Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Frequency Response-Design Method

Size: px
Start display at page:

Download "Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Frequency Response-Design Method"

Transcription

1 .. AERO 422: Active Controls for Aerospace Vehicles Frequency Response- Method Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University.

2

3 ... Response to Sinusoidal Input.. u(t) y(t). P Let u(t) = A u sin(ωt) Vary ω from to A linear system s response to sinusoidal inputs is called the system s frequency response AERO 422, Instructor: Raktim Bhattacharya 3 / 52

4 ... Response to Sinusoidal Input.. Example Let P (s) = s+, u(t) = sin(t) y(t) = 2 e t 2 cos(t) + 2 sin(t) = 2 e t + sin(t π }{{} 2 4 ) }{{} natural response forced response Forced response has form A y sin(ωt + ϕ) A y and ϕ are functions of ω AERO 422, Instructor: Raktim Bhattacharya 4 / 52

5 ... Response to Sinusoidal Input.. Generalization In general ω Y (s) = G(s) s 2 + ω 2 = α α n + + α + α s p s p n s + jω s jω = y(t) = α e pt + + α n e p nt + A }{{} y sin(ω + ϕ) }{{} natural forced Forced response has same frequency, different amplitude and phase. AERO 422, Instructor: Raktim Bhattacharya 5 / 52

6 ... Response to Sinusoidal Input.. Generalization (contd.) For a system P (s) and input u(t) = A u sin(ω t), forced response is y(t) = A u M sin(ω t + ϕ), where M(ω ) = P (s) s=jω = P (jω ), magnitude ϕ(ω ) = P (jω ) phase In polar form P (jω ) = Me jϕ. AERO 422, Instructor: Raktim Bhattacharya 6 / 52

7

8 ... Fourier Series Expansion.. Given a signal y(t) with periodicity T, y(t) = a 2 + ( 2πnt a n cos T a = 2 T a n = 2 T b n = 2 T n=,2, T T T y(t)dt ( 2πnt y(t) cos T ( 2πnt y(t) sin T ) dt ) dt ) + b n sin ( ) 2πnt T AERO 422, Instructor: Raktim Bhattacharya 8 / 52

9 ... Fourier Series Expansion.. Approximation of step function.2 N=2.2 N= N=8.2 N= N=2.2 N= AERO 422, Instructor: Raktim Bhattacharya 9 / 52

10 .. Fourier Transform... Step function Fourier transform reveals the frequency content of a signal AERO 422, Instructor: Raktim Bhattacharya / 52

11 .. Fourier Transform... Step function frequency content.2.8 y(t) t ŷ(ω) ω AERO 422, Instructor: Raktim Bhattacharya / 52

12 .. Signals & Systems... Input Output. u(t) P y(t) Fourier Series Expansion superposition principle. i u i(t) P i y i(t) Fourier Transform Ụ(jω) Y (jω). P u i (t) = a i sin(ω i t) y iforced (t) = a i M sin(ω i t + ϕ) Y (jω) = P (jω)u(jω) Suffices to study P (jω) P (jω), P (jω) AERO 422, Instructor: Raktim Bhattacharya 2 / 52

13

14 .. First Order System... Bode Diagram Freq =. rad/s 5 y(t) y(t) y(t) Freq =. rad/s Freq = 5. rad/s Phase (deg) 45 y(t) Freq =. rad/s P (s) = /(s + ) loglog scale db = log ( ) 2dB = log (/) u(t) = A sin(ω t) y forced (t) = AM sin(ω t + ϕ) AERO 422, Instructor: Raktim Bhattacharya 4 / 52

15 ... Second Order System Bode Diagram y(t) y(t) 2 Freq =. rad/s Freq =. rad/s Freq = 5. rad/s Phase (deg) y(t) y(t) Freq =. rad/s P (s) = /(s 2 +.5s + ) ω n = rad/s u(t) = A sin(ω t) y forced (t) = AM sin(ω t + ϕ) AERO 422, Instructor: Raktim Bhattacharya 5 / 52

16 .. Lead Compensator 5 5 Lead Controller. Phase lead low gain at low frequency high gain at high frequency.. relate it to derivative control 5 6 Phase (deg) AERO 422, Instructor: Raktim Bhattacharya 6 / 52

17 .. Lag Compensator Lag Controller. Phase lag high gain at low frequency low gain at high frequency relate it to integral control.. 5 Phase (deg) AERO 422, Instructor: Raktim Bhattacharya 7 / 52

18 .. S(jω) + T (jω) =. d.. n r + u e y + y. m C P y m Magnitude S(jω) P (s) = C(s) = (s+)(s/2+) S = G er = +P C = +P T = G yr = P C +P C = P +P ω rad/s Bode Diagram S T S+T Magnitude T(jω) ω rad/s AERO 422, Instructor: Raktim Bhattacharya 8 / 52

19 .. All transfer functions... With proportional controller G er G ed G en G yr G yd G yn AERO 422, Instructor: Raktim Bhattacharya 9 / 52

20 ... Piper Dakota Control System.. ed with root locus method System Transfer function from δ e (elevator angle) to θ (pitch angle) is P (s) = θ(s) δ e (s) = 6(s + 2.5)(s +.7) (s 2 + 5s + 4)(s 2 +.3s +.6) Control Objective an autopilot so that the step response to elevator input has t r < and M p < % = ω n >.8 rad/s and ζ >.6 2 nd order Controller C(s) =.5 s + 3 ( +.5/s) s + 25 AERO 422, Instructor: Raktim Bhattacharya 2 / 52

