# Lab 3: Model based Position Control of a Cart

Size: px
Start display at page:

Download "Lab 3: Model based Position Control of a Cart"

## Transcription

1 I. Objective Lab 3: Model based Position Control of a Cart The goal of this lab is to help understand the methodology to design a controller using the given plant dynamics. Specifically, we would do position control of a cart by developing various controllers and then comparing their performances. II. Equipment Cart system (no attachments) and power supply. III. Theory 1. Plant Dynamics Since the plant here, a motor with a cart, is the same as Lab 2, we just provide a summary of its dynamics below. Please refer to Lab 2 for the derivation. In the equation above: (1) is the input voltage (volts) is the mass of the car (kilograms) is the radius of the motor gear (meters) is resistance of the motor windings (ohms) is the motor torque constant (N*m/A) is the back EMF constant (V*s/rad) is the gearbox gear ratio (no units) is the moment of inertia of the motor (kg*m 2 ) The motor cart system model is a second order model, whose dynamics we now examine: 2. Second order dynamics A second order linear system is described by the general differential equation of the form: 2 (2) The above equation when expressed in the Laplace domain becomes: (3) For 1, the above system has complex poles, which are depicted on a graph in the figure below: 1

2 Figure 1: Location of a pole in terms of and. The parameter is called the natural frequency and is a measure of the speed of the response of the second order system while is a measure of the damping in the system. For complex poles in the left half plane, we make the following important observations from the figure above: The length of the complex vector from the origin to the pole is The sine of the angle of the vector with the negative real axis equals i.e. sin A typical step response for a second order system is as shown in figure below: Figure 2: Typical step response of a control system. Two important performance metrics for second order systems are their rise time and maximum overshoot. In terms of parameters ω and ξ they are given as: n. (5) / (6) NOTE: In order to get faster response (small ) and smaller overshoot (small ) we would like the closed loop poles to have large radial distance (leading to a large ) and large angle (leading to a higher ). 2

3 III. Pre lab 1. Position Controller Design We set the following performance objective to be achieved by the feedback system for cart position control: 1. Rise time. 2. Maximum overshoot % The objective is to design a feedback system that will help us achieve these desired performance specifications. The general guidelines to proceed with the design are outlined below: Step 1: Plant Model Use your state space or transfer function representation of the system from Lab 2. Determine the poles of this transfer function. Is the plant stable? Step 2: Design parameters Using the given desired performance objectives and equations (5) and (6), come up with desired values of and. Step 3: Proportional Controller The first controller that we will try is a proportional controller. Feel free to use your Simulink diagram from last lab, but please include it again in this lab report. Vary the value of, for simplicity over the range Put 5 6 of these plots superimposed on each other in your report. As increases, what happens to the rise time and overshoot? With just a P controller, can the desired performance specifications be achieved? Find the smallest integer value for which at least the rise time performance specification is met. Plot the result for this and show what specifications it meets. This value will be used in the lab during experimentation. The above observations can also be made from the root locus plot. Plot the root locus for the plant transfer function and make the following observations: For complex poles of the closed loop transfer function, as increases what happens to the radial distance and the angle? Going back to Figure 1 and equations (5) and (6), what does this mean will happen to and as increases? Note that this is not the desired behavior we stated in the enclosed note above. Step 4: PD Controller In order to meet the design constraints, we will need derivative action which will help apply the brakes earlier. In order to reduce the overshoot we use derivative action in conjunction with proportional action. Its form is as follows: (7) 3

