Introduction to motion correspondence

Size: px
Start display at page:

Download "Introduction to motion correspondence"

Transcription

1 Introduction to motion correspondence 1 IPAM - UCLA July 24, 2013 Iasonas Kokkinos Center for Visual Computing Ecole Centrale Paris / INRIA Saclay

2 Why estimate visual motion? 2 Tracking Segmentation Structure from motion Action recognition

3 Action recognition and motion 3 G. Johansson, Visual Perception of Biological Motion and a Model For Its Analysis", Perception and Psychophysics 14, , 1973.

4 Action recognition and motion 4 G. Johansson, Visual Perception of Biological Motion and a Model For Its Analysis", Perception and Psychophysics 14, , 1973.

5 Action recognition and motion 5 G. Johansson, Visual Perception of Biological Motion and a Model For Its Analysis", Perception and Psychophysics 14, , 1973.

6 Motion Field 6 P(t) is a moving 3D point Velocity of scene point: V = dp/dt P(t) V P(t+dt) p(t) = (x(t),y(t)) is the projection of P in the image. Apparent velocity v in the image: given by components u = dx/dt and v = dy/dt Considering dt =1: p(t+1) = p(t) + (u,v) p(t) v p(t+dt) Motion estimation task: Estimate (u,v) Slide credit: S. Lazebnik 6

7 Brightness constancy constraint 7 Image is projection of 3D environment Each pixel: projection of a surface patch Pixel intensity influenced by 3D surface, incident light, camera Assumption: intensity of surface patch remains constant Slide credit: Georg Langs 7

8 Brightness constancy constraint 8 Optical flow estimation: (x + u(x, y),y+ v(x, y)) Constraint: I(x, y, t Taylor expansion of RHS: I(x, y, t t t 1 1) = I(x + u(x, y),y+ v(x, y),t) 1) ' I(x, Brightness Constancy Constraint: I x u + I y v + I t =0 (x, y) u(x, y)+@iv(x,

9 Optical flow estimation - 2D to 1D 9 Two input images Slide credit: Georg Langs

10 Optical flow estimation - 1D case 10 How can we estimate the displacement? Slide credit: Georg Langs

11 Optical Flow Estimation 1D case 11 Known: Gradient, Difference of intensities at x-d Unknown: d Slide credit: Georg Langs How about 2D?

12 Brightness constraint: not enough for 2D! I x u + I y v + I t = 0 12 I I x u + I y v + I t =0 ( u, v(u ) + 0,v I 0 )=(u, = 0 v)+c( I y,i x ) t unknown flow parallel to the edge ri (u, v)+i t =0 I ( u', v') = 0

13 The Aperture Problem 13 Perceived motion 13

14 The Aperture Problem 14 Actual motion 14

15 Optical flow uncertaintly 15

16 Overcoming the aperture effect 16 Brightness constancy constraint I x (p i )u i + I x (p i )v i + I t (p i )=0

17 Overcoming the aperture effect 17 united we move Brightness constancy constraint I x (p i )u + I x (p i )v + I t (p i )=0

18 Lucas-Kanade I x (p i )u + I x (p i )v + I t (p i )=0 I x,1 I y,1. I x,25 I y, apple u v = I t,1. I t, Rewrite: Residuals: Cost: Minimization: Au = b = Au T = b T b b A T Au = A T b 25 equations, 2 unknows 2u T A T b + u T A T Au B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. IJCAI, 1981.

19 Lucas-Kanade, continued 19 A T Au = A T b Is it invertible? A = u = A T A I x,1 I y, A T b A T A = apple I x,25 I P x,25 P i I2 x,i Pi I x,ii y,i P i I x,ii y,i i I2 y,i B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. IJCAI, 1981.