21 ... Piper Dakota Control System.. Time Response Ref to Control Ref to Error Ref to Output.5.5 Elevator angle (deg).5 Error (deg).5 Pitch Angle (deg) Time (seconds).5 2 Time (seconds) 2 Time (seconds) Dist to Control Dist to Error Dist to Output 5 Elevator angle (deg).5 Error (deg) Pitch angle (deg) Time (seconds) Time (seconds) 2 4 Time (seconds) AERO 422, Instructor: Raktim Bhattacharya 2 / 52

22 ... Piper Dakota Control System.. Frequency Response G er G ed G en G yr G yd G yn AERO 422, Instructor: Raktim Bhattacharya 22 / 52

23 ... Piper Dakota Control System.. Frequency Response (contd.) G ur G ud AERO 422, Instructor: Raktim Bhattacharya 23 / 52

24

25 ... Approximate.. Useful for & Analysis Let open-loop transfer function be Write in Bode form KG(s) = K (s z )(s z 2 ) (s p )(s p 2 ) KG(jω) = K (jωτ + )(jωτ 2 + ) (jωτ a + )(jωτ b + ) K is the DC gain of the system. Example G(s) = (s + ) (s + 2)(s + 3) = G(jω) = jω + (jω + 2)(jω + 3) = 6 jω + (jω/2 + )(jω/3 + ) AERO 422, Instructor: Raktim Bhattacharya 25 / 52

26 ... Approximate.. contd. Transfer function in Bode Form KG(jω) = K (jωτ + )(jωτ 2 + ) (jωτ a + )(jωτ b + ) Three cases. K (jω) n pole, zero at origin 2. (jω + ) ± real pole, zero 3. [ ( jω ω n ) 2 + 2ζ jω ω n + ] ± complex pole, zero AERO 422, Instructor: Raktim Bhattacharya 26 / 52

27 ..... Case: K (jω) n pole, zero at origin Gain log K (jω) n = log K + n log jw = log K + n log w Phase K (jω) n = K + n jω = + n Gain Phase (a) Gain (b) Phase AERO 422, Instructor: Raktim Bhattacharya 27 / 52

28 ..... Case:2 (jωτ + ) ± real pole, zero Gain (jωτ + ) = Frequency ω = /τ is the break point {, ωτ <<, jωτ, ωτ >>. 2 Gain AERO 422, Instructor: Raktim Bhattacharya 28 / 52

29 ... Case:2 (jωτ + ) ± real pole, zero (contd.).. Phase, ωτ <<, = jωτ + = jωτ, ωτ >>, jωτ = 9 ωτ, jωτ + = Phase AERO 422, Instructor: Raktim Bhattacharya 29 / 52

30 .. Example... G(s) = 2(s +.5) s(s + )(s + 5) Bode Diagram Bode Diagram Phase (deg) Phase (deg) AERO 422, Instructor: Raktim Bhattacharya 3 / 52

31 Errors

32 .. Closed-loop system... r + e u y. C P y Closed-loop transfer function G er = + P C = K (jω) n (jωτ + )(jωτ 2 + ) (jωτ a + )(jωτ b + ) Steady-state gain lim sger(s) s s lim Ger(jω) ω P C = 2(s +.5) s(s + )(s + 5) Typically analysis is done with open-loop system Bode Diagram AERO 422, Instructor: Raktim Bhattacharya 32 / 52

33 .. Open-loop system... r + e u y. C P y Open-loop transfer function 2(s +.5) P C = s(s + )(s + 5) = K (jω) n (jωτ + )(jωτ 2 + ) (jωτ a + )(jωτ b + ) Steady-state error step e ss = Steady-state error ramp + K p, K p := K. 4 2 Bode Diagram e ss = K v 2 4 System type is the slope of the low frequency asymptote K v is the value of low frequency asymptote at ω = rad/s AERO 422, Instructor: Raktim Bhattacharya 33 / 52

34 Analysis

35 .. r + e u y. C P y Given open-loop data C(s) = K, P (s) = s(s+) 2 Imaginary Axis (seconds ) Root Locus. All points on root locus satisfy + P (s)c(s) = P (s)c(s) = = P (s)c(s) = and P (s)c(s) = 8 At neutral stability point s = jω, P (jω)c(jω) = P (jω)c(jω) = Stable for K < 2 Real Axis (seconds ) AERO 422, Instructor: Raktim Bhattacharya 35 / 52

36 ... P (jω)c(jω) < at P (jω)c(jω) = 8.. Bode Diagram 5 5 Phase (deg) K=. K=2 K= AERO 422, Instructor: Raktim Bhattacharya 36 / 52

37 .. Gain Margin... Open loop Bode Diagram 5 5 Phase (deg) K=. K=2 K= Gain Margin (GM): factor by which gain can be increased at P (jω)c(jω) = 8 AERO 422, Instructor: Raktim Bhattacharya 37 / 52

38 .. Phase Margin... Open loop Bode Diagram 5 5 Phase (deg) K=. K=2 K= Phase Margin (PM): amount by which phase exceeds 8 at P (jω)c(jω) = AERO 422, Instructor: Raktim Bhattacharya 38 / 52