4 Observe that a PD controller introduces a zero in the plant transfer function at /. MATLAB does not allow you to put a pure zero. Why is introducing a pure zero a bad idea? Instead, we will introduce a pole/zero pair with the pole so far away that it hardly affects the rest of the system dynamics. We will arbitrarily set the pole at 1000 by making the denominator of the controller Now put the plant dynamics equation from Step 1 in unity feedback with this new PD controller and obtain the transfer function from to. For further analysis we assume that we will place the zero at 13. This location of the zero can be found through design techniques which will be covered in subsequent labs. This changes the form of the PD controller to 13. Plot the root locus for this transfer function of the modified plant which includes the controller (zoom in towards the origin). By comparing this root locus with the one plotted in Step 3 make the following observations: A left half plane zero tends to pull the root locus towards it. There exists a portion of the root locus which has the following properties: i. Has complex closed loop poles and ii. and both increase as increases This is what we desire as stated in the enclosed note above. Determine a small value from this root locus for which the performance specifications are met and then use this value to determine initial values of and for the controller. Note: For this task, you will find two things handy: 1) You can specify gain values to plot on your root locus (see help rlocus). 2) Once you plot your root locus, the Data Cursor (Tools Data Cursor) will display the gain (K), damping (ξ), and frequency (ω n ). You can drag this cursor across all the plotted points until you find a K value that meets the parameters you solved for in Step 2. Now create two Simulink block diagrams to simulate the cart in feedback with a PD controller: 1) The zero is set at s = 13, so controller zero is of the form 13. 2) The more general PD controller of the form. First verify that your chosen value of meets the design specifications. Then increase by some regular interval and plot on the same graph. Then do the same with on the other diagram (doesn t have to be the same interval). As and increase, what happens to the rise time and overshoot? (make sure trends are evident on the plots) IV. Lab 1. Proportional Control Experiment with the proportional controller trying out various gain values from 0 to 50 and observe the variation of rise time with gain value. Provide the value and plot for system responses that 1) is as close to meeting both criteria as you can get it, and 2) meets the rise time criteria but ignores the overshoot. 4

### Lab 5a: Pole Placement for the Inverted Pendulum

Lab 5a: Pole Placement for the Inverted Pendulum November 1, 2011 1 Purpose The objective of this lab is to achieve simultaneous control of both the angular position of the pendulum and horizontal position

### Lab 6a: Pole Placement for the Inverted Pendulum

Lab 6a: Pole Placement for the Inverted Pendulum Idiot. Above her head was the only stable place in the cosmos, the only refuge from the damnation of the Panta Rei, and she guessed it was the Pendulum

### SRV02-Series Rotary Experiment # 1. Position Control. Student Handout

SRV02-Series Rotary Experiment # 1 Position Control Student Handout SRV02-Series Rotary Experiment # 1 Position Control Student Handout 1. Objectives The objective in this experiment is to introduce the

### Quanser NI-ELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control. DC Motor Control Trainer (DCMCT) Student Manual

Quanser NI-ELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control DC Motor Control Trainer (DCMCT) Student Manual Table of Contents 1 Laboratory Objectives1 2 References1 3 DCMCT Plant

### Lab 3: Quanser Hardware and Proportional Control

Lab 3: Quanser Hardware and Proportional Control The worst wheel of the cart makes the most noise. Benjamin Franklin 1 Objectives The goal of this lab is to: 1. familiarize you with Quanser s QuaRC tools

### Bangladesh University of Engineering and Technology. EEE 402: Control System I Laboratory

Bangladesh University of Engineering and Technology Electrical and Electronic Engineering Department EEE 402: Control System I Laboratory Experiment No. 4 a) Effect of input waveform, loop gain, and system

### Example: DC Motor Speed Modeling

Page 1 of 5 Example: DC Motor Speed Modeling Physical setup and system equations Design requirements MATLAB representation and open-loop response Physical setup and system equations A common actuator in

### sc Control Systems Design Q.1, Sem.1, Ac. Yr. 2010/11

sc46 - Control Systems Design Q Sem Ac Yr / Mock Exam originally given November 5 9 Notes: Please be reminded that only an A4 paper with formulas may be used during the exam no other material is to be

### Positioning Servo Design Example

Positioning Servo Design Example 1 Goal. The goal in this design example is to design a control system that will be used in a pick-and-place robot to move the link of a robot between two positions. Usually

