lowpass filters! Frequency response of dynamic systems!
More informationTable of Laplacetransform
Appendix Table of Laplacetransform pairs 1(t) f(s) oct), unit impulse at t = 0 a, a constant or step of magnitude a at t = 0 a s t, a ramp function e at, an exponential function s + a sin wt, a sine fun
More information(Continued on next page)
(Continued on next page) 18.2 Roots of Stability Nyquist Criterion 87 e(s) 1 S(s) = =, r(s) 1 + P (s)c(s) where P (s) represents the plant transfer function, and C(s) the compensator. The closedloop characteristic
More informationFeedback Control of Linear SISO systems. Process Dynamics and Control
Feedback Control of Linear SISO systems Process Dynamics and Control 1 OpenLoop Process The study of dynamics was limited to openloop systems Observe process behavior as a result of specific input signals
More informationLecture 25: Tue Nov 27, 2018
Lecture 25: Tue Nov 27, 2018 Reminder: Lab 3 moved to Tuesday Dec 4 Lecture: review timedomain characteristics of 2ndorder systems intro to control: feedback openloop vs closedloop control intro to
More informationD(s) G(s) A control system design definition
R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure
More informationMTNS 06, Kyoto (July, 2006) Shinji Hara The University of Tokyo, Japan
MTNS 06, Kyoto (July, 2006) Shinji Hara The University of Tokyo, Japan Outline Motivation & Background: H2 Tracking Performance Limits: new paradigm Explicit analytical solutions with examples H2 Regulation
More informationEECS C128/ ME C134 Final Wed. Dec. 14, am. Closed book. One page, 2 sides of formula sheets. No calculators.
Name: SID: EECS C128/ ME C134 Final Wed. Dec. 14, 211 8111 am Closed book. One page, 2 sides of formula sheets. No calculators. There are 8 problems worth 1 points total. Problem Points Score 1 16 2 12
More informationME 132, Fall 2015, Quiz # 2
ME 132, Fall 2015, Quiz # 2 # 1 # 2 # 3 # 4 # 5 # 6 Total NAME 14 10 8 6 14 8 60 Rules: 1. 2 sheets of notes allowed, 8.5 11 inches. Both sides can be used. 2. Calculator is allowed. Keep it in plain view
More informationMAE 143B  Homework 8 Solutions
MAE 43B  Homework 8 Solutions P6.4 b) With this system, the root locus simply starts at the pole and ends at the zero. Sketches by hand and matlab are in Figure. In matlab, use zpk to build the system
More informationWind Turbine Control
Wind Turbine Control W. E. Leithead University of Strathclyde, Glasgow Supergen Student Workshop 1 Outline 1. Introduction 2. Control Basics 3. General Control Objectives 4. Constant Speed Pitch Regulated
More informationGeneral procedure for formulation of robot dynamics STEP 1 STEP 3. Module 9 : Robot Dynamics & controls
Module 9 : Robot Dynamics & controls Lecture 32 : General procedure for dynamics equation forming and introduction to control Objectives In this course you will learn the following Lagrangian Formulation
More informationImplementation of a Communication Satellite Orbit Controller Design Using State Space Techniques
ASEAN J Sci Technol Dev, 29(), 29 49 Implementation of a Communication Satellite Orbit Controller Design Using State Space Techniques M T Hla *, Y M Lae 2, S L Kyaw 3 and M N Zaw 4 Department of Electronic
More informationFinal Examination Thursday May Please initial the statement below to show that you have read it
EN40: Dynamics and Vibrations Final Examination Thursday May 0 010 Division of Engineering rown University NME: General Instructions No collaboration of any kind is permitted on this examination. You may
More informationPole placement control: state space and polynomial approaches Lecture 2
: state space and polynomial approaches Lecture 2 : a state O. Sename 1 1 Gipsalab, CNRSINPG, FRANCE Olivier.Sename@gipsalab.fr www.gipsalab.fr/ o.sename based November 21, 2017 Outline : a state
More informationLinear System Theory. Wonhee Kim Lecture 1. March 7, 2018
Linear System Theory Wonhee Kim Lecture 1 March 7, 2018 1 / 22 Overview Course Information Prerequisites Course Outline What is Control Engineering? Examples of Control Systems Structure of Control Systems
More informationELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 LeadLag Compensation Techniques
CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 LeadLag Compensation Techniques [] For the following system, Design a compensator such
More informationDESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD
206 Spring Semester ELEC733 Digital Control System LECTURE 7: DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD For a unit ramp input Tz Ez ( ) 2 ( z ) D( z) G( z) Tz e( ) lim( z) z 2 ( z ) D( z)
More informationAutonomous Mobile Robot Design
Autonomous Mobile Robot Design Topic: Guidance and Control Introduction and PID Loops Dr. Kostas Alexis (CSE) Autonomous Robot Challenges How do I control where to go? Autonomous Mobile Robot Design Topic:
More informationCHAPTER 7 FRACTIONAL ORDER SYSTEMS WITH FRACTIONAL ORDER CONTROLLERS
9 CHAPTER 7 FRACTIONAL ORDER SYSTEMS WITH FRACTIONAL ORDER CONTROLLERS 7. FRACTIONAL ORDER SYSTEMS Fractional derivatives provide an excellent instrument for the description of memory and hereditary properties
More information1 Controller Optimization according to the Modulus Optimum
Controller Optimization according to the Modulus Optimum w G K (s) F 0 (s) x The goal of applying a control loop usually is to get the control value x equal to the reference value w. x(t) w(t) X(s) W (s)
More informationEECS C128/ ME C134 Final Thu. May 14, pm. Closed book. One page, 2 sides of formula sheets. No calculators.
Name: SID: EECS C28/ ME C34 Final Thu. May 4, 25 58 pm Closed book. One page, 2 sides of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 4 2 4 3 6 4 8 5 3
More informationHomework 7  Solutions
Homework 7  Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the
More informationẋ n = f n (x 1,...,x n,u 1,...,u m ) (5) y 1 = g 1 (x 1,...,x n,u 1,...,u m ) (6) y p = g p (x 1,...,x n,u 1,...,u m ) (7)
EEE582 Topical Outline A.A. Rodriguez Fall 2007 GWC 352, 9653712 The following represents a detailed topical outline of the course. It attempts to highlight most of the key concepts to be covered and
More informationControl Systems Design
ELEC4410 Control Systems Design Lecture 18: State Feedback Tracking and State Estimation Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 18:
More informationMSE2133 Systems Analysis Laboratory II Assignment 2 Control of thermal power plant
MSE2133 Systems Analysis Laboratory II Assignment 2 Control of thermal power plant How to control the thermal power plant in order to ensure the stable operation of the plant? In the assignment Production
More informationCDS 101/110a: Lecture 101 Robust Performance
CDS 11/11a: Lecture 11 Robust Performance Richard M. Murray 1 December 28 Goals: Describe how to represent uncertainty in process dynamics Describe how to analyze a system in the presence of uncertainty
More informationRaktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Frequency ResponseDesign Method
.. AERO 422: Active Controls for Aerospace Vehicles Frequency Response Method Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. ... Response to
More information1 An Overview and Brief History of Feedback Control 1. 2 Dynamic Models 23. Contents. Preface. xiii
Contents 1 An Overview and Brief History of Feedback Control 1 A Perspective on Feedback Control 1 Chapter Overview 2 1.1 A Simple Feedback System 3 1.2 A First Analysis of Feedback 6 1.3 Feedback System
More information