39 .. Nyquist Plot... Relates open-loop frequency response to number of unstable closed-loop poles Residue theorem in complex analysis Plot P (jω)c(jω) in the complex plain Number of encirclements of equals Z P of + P (s)c(s) AERO 422, Instructor: Raktim Bhattacharya 39 / 52

40 .. Nyquist Plot... contd. Write P (s)c(s) = KG(s) = K N(s) D(s) = + P (s)c(s) = D(s) + KN(s) D(s) Poles of + P (s)c(s) = Poles of G(s) none of them on RHP Number of encirclements = number of zeros of + P (s)c(s) on RHP number of poles of closed-loop system AERO 422, Instructor: Raktim Bhattacharya 4 / 52

41 .. Nyquist Plot... Example: P (s)c(s) = K s(s+) 2 Nyquist Diagram 3 2 K= K=2 K= Imaginary Axis Real Axis AERO 422, Instructor: Raktim Bhattacharya 4 / 52

42 .. Nyquist Plot Determining Gain. Given P (s)c(s) = K, what is K for stability? s(s+) 2 Encirclement of /K + G(s) =.. Nyquist Diagram 2.5 Imaginary Axis Real Axis AERO 422, Instructor: Raktim Bhattacharya 42 / 52

43 .. Nyquist Plot... Gain and Phase Margin Nyquist plot of P (s)c(s) Nyquist Diagram 2.5 Imaginary Axis Real Axis AERO 422, Instructor: Raktim Bhattacharya 43 / 52

44 Frequency Domain

45 ... Using of P (jω)c(jω) Loop Shaping.. Develop conditions on the Bode plot of the open loop transfer function Sensitivity +P C Steady-state errors: slope and magnitude at lim ω Robust to sensor noise Disturbance rejection Controller roll off = not excite high-frequency modes of plant Robust to plant uncertainty Look at Bode plot of L(jω) := P (jω)c(jw) AERO 422, Instructor: Raktim Bhattacharya 45 / 52

46 ... Frquency Domain Specifications Constraints on the shape of L(jω).. P (j!)c(j!) Steady-state error boundary slope! c Sensor noise, plant uncertainty! Choose C(jω) to ensure L(jω) does not violate the constraints Slope at ω c ensures P M 9 stable if P M > = Sensor noise, disturbance Plant uncertainty P C > 8 AERO 422, Instructor: Raktim Bhattacharya 46 / 52

47 .. Plant Uncertainty... P (jω) = P (jω)( + P (jω)) Bode Diagram 5 5 True Model Unc+ Unc P (j!)c(j!) Steady-state error boundary slope!c Sensor noise, plant uncertainty! slope 5 2 P (j!)c(j!) Steady-state error boundary!c Sensor noise, disturbance Plant uncertainty! AERO 422, Instructor: Raktim Bhattacharya 47 / 52

48 ... Sensor Characteristics.. Noise spectrum P (j!)c(j!) Steady-state error boundary slope!c Sensor noise, plant uncertainty! P (j!)c(j!) slope!c Steady-state error boundary Sensor noise, disturbance Plant uncertainty! G yn = P C + P C AERO 422, Instructor: Raktim Bhattacharya 48 / 52

49 .. Reference Tracking... Bandlimited else conflicts with noise rejection Spectrum of r(t) X(f) P (j!)c(j!) Steady-state error boundary slope!c Sensor noise, plant uncertainty! Frequency (Hz) X(f) Spectrum of n(t) slope Sensor noise, disturbance Plant uncertainty!!c Steady-state error boundary Frequency (Hz) P (j!)c(j!) G yr = G yn = P C +P C P C + P C AERO 422, Instructor: Raktim Bhattacharya 49 / 52

50 ... Disturbance Rejecton.. Bandlimited else conflicts with noise rejection Spectrum of d(t) X(f) P (j!)c(j!) Steady-state error boundary slope!c Sensor noise, plant uncertainty! Frequency (Hz) X(f) Spectrum of n(t) slope Sensor noise, disturbance Plant uncertainty!!c Steady-state error boundary Frequency (Hz) P (j!)c(j!) G yd = G yn = P C +P C P + P C AERO 422, Instructor: Raktim Bhattacharya 5 / 52

51 ..... AERO 422, Instructor: Raktim Bhattacharya 5 / 52

Raktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries

Raktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries . AERO 632: of Advance Flight Control System. Preliminaries Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. Preliminaries Signals & Systems Laplace

More information

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Basic Feedback Analysis & Design

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Basic Feedback Analysis & Design AERO 422: Active Controls for Aerospace Vehicles Basic Feedback Analysis & Design Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University Routh s Stability

More information

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Dynamic Response

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Dynamic Response .. AERO 422: Active Controls for Aerospace Vehicles Dynamic Response Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. . Previous Class...........