### Mechatronics Engineering. Li Wen

Mechatronics Engineering Li Wen Bio-inspired robot-dc motor drive Unstable system Mirko Kovac,EPFL Modeling and simulation of the control system Problems 1. Why we establish mathematical model of the control

### Laboratory 11 Control Systems Laboratory ECE3557. State Feedback Controller for Position Control of a Flexible Joint

Laboratory 11 State Feedback Controller for Position Control of a Flexible Joint 11.1 Objective The objective of this laboratory is to design a full state feedback controller for endpoint position control

### Example: Modeling DC Motor Position Physical Setup System Equations Design Requirements MATLAB Representation and Open-Loop Response

Page 1 of 5 Example: Modeling DC Motor Position Physical Setup System Equations Design Requirements MATLAB Representation and Open-Loop Response Physical Setup A common actuator in control systems is the

### System Modeling: Motor position, θ The physical parameters for the dc motor are:

Dept. of EEE, KUET, Sessional on EE 3202: Expt. # 2 2k15 Batch Experiment No. 02 Name of the experiment: Modeling of Physical systems and study of their closed loop response Objective: (i) (ii) (iii) (iv)

### Lab #2: Digital Simulation of Torsional Disk Systems in LabVIEW

Lab #2: Digital Simulation of Torsional Disk Systems in LabVIEW Objective The purpose of this lab is to increase your familiarity with LabVIEW, increase your mechanical modeling prowess, and give you simulation

### ME 375 Final Examination Thursday, May 7, 2015 SOLUTION

ME 375 Final Examination Thursday, May 7, 2015 SOLUTION POBLEM 1 (25%) negligible mass wheels negligible mass wheels v motor no slip ω r r F D O no slip e in Motor% Cart%with%motor%a,ached% The coupled

### FEEDBACK CONTROL SYSTEMS

FEEDBAC CONTROL SYSTEMS. Control System Design. Open and Closed-Loop Control Systems 3. Why Closed-Loop Control? 4. Case Study --- Speed Control of a DC Motor 5. Steady-State Errors in Unity Feedback Control

### Massachusetts Institute of Technology Department of Mechanical Engineering Dynamics and Control II Design Project

Massachusetts Institute of Technology Department of Mechanical Engineering.4 Dynamics and Control II Design Project ACTIVE DAMPING OF TALL BUILDING VIBRATIONS: CONTINUED Franz Hover, 5 November 7 Review

### Position Control Experiment MAE171a

Position Control Experiment MAE171a January 11, 014 Prof. R.A. de Callafon, Dept. of MAE, UCSD TAs: Jeff Narkis, email: jnarkis@ucsd.edu Gil Collins, email: gwcollin@ucsd.edu Contents 1 Aim and Procedure

### EE 422G - Signals and Systems Laboratory

EE 4G - Signals and Systems Laboratory Lab 9 PID Control Kevin D. Donohue Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 April, 04 Objectives: Identify the

### R10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1

Code No: R06 R0 SET - II B. Tech II Semester Regular Examinations April/May 03 CONTROL SYSTEMS (Com. to EEE, ECE, EIE, ECC, AE) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry

### Video 5.1 Vijay Kumar and Ani Hsieh

Video 5.1 Vijay Kumar and Ani Hsieh Robo3x-1.1 1 The Purpose of Control Input/Stimulus/ Disturbance System or Plant Output/ Response Understand the Black Box Evaluate the Performance Change the Behavior

### University of Utah Electrical & Computer Engineering Department ECE 3510 Lab 9 Inverted Pendulum

University of Utah Electrical & Computer Engineering Department ECE 3510 Lab 9 Inverted Pendulum p1 ECE 3510 Lab 9, Inverted Pendulum M. Bodson, A. Stolp, 4/2/13 rev, 4/9/13 Objectives The objective of

### MECH 3140 Final Project

MECH 3140 Final Project Final presentation will be held December 7-8. The presentation will be the only deliverable for the final project and should be approximately 20-25 minutes with an additional 10