More information

Proportional, Integral & Derivative Control Design. Raktim Bhattacharya

Proportional, Integral & Derivative Control Design. Raktim Bhattacharya AERO 422: Active Controls for Aerospace Vehicles Proportional, ntegral & Derivative Control Design Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University

More information

Exercise 1 (A Non-minimum Phase System)

Exercise 1 (A Non-minimum Phase System) Prof. Dr. E. Frazzoli 5-59- Control Systems I (Autumn 27) Solution Exercise Set 2 Loop Shaping clruch@ethz.ch, 8th December 27 Exercise (A Non-minimum Phase System) To decrease the rise time of the system,

More information

Exercise 1 (A Non-minimum Phase System)

Exercise 1 (A Non-minimum Phase System) Prof. Dr. E. Frazzoli 5-59- Control Systems I (HS 25) Solution Exercise Set Loop Shaping Noele Norris, 9th December 26 Exercise (A Non-minimum Phase System) To increase the rise time of the system, we

More information

Introduction. Performance and Robustness (Chapter 1) Advanced Control Systems Spring / 31

Introduction. Performance and Robustness (Chapter 1) Advanced Control Systems Spring / 31 Introduction Classical Control Robust Control u(t) y(t) G u(t) G + y(t) G : nominal model G = G + : plant uncertainty Uncertainty sources : Structured : parametric uncertainty, multimodel uncertainty Unstructured

More information

Frequency methods for the analysis of feedback systems. Lecture 6. Loop analysis of feedback systems. Nyquist approach to study stability

Frequency methods for the analysis of feedback systems. Lecture 6. Loop analysis of feedback systems. Nyquist approach to study stability Lecture 6. Loop analysis of feedback systems 1. Motivation 2. Graphical representation of frequency response: Bode and Nyquist curves 3. Nyquist stability theorem 4. Stability margins Frequency methods

More information

Control System Design

Control System Design ELEC ENG 4CL4: Control System Design Notes for Lecture #11 Wednesday, January 28, 2004 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Relative Stability: Stability

More information

Control Systems I Lecture 10: System Specifications

Control Systems I Lecture 10: System Specifications Control Systems I Lecture 10: System Specifications Readings: Guzzella, Chapter 10 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 24, 2017 E. Frazzoli (ETH) Lecture

More information

Frequency domain analysis

Frequency domain analysis Automatic Control 2 Frequency domain analysis Prof. Alberto Bemporad University of Trento Academic year 2010-2011 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011

More information

Analysis of SISO Control Loops

Analysis of SISO Control Loops Chapter 5 Analysis of SISO Control Loops Topics to be covered For a given controller and plant connected in feedback we ask and answer the following questions: Is the loop stable? What are the sensitivities

More information

MAE 143B - Homework 9

MAE 143B - Homework 9 MAE 143B - Homework 9 7.1 a) We have stable first-order poles at p 1 = 1 and p 2 = 1. For small values of ω, we recover the DC gain K = lim ω G(jω) = 1 1 = 2dB. Having this finite limit, our straight-line

More information

Process Control & Instrumentation (CH 3040)

Process Control & Instrumentation (CH 3040) First-order systems Process Control & Instrumentation (CH 3040) Arun K. Tangirala Department of Chemical Engineering, IIT Madras January - April 010 Lectures: Mon, Tue, Wed, Fri Extra class: Thu A first-order

More information

Plan of the Lecture. Goal: wrap up lead and lag control; start looking at frequency response as an alternative methodology for control systems design.

Plan of the Lecture. Goal: wrap up lead and lag control; start looking at frequency response as an alternative methodology for control systems design. Plan of the Lecture Review: design using Root Locus; dynamic compensation; PD and lead control Today s topic: PI and lag control; introduction to frequency-response design method Goal: wrap up lead and

More information

Nyquist Criterion For Stability of Closed Loop System

Nyquist Criterion For Stability of Closed Loop System Nyquist Criterion For Stability of Closed Loop System Prof. N. Puri ECE Department, Rutgers University Nyquist Theorem Given a closed loop system: r(t) + KG(s) = K N(s) c(t) H(s) = KG(s) +KG(s) = KN(s)

More information

DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD

DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD 206 Spring Semester ELEC733 Digital Control System LECTURE 7: DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD For a unit ramp input Tz Ez ( ) 2 ( z ) D( z) G( z) Tz e( ) lim( z) z 2 ( z ) D( z)

More information

Frequency Response Techniques

Frequency Response Techniques 4th Edition T E N Frequency Response Techniques SOLUTION TO CASE STUDY CHALLENGE Antenna Control: Stability Design and Transient Performance First find the forward transfer function, G(s). Pot: K 1 = 10

More information

CDS 101/110a: Lecture 8-1 Frequency Domain Design

CDS 101/110a: Lecture 8-1 Frequency Domain Design CDS 11/11a: Lecture 8-1 Frequency Domain Design Richard M. Murray 17 November 28 Goals: Describe canonical control design problem and standard performance measures Show how to use loop shaping to achieve

More information

Homework 7 - Solutions

Homework 7 - Solutions Homework 7 - Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the

More information

Singular Value Decomposition Analysis

Singular Value Decomposition Analysis Singular Value Decomposition Analysis Singular Value Decomposition Analysis Introduction Introduce a linear algebra tool: singular values of a matrix Motivation Why do we need singular values in MIMO control

More information

EE3CL4: Introduction to Linear Control Systems

EE3CL4: Introduction to Linear Control Systems 1 / 30 EE3CL4: Introduction to Linear Control Systems Section 9: of and using Techniques McMaster University Winter 2017 2 / 30 Outline 1 2 3 4 / 30 domain analysis Analyze closed loop using open loop