### CYBER EXPLORATION LABORATORY EXPERIMENTS

CYBER EXPLORATION LABORATORY EXPERIMENTS 1 2 Cyber Exploration oratory Experiments Chapter 2 Experiment 1 Objectives To learn to use MATLAB to: (1) generate polynomial, (2) manipulate polynomials, (3)

### Computer Aided Control Design

Computer Aided Control Design Project-Lab 3 Automatic Control Basic Course, EL1000/EL1100/EL1120 Revised August 18, 2008 Modified version of laboration developed by Håkan Fortell and Svante Gunnarsson

### ECE-320: Linear Control Systems Homework 8. 1) For one of the rectilinear systems in lab, I found the following state variable representations:

ECE-30: Linear Control Systems Homework 8 Due: Thursday May 6, 00 at the beginning of class ) For one of the rectilinear systems in lab, I found the following state variable representations: 0 0 q q+ 74.805.6469

### Homework Assignment 4 Root Finding Algorithms The Maximum Velocity of a Car Due: Friday, February 19, 2010 at 12noon

ME 2016 A Spring Semester 2010 Computing Techniques 3-0-3 Homework Assignment 4 Root Finding Algorithms The Maximum Velocity of a Car Due: Friday, February 19, 2010 at 12noon Description and Outcomes In

### EE 4443/5329. LAB 3: Control of Industrial Systems. Simulation and Hardware Control (PID Design) The Torsion Disks. (ECP Systems-Model: 205)

EE 4443/539 LAB 3: Control of Industrial Systems Simulation and Hardware Control (PID Design) The Torsion Disks (ECP Systems-Model: 05) Compiled by: Nitin Swamy Email: nswamy@lakeshore.uta.edu Email: okuljaca@lakeshore.uta.edu

### What happens when things change. Transient current and voltage relationships in a simple resistive circuit.

Module 4 AC Theory What happens when things change. What you'll learn in Module 4. 4.1 Resistors in DC Circuits Transient events in DC circuits. The difference between Ideal and Practical circuits Transient

### ECE 320 Linear Control Systems Winter Lab 1 Time Domain Analysis of a 1DOF Rectilinear System

Amplitude ECE 3 Linear Control Systems Winter - Lab Time Domain Analysis of a DOF Rectilinear System Objective: Become familiar with the ECP control system and MATLAB interface Collect experimental data

### University of Maryland Department of Physics. Spring 2009 Final Exam 20. May (175 points) Post grades on web? (Initial, please) Yes No

University of Maryland Department of Physics Physics 122 20. May 2009 (175 points) Post grades on web? (Initial, please) Yes No (If you agree, I will post your grades and your detailed scores for each

### PID Control. Objectives

PID Control Objectives The objective of this lab is to study basic design issues for proportional-integral-derivative control laws. Emphasis is placed on transient responses and steady-state errors. The

### Rotary Motion Servo Plant: SRV02. Rotary Experiment #11: 1-DOF Torsion. 1-DOF Torsion Position Control using QuaRC. Student Manual

Rotary Motion Servo Plant: SRV02 Rotary Experiment #11: 1-DOF Torsion 1-DOF Torsion Position Control using QuaRC Student Manual Table of Contents 1. INTRODUCTION...1 2. PREREQUISITES...1 3. OVERVIEW OF

### DC-motor PID control

DC-motor PID control This version: November 1, 2017 REGLERTEKNIK Name: P-number: AUTOMATIC LINKÖPING CONTROL Date: Passed: Chapter 1 Introduction The purpose of this lab is to give an introduction to

### Lab 8 Impulse and Momentum

b Lab 8 Impulse and Momentum What You Need To Know: The Physics There are many concepts in physics that are defined purely by an equation and not by a description. In some cases, this is a source of much

### CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System

CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages

### 100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =

1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot

### International Journal of Advance Research in Computer Science and Management Studies

Volume 2, Issue 9, September 2014 ISSN: 2321 7782 (Online) International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online

### 3 Lab 3: DC Motor Transfer Function Estimation by Explicit Measurement

3 Lab 3: DC Motor Transfer Function Estimation by Explicit Measurement 3.1 Introduction There are two common methods for determining a plant s transfer function. They are: 1. Measure all the physical parameters

### Laboratory handouts, ME 340

Laboratory handouts, ME 340 This document contains summary theory, solved exercises, prelab assignments, lab instructions, and report assignments for Lab 4. 2014-2016 Harry Dankowicz, unless otherwise

### Feedback Control Systems

ME Homework #0 Feedback Control Systems Last Updated November 06 Text problem 67 (Revised Chapter 6 Homework Problems- attached) 65 Chapter 6 Homework Problems 65 Transient Response of a Second Order Model

### Lecture 6: Control Problems and Solutions. CS 344R: Robotics Benjamin Kuipers

Lecture 6: Control Problems and Solutions CS 344R: Robotics Benjamin Kuipers But First, Assignment 1: Followers A follower is a control law where the robot moves forward while keeping some error term small.

### Lecture 14 - Using the MATLAB Control System Toolbox and Simulink Friday, February 8, 2013

Today s Objectives ENGR 105: Feedback Control Design Winter 2013 Lecture 14 - Using the MATLAB Control System Toolbox and Simulink Friday, February 8, 2013 1. introduce the MATLAB Control System Toolbox

### DON T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end.

Math 307, Midterm 2 Winter 2013 Name: Instructions. DON T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end. There

### Modelling and simulation of a measurement robot

Modellbygge och Simulering, TSRT62 Modelling and simulation of a measurement robot Denna version: 4 oktober 2017 Servo- motor Strömregulator + u + i(t) [A] r (t) [V] u(t) [V] Arm Skruvtransmission Remtransmission

### Control Systems Design

ELEC4410 Control Systems Design Lecture 18: State Feedback Tracking and State Estimation Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 18:

### Lab 6d: Self-Erecting Inverted Pendulum (SEIP)

Lab 6d: Self-Erecting Inverted Pendulum (SEIP) Arthur Schopen- Life swings like a pendulum backward and forward between pain and boredom. hauer 1 Objectives The goal of this project is to design a controller

### General Physics I Lab (PHYS-2011) Experiment MECH-2: Newton's Second Law

MECH-2: Newton's Second Law Page 1 of 5 1 EQUIPMENT General Physics I Lab (PHYS-2011) Experiment MECH-2: Newton's Second Law 1 250 g Stackable Masses (set of 2) ME-6757A 1 Smart Cart Blue ME-1241 1 Mass

### Conventional Paper-I-2011 PART-A

Conventional Paper-I-0 PART-A.a Give five properties of static magnetic field intensity. What are the different methods by which it can be calculated? Write a Maxwell s equation relating this in integral

### 2.004 Dynamics and Control II Spring 2008

MIT OpenCourseWare http://ocw.mit.edu 2.004 Dynamics and Control II Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts Institute

### Inverted Pendulum. Objectives

Inverted Pendulum Objectives The objective of this lab is to experiment with the stabilization of an unstable system. The inverted pendulum problem is taken as an example and the animation program gives

### Laboratory handout 5 Mode shapes and resonance

laboratory handouts, me 34 82 Laboratory handout 5 Mode shapes and resonance In this handout, material and assignments marked as optional can be skipped when preparing for the lab, but may provide a useful

### UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BSC (HONS) MECHATRONICS TOP-UP SEMESTER 1 EXAMINATION 2017/2018 ADVANCED MECHATRONIC SYSTEMS

ENG08 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BSC (HONS) MECHATRONICS TOP-UP SEMESTER EXAMINATION 07/08 ADVANCED MECHATRONIC SYSTEMS MODULE NO: MEC600 Date: 7 January 08 Time: 0.00.00 INSTRUCTIONS TO

### Lab 11 - Free, Damped, and Forced Oscillations

Lab 11 Free, Damped, and Forced Oscillations L11-1 Name Date Partners Lab 11 - Free, Damped, and Forced Oscillations OBJECTIVES To understand the free oscillations of a mass and spring. To understand how