More information

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21-211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21-211 1 / 39 Feedback

More information

The loop shaping paradigm. Lecture 7. Loop analysis of feedback systems (2) Essential specifications (2)

The loop shaping paradigm. Lecture 7. Loop analysis of feedback systems (2) Essential specifications (2) Lecture 7. Loop analysis of feedback systems (2). Loop shaping 2. Performance limitations The loop shaping paradigm. Estimate performance and robustness of the feedback system from the loop transfer L(jω)

More information

EE C128 / ME C134 Fall 2014 HW 8 - Solutions. HW 8 - Solutions

EE C128 / ME C134 Fall 2014 HW 8 - Solutions. HW 8 - Solutions EE C28 / ME C34 Fall 24 HW 8 - Solutions HW 8 - Solutions. Transient Response Design via Gain Adjustment For a transfer function G(s) = in negative feedback, find the gain to yield a 5% s(s+2)(s+85) overshoot

More information

Radar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D.

Radar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D. Radar Dish ME 304 CONTROL SYSTEMS Mechanical Engineering Department, Middle East Technical University Armature controlled dc motor Outside θ D output Inside θ r input r θ m Gearbox Control Transmitter

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering.4 Dynamics and Control II Fall 7 Problem Set #9 Solution Posted: Sunday, Dec., 7. The.4 Tower system. The system parameters are

More information

Classify a transfer function to see which order or ramp it can follow and with which expected error.

Classify a transfer function to see which order or ramp it can follow and with which expected error. Dr. J. Tani, Prof. Dr. E. Frazzoli 5-059-00 Control Systems I (Autumn 208) Exercise Set 0 Topic: Specifications for Feedback Systems Discussion: 30.. 208 Learning objectives: The student can grizzi@ethz.ch,

More information

Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types

Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types Venkata Sonti Department of Mechanical Engineering Indian Institute of Science Bangalore, India, 562 This

More information

Prüfung Regelungstechnik I (Control Systems I) Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Prüfung Regelungstechnik I (Control Systems I) Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 29. 8. 2 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid

More information

Today (10/23/01) Today. Reading Assignment: 6.3. Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10

Today (10/23/01) Today. Reading Assignment: 6.3. Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10 Today Today (10/23/01) Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10 Reading Assignment: 6.3 Last Time In the last lecture, we discussed control design through shaping of the loop gain GK:

More information

Topic # Feedback Control

Topic # Feedback Control Topic #4 16.31 Feedback Control Stability in the Frequency Domain Nyquist Stability Theorem Examples Appendix (details) This is the basis of future robustness tests. Fall 2007 16.31 4 2 Frequency Stability

More information

The Frequency-Response

The Frequency-Response 6 The Frequency-Response Design Method A Perspective on the Frequency-Response Design Method The design of feedback control systems in industry is probably accomplished using frequency-response methods

More information

Outline. Classical Control. Lecture 1

Outline. Classical Control. Lecture 1 Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction

More information

EECS C128/ ME C134 Final Thu. May 14, pm. Closed book. One page, 2 sides of formula sheets. No calculators.

EECS C128/ ME C134 Final Thu. May 14, pm. Closed book. One page, 2 sides of formula sheets. No calculators. Name: SID: EECS C28/ ME C34 Final Thu. May 4, 25 5-8 pm Closed book. One page, 2 sides of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 4 2 4 3 6 4 8 5 3

More information

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 5. 2. 2 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid -

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect

More information

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 3.. 24 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid -

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 24: Compensation in the Frequency Domain Overview In this Lecture, you will learn: Lead Compensators Performance Specs Altering

More information

1 (s + 3)(s + 2)(s + a) G(s) = C(s) = K P + K I

1 (s + 3)(s + 2)(s + a) G(s) = C(s) = K P + K I MAE 43B Linear Control Prof. M. Krstic FINAL June 9, Problem. ( points) Consider a plant in feedback with the PI controller G(s) = (s + 3)(s + )(s + a) C(s) = K P + K I s. (a) (4 points) For a given constant

More information

Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control

Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control Chapter 2 Classical Control System Design Overview Ch. 2. 2. Classical control system design Introduction Introduction Steady-state Steady-state errors errors Type Type k k systems systems Integral Integral

More information

ROOT LOCUS. Consider the system. Root locus presents the poles of the closed-loop system when the gain K changes from 0 to. H(s) H ( s) = ( s)

ROOT LOCUS. Consider the system. Root locus presents the poles of the closed-loop system when the gain K changes from 0 to. H(s) H ( s) = ( s) C1 ROOT LOCUS Consider the system R(s) E(s) C(s) + K G(s) - H(s) C(s) R(s) = K G(s) 1 + K G(s) H(s) Root locus presents the poles of the closed-loop system when the gain K changes from 0 to 1+ K G ( s)

More information

Introduction to Feedback Control

Introduction to Feedback Control Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

More information

FREQUENCY-RESPONSE DESIGN

FREQUENCY-RESPONSE DESIGN ECE45/55: Feedback Control Systems. 9 FREQUENCY-RESPONSE DESIGN 9.: PD and lead compensation networks The frequency-response methods we have seen so far largely tell us about stability and stability margins

More information

H(s) = s. a 2. H eq (z) = z z. G(s) a 2. G(s) A B. s 2 s(s + a) 2 s(s a) G(s) 1 a 1 a. } = (z s 1)( z. e ) ) (z. (z 1)(z e at )(z e at )

H(s) = s. a 2. H eq (z) = z z. G(s) a 2. G(s) A B. s 2 s(s + a) 2 s(s a) G(s) 1 a 1 a. } = (z s 1)( z. e ) ) (z. (z 1)(z e at )(z e at ) .7 Quiz Solutions Problem : a H(s) = s a a) Calculate the zero order hold equivalent H eq (z). H eq (z) = z z G(s) Z{ } s G(s) a Z{ } = Z{ s s(s a ) } G(s) A B Z{ } = Z{ + } s s(s + a) s(s a) G(s) a a

More information

INTRODUCTION TO DIGITAL CONTROL

INTRODUCTION TO DIGITAL CONTROL ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a linear-time-invariant

More information

Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lecture 6 Classical Control Overview IV Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lead Lag Compensator Design Dr. Radhakant Padhi Asst.

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 22: The Nyquist Criterion Overview In this Lecture, you will learn: Complex Analysis The Argument Principle The Contour

More information

ME 375 EXAM #1 Friday, March 13, 2015 SOLUTION

ME 375 EXAM #1 Friday, March 13, 2015 SOLUTION ME 375 EXAM #1 Friday, March 13, 2015 SOLUTION PROBLEM 1 A system is made up of a homogeneous disk (of mass m and outer radius R), particle A (of mass m) and particle B (of mass m). The disk is pinned

More information

Stability of CL System

Stability of CL System Stability of CL System Consider an open loop stable system that becomes unstable with large gain: At the point of instability, K( j) G( j) = 1 0dB K( j) G( j) K( j) G( j) K( j) G( j) =± 180 o 180 o Closed

More information

Frequency Response Analysis

Frequency Response Analysis Frequency Response Analysis Consider let the input be in the form Assume that the system is stable and the steady state response of the system to a sinusoidal inputdoes not depend on the initial conditions

More information

Active Control? Contact : Website : Teaching

Active Control? Contact : Website :   Teaching Active Control? Contact : bmokrani@ulb.ac.be Website : http://scmero.ulb.ac.be Teaching Active Control? Disturbances System Measurement Control Controler. Regulator.,,, Aims of an Active Control Disturbances

More information

Control Systems I. Lecture 9: The Nyquist condition

Control Systems I. Lecture 9: The Nyquist condition Control Systems I Lecture 9: The Nyquist condition adings: Guzzella, Chapter 9.4 6 Åstrom and Murray, Chapter 9.1 4 www.cds.caltech.edu/~murray/amwiki/index.php/first_edition Emilio Frazzoli Institute

More information

16.30/31, Fall 2010 Recitation # 2

16.30/31, Fall 2010 Recitation # 2 16.30/31, Fall 2010 Recitation # 2 September 22, 2010 In this recitation, we will consider two problems from Chapter 8 of the Van de Vegte book. R + - E G c (s) G(s) C Figure 1: The standard block diagram

More information

D(s) G(s) A control system design definition

D(s) G(s) A control system design definition R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure

More information

School of Mechanical Engineering Purdue University

School of Mechanical Engineering Purdue University Case Study ME375 Frequency Response - 1 Case Study SUPPORT POWER WIRE DROPPERS Electric train derives power through a pantograph, which contacts the power wire, which is suspended from a catenary. During

More information

ECE 486 Control Systems

ECE 486 Control Systems ECE 486 Control Systems Spring 208 Midterm #2 Information Issued: April 5, 208 Updated: April 8, 208 ˆ This document is an info sheet about the second exam of ECE 486, Spring 208. ˆ Please read the following

More information

MAE 143B - Homework 9

MAE 143B - Homework 9 MAE 43B - Homework 9 7.2 2 2 3.8.6.4.2.2 9 8 2 2 3 a) G(s) = (s+)(s+).4.6.8.2.2.4.6.8. Polar plot; red for negative ; no encirclements of, a.s. under unit feedback... 2 2 3. 4 9 2 2 3 h) G(s) = s+ s(s+)..2.4.6.8.2.4

More information

Lecture 1: Feedback Control Loop

Lecture 1: Feedback Control Loop Lecture : Feedback Control Loop Loop Transfer function The standard feedback control system structure is depicted in Figure. This represend(t) n(t) r(t) e(t) u(t) v(t) η(t) y(t) F (s) C(s) P (s) Figure

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 23: Drawing The Nyquist Plot Overview In this Lecture, you will learn: Review of Nyquist Drawing the Nyquist Plot Using

More information

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics

More information

ECE 388 Automatic Control

ECE 388 Automatic Control Lead Compensator and PID Control Associate Prof. Dr. of Mechatronics Engineeering Çankaya University Compulsory Course in Electronic and Communication Engineering Credits (2/2/3) Course Webpage: http://ece388.cankaya.edu.tr

More information

MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions

MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions Question 1. SIGNALS: Design of a noise-cancelling headphone system. 1a. Based on the low-pass filter given, design a high-pass filter,

More information

Topic # Feedback Control Systems

Topic # Feedback Control Systems Topic #20 16.31 Feedback Control Systems Closed-loop system analysis Bounded Gain Theorem Robust Stability Fall 2007 16.31 20 1 SISO Performance Objectives Basic setup: d i d o r u y G c (s) G(s) n control