### ECE 486 Control Systems

ECE 486 Control Systems Spring 208 Midterm #2 Information Issued: April 5, 208 Updated: April 8, 208 ˆ This document is an info sheet about the second exam of ECE 486, Spring 208. ˆ Please read the following

### IfA Fachpraktikum - Experiment 3.7A : Flexible Shaft A

Automatic Control Laboratory, ETH Zürich Profs. M. Morari, J. Lygeros Manual prepared by: P. Brunner, F. Ullmann, S. Richter, C. Fischer Revision from: February 16, 2013 IfA Fachpraktikum - Experiment

### Chapter 7. Digital Control Systems

Chapter 7 Digital Control Systems 1 1 Introduction In this chapter, we introduce analysis and design of stability, steady-state error, and transient response for computer-controlled systems. Transfer functions,

### EE 474 Lab Part 2: Open-Loop and Closed-Loop Control (Velocity Servo)

Contents EE 474 Lab Part 2: Open-Loop and Closed-Loop Control (Velocity Servo) 1 Introduction 1 1.1 Discovery learning in the Controls Teaching Laboratory.............. 1 1.2 A Laboratory Notebook...............................

### Control Systems. University Questions

University Questions UNIT-1 1. Distinguish between open loop and closed loop control system. Describe two examples for each. (10 Marks), Jan 2009, June 12, Dec 11,July 08, July 2009, Dec 2010 2. Write

### The basic principle to be used in mechanical systems to derive a mathematical model is Newton s law,

Chapter. DYNAMIC MODELING Understanding the nature of the process to be controlled is a central issue for a control engineer. Thus the engineer must construct a model of the process with whatever information

### DC Motor Position: System Modeling

1 of 7 01/03/2014 22:07 Tips Effects TIPS ABOUT BASICS INDEX NEXT INTRODUCTION CRUISE CONTROL MOTOR SPEED MOTOR POSITION SUSPENSION INVERTED PENDULUM SYSTEM MODELING ANALYSIS DC Motor Position: System

### Course Summary. The course cannot be summarized in one lecture.

Course Summary Unit 1: Introduction Unit 2: Modeling in the Frequency Domain Unit 3: Time Response Unit 4: Block Diagram Reduction Unit 5: Stability Unit 6: Steady-State Error Unit 7: Root Locus Techniques

### Integrator Windup

3.5.2. Integrator Windup 3.5.2.1. Definition So far we have mainly been concerned with linear behaviour, as is often the case with analysis and design of control systems. There is, however, one nonlinear

### Automatic Control (MSc in Mechanical Engineering) Lecturer: Andrea Zanchettin Date: Student ID number... Signature...

Automatic Control (MSc in Mechanical Engineering) Lecturer: Andrea Zanchettin Date: 29..23 Given and family names......................solutions...................... Student ID number..........................

### Due Wednesday, February 6th EE/MFS 599 HW #5

Due Wednesday, February 6th EE/MFS 599 HW #5 You may use Matlab/Simulink wherever applicable. Consider the standard, unity-feedback closed loop control system shown below where G(s) = /[s q (s+)(s+9)]

### Lab 1: Dynamic Simulation Using Simulink and Matlab

Lab 1: Dynamic Simulation Using Simulink and Matlab Objectives In this lab you will learn how to use a program called Simulink to simulate dynamic systems. Simulink runs under Matlab and uses block diagrams

### Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 3. 8. 24 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid

### State Feedback Controller for Position Control of a Flexible Link

Laboratory 12 Control Systems Laboratory ECE3557 Laboratory 12 State Feedback Controller for Position Control of a Flexible Link 12.1 Objective The objective of this laboratory is to design a full state

### Linear State Feedback Controller Design

Assignment For EE5101 - Linear Systems Sem I AY2010/2011 Linear State Feedback Controller Design Phang Swee King A0033585A Email: king@nus.edu.sg NGS/ECE Dept. Faculty of Engineering National University