More information

ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques

ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques [] For the following system, Design a compensator such

More information

Richiami di Controlli Automatici

Richiami di Controlli Automatici Richiami di Controlli Automatici Gianmaria De Tommasi 1 1 Università degli Studi di Napoli Federico II detommas@unina.it Ottobre 2012 Corsi AnsaldoBreda G. De Tommasi (UNINA) Richiami di Controlli Automatici

More information

Root Locus Design Example #3

Root Locus Design Example #3 Root Locus Design Example #3 A. Introduction The system represents a linear model for vertical motion of an underwater vehicle at zero forward speed. The vehicle is assumed to have zero pitch and roll

More information

Topic # Feedback Control Systems

Topic # Feedback Control Systems Topic #19 16.31 Feedback Control Systems Stengel Chapter 6 Question: how well do the large gain and phase margins discussed for LQR map over to DOFB using LQR and LQE (called LQG)? Fall 2010 16.30/31 19

More information

Frequency Response of Linear Time Invariant Systems

Frequency Response of Linear Time Invariant Systems ME 328, Spring 203, Prof. Rajamani, University of Minnesota Frequency Response of Linear Time Invariant Systems Complex Numbers: Recall that every complex number has a magnitude and a phase. Example: z

More information

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich Control Systems I Lecture 6: Poles and Zeros Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 27, 2017 E. Frazzoli (ETH) Lecture 6: Control Systems I 27/10/2017

More information

CDS 101/110a: Lecture 10-1 Robust Performance

CDS 101/110a: Lecture 10-1 Robust Performance CDS 11/11a: Lecture 1-1 Robust Performance Richard M. Murray 1 December 28 Goals: Describe how to represent uncertainty in process dynamics Describe how to analyze a system in the presence of uncertainty

More information

Controls Problems for Qualifying Exam - Spring 2014

Controls Problems for Qualifying Exam - Spring 2014 Controls Problems for Qualifying Exam - Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function

More information

Robust Performance Example #1

Robust Performance Example #1 Robust Performance Example # The transfer function for a nominal system (plant) is given, along with the transfer function for one extreme system. These two transfer functions define a family of plants

More information

ECSE 4962 Control Systems Design. A Brief Tutorial on Control Design

ECSE 4962 Control Systems Design. A Brief Tutorial on Control Design ECSE 4962 Control Systems Design A Brief Tutorial on Control Design Instructor: Professor John T. Wen TA: Ben Potsaid http://www.cat.rpi.edu/~wen/ecse4962s04/ Don t Wait Until The Last Minute! You got

More information

Exercises for lectures 13 Design using frequency methods

Exercises for lectures 13 Design using frequency methods Exercises for lectures 13 Design using frequency methods Michael Šebek Automatic control 2016 31-3-17 Setting of the closed loop bandwidth At the transition frequency in the open loop is (from definition)

More information

1 (20 pts) Nyquist Exercise

1 (20 pts) Nyquist Exercise EE C128 / ME134 Problem Set 6 Solution Fall 2011 1 (20 pts) Nyquist Exercise Consider a close loop system with unity feedback. For each G(s), hand sketch the Nyquist diagram, determine Z = P N, algebraically

More information

STABILITY ANALYSIS. Asystemmaybe stable, neutrallyormarginallystable, or unstable. This can be illustrated using cones: Stable Neutral Unstable

STABILITY ANALYSIS. Asystemmaybe stable, neutrallyormarginallystable, or unstable. This can be illustrated using cones: Stable Neutral Unstable ECE4510/5510: Feedback Control Systems. 5 1 STABILITY ANALYSIS 5.1: Bounded-input bounded-output (BIBO) stability Asystemmaybe stable, neutrallyormarginallystable, or unstable. This can be illustrated

More information

FEL3210 Multivariable Feedback Control

FEL3210 Multivariable Feedback Control FEL3210 Multivariable Feedback Control Lecture 5: Uncertainty and Robustness in SISO Systems [Ch.7-(8)] Elling W. Jacobsen, Automatic Control Lab, KTH Lecture 5:Uncertainty and Robustness () FEL3210 MIMO

More information

Control Systems I. Lecture 9: The Nyquist condition

Control Systems I. Lecture 9: The Nyquist condition Control Systems I Lecture 9: The Nyquist condition Readings: Åstrom and Murray, Chapter 9.1 4 www.cds.caltech.edu/~murray/amwiki/index.php/first_edition Jacopo Tani Institute for Dynamic Systems and Control

More information

Design and Tuning of Fractional-order PID Controllers for Time-delayed Processes

Design and Tuning of Fractional-order PID Controllers for Time-delayed Processes Design and Tuning of Fractional-order PID Controllers for Time-delayed Processes Emmanuel Edet Technology and Innovation Centre University of Strathclyde 99 George Street Glasgow, United Kingdom emmanuel.edet@strath.ac.uk

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 2: Drawing Bode Plots, Part 2 Overview In this Lecture, you will learn: Simple Plots Real Zeros Real Poles Complex

More information

Loop shaping exercise

Loop shaping exercise Loop shaping exercise Excerpt 1 from Controlli Automatici - Esercizi di Sintesi, L. Lanari, G. Oriolo, EUROMA - La Goliardica, 1997. It s a generic book with some typical problems in control, not a collection

More information

MAS107 Control Theory Exam Solutions 2008

MAS107 Control Theory Exam Solutions 2008 MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve

More information

Professor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley

Professor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley Professor Fearing EE C8 / ME C34 Problem Set 7 Solution Fall Jansen Sheng and Wenjie Chen, UC Berkeley. 35 pts Lag compensation. For open loop plant Gs ss+5s+8 a Find compensator gain Ds k such that the

More information

Chapter 6 - Solved Problems

Chapter 6 - Solved Problems Chapter 6 - Solved Problems Solved Problem 6.. Contributed by - James Welsh, University of Newcastle, Australia. Find suitable values for the PID parameters using the Z-N tuning strategy for the nominal

More information

Transient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n

Transient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n Design via frequency response Transient response via gain adjustment Consider a unity feedback system, where G(s) = ωn 2. The closed loop transfer function is s(s+2ζω n ) T(s) = ω 2 n s 2 + 2ζωs + ω 2

More information

MEM 355 Performance Enhancement of Dynamical Systems

MEM 355 Performance Enhancement of Dynamical Systems MEM 355 Performance Enhancement of Dynamical Systems Frequency Domain Design Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 5/8/25 Outline Closed Loop Transfer Functions

More information

Control for. Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e

Control for. Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e Control for Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e Motion Systems m F Introduction Timedomain tuning Frequency domain & stability Filters Feedforward Servo-oriented

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 23: Drawing The Nyquist Plot Overview In this Lecture, you will learn: Review of Nyquist Drawing the Nyquist Plot Using the

More information

r + - FINAL June 12, 2012 MAE 143B Linear Control Prof. M. Krstic

r + - FINAL June 12, 2012 MAE 143B Linear Control Prof. M. Krstic MAE 43B Linear Control Prof. M. Krstic FINAL June, One sheet of hand-written notes (two pages). Present your reasoning and calculations clearly. Inconsistent etchings will not be graded. Write answers

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall K(s +1)(s +2) G(s) =.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall K(s +1)(s +2) G(s) =. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Dynamics and Control II Fall 7 Problem Set #7 Solution Posted: Friday, Nov., 7. Nise problem 5 from chapter 8, page 76. Answer:

More information

CDS 101/110a: Lecture 10-2 Control Systems Implementation

CDS 101/110a: Lecture 10-2 Control Systems Implementation CDS 101/110a: Lecture 10-2 Control Systems Implementation Richard M. Murray 5 December 2012 Goals Provide an overview of the key principles, concepts and tools from control theory - Classical control -

More information

CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION

CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION Objectives Students should be able to: Draw the bode plots for first order and second order system. Determine the stability through the bode plots.

More information

K(s +2) s +20 K (s + 10)(s +1) 2. (c) KG(s) = K(s + 10)(s +1) (s + 100)(s +5) 3. Solution : (a) KG(s) = s +20 = K s s

K(s +2) s +20 K (s + 10)(s +1) 2. (c) KG(s) = K(s + 10)(s +1) (s + 100)(s +5) 3. Solution : (a) KG(s) = s +20 = K s s 321 16. Determine the range of K for which each of the following systems is stable by making a Bode plot for K = 1 and imagining the magnitude plot sliding up or down until instability results. Verify

More information

STABILITY ANALYSIS TECHNIQUES

STABILITY ANALYSIS TECHNIQUES ECE4540/5540: Digital Control Systems 4 1 STABILITY ANALYSIS TECHNIQUES 41: Bilinear transformation Three main aspects to control-system design: 1 Stability, 2 Steady-state response, 3 Transient response

More information

H 2 Optimal State Feedback Control Synthesis. Raktim Bhattacharya Aerospace Engineering, Texas A&M University

H 2 Optimal State Feedback Control Synthesis. Raktim Bhattacharya Aerospace Engineering, Texas A&M University H 2 Optimal State Feedback Control Synthesis Raktim Bhattacharya Aerospace Engineering, Texas A&M University Motivation Motivation w(t) u(t) G K y(t) z(t) w(t) are exogenous signals reference, process

More information

Lecture 11. Frequency Response in Discrete Time Control Systems

Lecture 11. Frequency Response in Discrete Time Control Systems EE42 - Discrete Time Systems Spring 28 Lecturer: Asst. Prof. M. Mert Ankarali Lecture.. Frequency Response in Discrete Time Control Systems Let s assume u[k], y[k], and G(z) represents the input, output,

More information

Engraving Machine Example

Engraving Machine Example Engraving Machine Example MCE44 - Fall 8 Dr. Richter November 24, 28 Basic Design The X-axis of the engraving machine has the transfer function G(s) = s(s + )(s + 2) In this basic example, we use a proportional

More information

Uncertainty and Robustness for SISO Systems

Uncertainty and Robustness for SISO Systems Uncertainty and Robustness for SISO Systems ELEC 571L Robust Multivariable Control prepared by: Greg Stewart Outline Nature of uncertainty (models and signals). Physical sources of model uncertainty. Mathematical

More information

An Internal Stability Example

An Internal Stability Example An Internal Stability Example Roy Smith 26 April 2015 To illustrate the concept of internal stability we will look at an example where there are several pole-zero cancellations between the controller and

More information