### Safety: BE SURE TO KEEP YOUR SMART CART UPSIDE-DOWN WHEN YOU RE NOT ACTIVELY USING IT TO RECORD DATA.

Why do people always ignore Objective: 1. Determine how an object s mass affects the friction it experiences. 2. Compare the coefficient of static friction to the coefficient of kinetic friction for each

### PH 120 Project # 2: Pendulum and chaos

PH 120 Project # 2: Pendulum and chaos Due: Friday, January 16, 2004 In PH109, you studied a simple pendulum, which is an effectively massless rod of length l that is fixed at one end with a small mass

### FALL UNIVERSITY OF NEVADA, LAS VEGAS DEPARTMENT OF MECHANICAL ENGINEERING MEG 421 Automatic Controls Design Project

FALL 2011 - UNIVERSITY OF NEVADA, LAS VEGAS DEPARTMENT OF MECHANICAL ENGINEERING MEG 421 Automatic Controls Design Project Objective: The design project will give everyone in the class an opportunity to

### System Parameters and Frequency Response MAE 433 Spring 2012 Lab 2

System Parameters and Frequency Response MAE 433 Spring 2012 Lab 2 Prof. Rowley, Prof. Littman AIs: Brandt Belson, Jonathan Tu Technical staff: Jonathan Prévost Princeton University Feb. 21-24, 2012 1

### Implementation Issues for the Virtual Spring

Implementation Issues for the Virtual Spring J. S. Freudenberg EECS 461 Embedded Control Systems 1 Introduction One of the tasks in Lab 4 is to attach the haptic wheel to a virtual reference position with

### Real-Time Implementation of a LQR-Based Controller for the Stabilization of a Double Inverted Pendulum

Proceedings of the International MultiConference of Engineers and Computer Scientists 017 Vol I,, March 15-17, 017, Hong Kong Real-Time Implementation of a LQR-Based Controller for the Stabilization of

### AMME3500: System Dynamics & Control

Stefan B. Williams May, 211 AMME35: System Dynamics & Control Assignment 4 Note: This assignment contributes 15% towards your final mark. This assignment is due at 4pm on Monday, May 3 th during Week 13

### Introduction to Controls

EE 474 Review Exam 1 Name Answer each of the questions. Show your work. Note were essay-type answers are requested. Answer with complete sentences. Incomplete sentences will count heavily against the grade.

### Rotary Motion Servo Plant: SRV02. Rotary Experiment #01: Modeling. SRV02 Modeling using QuaRC. Student Manual

Rotary Motion Servo Plant: SRV02 Rotary Experiment #01: Modeling SRV02 Modeling using QuaRC Student Manual SRV02 Modeling Laboratory Student Manual Table of Contents 1. INTRODUCTION...1 2. PREREQUISITES...1

### Coupled Electrical Oscillators Physics Advanced Physics Lab - Summer 2018 Don Heiman, Northeastern University, 5/24/2018

Coupled Electrical Oscillators Physics 3600 - Advanced Physics Lab - Summer 08 Don Heiman, Northeastern University, 5/4/08 I. INTRODUCTION The objectives of this experiment are: () explore the properties

### 6.1 Sketch the z-domain root locus and find the critical gain for the following systems K., the closed-loop characteristic equation is K + z 0.

6. Sketch the z-domain root locus and find the critical gain for the following systems K (i) Gz () z 4. (ii) Gz K () ( z+ 9. )( z 9. ) (iii) Gz () Kz ( z. )( z ) (iv) Gz () Kz ( + 9. ) ( z. )( z 8. ) (i)

### Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Problem Set 10 Issued November 11, 2013 Due November 20, 2013 Problem 1: Permanent

### King Saud University

motor speed (rad/sec) Closed Loop Step Response ing Saud University College of Engineering, Electrical Engineering Department Labwork Manual EE 356 Control and Instrumentation Laboratory (كهر 356 معمل

### SRV02-Series Rotary Experiment # 7. Rotary Inverted Pendulum. Student Handout

SRV02-Series Rotary Experiment # 7 Rotary Inverted Pendulum Student Handout SRV02-Series Rotary Experiment # 7 Rotary Inverted Pendulum Student Handout 1. Objectives The objective in this experiment is

### Experiment 2 Random Error and Basic Statistics

PHY191 Experiment 2: Random Error and Basic Statistics 7/12/2011 Page 1 Experiment 2 Random Error and Basic Statistics Homework 2: turn in the second week of the experiment. This is a difficult homework

### Methods for analysis and control of. Lecture 4: The root locus design method

Methods for analysis and control of Lecture 4: The root locus design method O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.inpg.fr www.lag.ensieg.inpg.fr/sename Lead Lag 17th March

### Survey of Methods of Combining Velocity Profiles with Position control

Survey of Methods of Combining Profiles with control Petter Karlsson Mälardalen University P.O. Box 883 713 Västerås, Sweden pkn91@student.mdh.se ABSTRACT In many applications where some kind of motion

### The Control of an Inverted Pendulum

The Control of an Inverted Pendulum AAE 364L This experiment is devoted to the inverted pendulum. Clearly, the inverted pendulum will fall without any control. We will design a controller to balance the

### LAB 5: Induction: A Linear Generator

1 Name Date Partner(s) OBJECTIVES LAB 5: Induction: A Linear Generator To understand how a changing magnetic field induces an electric field. To observe the effect of induction by measuring the generated

### FUZZY LOGIC CONTROL Vs. CONVENTIONAL PID CONTROL OF AN INVERTED PENDULUM ROBOT

http:// FUZZY LOGIC CONTROL Vs. CONVENTIONAL PID CONTROL OF AN INVERTED PENDULUM ROBOT 1 Ms.Mukesh Beniwal, 2 Mr. Davender Kumar 1 M.Tech Student, 2 Asst.Prof, Department of Electronics and Communication

### 1 An Overview and Brief History of Feedback Control 1. 2 Dynamic Models 23. Contents. Preface. xiii

Contents 1 An Overview and Brief History of Feedback Control 1 A Perspective on Feedback Control 1 Chapter Overview 2 1.1 A Simple Feedback System 3 1.2 A First Analysis of Feedback 6 1.3 Feedback System

### Analysis and Design of Control Systems in the Time Domain

Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.

### MECHATRONICS ENGINEERING TECHNOLOGY. Modeling a Servo Motor System

Modeling a Servo Motor System Definitions Motor: A device that receives a continuous (Analog) signal and operates continuously in time. Digital Controller: Discretizes the amplitude of the signal and also

### Transient Response of a Second-Order System

Transient Response of a Second-Order System ECEN 830 Spring 01 1. Introduction In connection with this experiment, you are selecting the gains in your feedback loop to obtain a well-behaved closed-loop

### Circuit Analysis and Ohm s Law

Study Unit Circuit Analysis and Ohm s Law By Robert Cecci Circuit analysis is one of the fundamental jobs of an electrician or electronics technician With the knowledge of how voltage, current, and resistance

### College Physics II Lab 8: RC Circuits

INTODUTION ollege Physics II Lab 8: ircuits Peter olnick with Taner Edis Spring 2019 Introduction onsider the circuit shown. (onsult section 23.7 in your textbook.) If left for long enough, the charge

### Temperature measurement

Luleå University of Technology Johan Carlson Last revision: July 22, 2009 Measurement Technology and Uncertainty Analysis - E7021E Lab 3 Temperature measurement Introduction In this lab you are given a

### Lab Experiment 2: Performance of First order and second order systems

Lab Experiment 2: Performance of First order and second order systems Objective: The objective of this exercise will be to study the performance characteristics of first and second order systems using

### 9.1 Harmonic Motion. Motion in cycles. linear motion - motion that goes from one place to another without repeating.

9.1 Harmonic Motion A bicyclist pedaling past you on the street moves in linear motion. Linear motion gets us from one place to another (Figure 9.1A). This chapter is about another kind of motion called