20 Second Moment Matrix 20 Distribution of gradients: J = apple P x 0,y 0 Ix 2 P x 0,y 0 I x I y Px P 0,y 0 I x I y x 0,y 0 I 2 y

21 Second Moment Matrix 21 Distribution of gradients: J = X x 0,y 0 (I x,i y ) T (I x,i y )

22 Second Moment Matrix 22 Distribution of gradients: J = X x 0,y 0 (rg u) T (rg u)

23 Second Moment Matrix 23 Distribution of gradients: J = G h i (rg u) T (rg u)

24 Second Moment Matrix 24 J = G h i (rg u) T (rg u) Eigenvectors : directions of maximal and minimal variation of u Eigenvalues: amounts of minimal and maximal variation u

25 Local structure and motion estimation 25 1 ' 0, 2 ' 0 1 large, 2 ' 0 1, 2 : large

26 Interpreting the eigenvalues 26 Classification of image points using eigenvalues of the second moment matrix: λ 2 Edge λ 2 >> λ 1 Corner λ 1 and λ 2 are large, λ 1 ~ λ 2 λ 1 and λ 2 are small Flat region Edge λ 1 >> λ 2 Slide credit: K. Grauman λ 1

27 SSD measure 27 Sum of squared differences

28 High-Texture Region 28 Gradients are different, large magnitude Large λ 1, large λ 2 28

29 Edge 29 Gradients very large or very small Large λ 1, small λ 2 29

30 Low-Texture Region 30 Gradients have small magnitude Small λ 1, small λ 2 30

31 Shi-Tomasi feature tracker Find good features (min eigenvalue of 2 2 Hessian) 2. Use Lucas-Kanade to track with pure translation 3. Use affine registration with first feature patch 4. Terminate tracks whose dissimilarity gets too large 5. Start new tracks when needed

32 Tracking example 32 J. Shi and C. Tomasi. Good Features to Track. CVPR 1994.

33 Lucas-Kanade and the aperture effect 33 Brightness constancy + neighboring pixels have same (u,v) I x (p i )u + I x (p i )v + I t (p i )=0 5x5 window: 25 equations, 2 unknowns Solve the system around each pixel separately

34 Dense Lukas Kanade Lucas Kanade Horn Schunk Anisotropic

35 Horn-Schunk and the aperture effect 35 Brightness constancy + flow smoothness: J(u, v) = 1 2 ZZ Minimize with respect to u(x, y),v(x, y) Euler-Lagrange derivative: [I t + ri (u, v)] 2 + (ru) 2 +(rv) 2 dxdy Minimum condition B.K.P. Horn and B.G. Schunck, "Determining optical flow." Artificial Intelligence, 1981.

36 Horn-Schunk results 36

37 Lucas-Kanade revisited 37 General expression for LK criterion: LK flow How does this compare with Horn-Schunk criterion?

38 Lucas-Kanade meets 2 3Horn-Schunk Introduce: w. u = 4 v 5 r 3 f =. 1 rw 2. = ru 2 + rv 2 Lucas-Kanade Horn-Schunk Bruhn-Weickert-Schnoerr Z E LK (w) = Z E HS (w) = Z E BWS (w) = J 2 4 f x f y f t = G r 3 fr 3 f T w T J w dxdy w T J 0 w + a rw dxdy w T J w + a rw dxdy A. Bruhn, J. Weickert, C. Schnörr: 'Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods.' IJCV 2005

39 Horn-Schunk 39

40 Bruhn-Weickert-Schnoerr 40

41 Bruhn-Weickert-Schnoerr, continued Z E BWS (w) = w T J w + a rw dxdy 41 E 0 BWS(w) = Z Spatio-temporal regularization [0,T ] w T J w + a r 3 w dxdy Robust norms: E 00 BWS(w) = Z [0,T ] 1 w T J w + a 2 ( r 3 w )dxdy

42 Bruhn-Weickert-Schnoerr 42

43 Bruhn-Weickert-Schnoerr - anisotropic 43

44 Bruhn-Weickert-Schnoerr flow regularization 44

45 Numerical solutions 45 Euler-Lagrange: Numerical approximation to Laplacian Sparse linear system in u,v Gauss-Seidel, Successive Over Relaxation (SOR) Multigrid 12 fps, 2006 A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comput., D. Terzopoulos, Image Analysis Using Multigrid Relaxation Methods, PAMI, 1986 A. Kenigsberg, R. Kimmel, and I. Yavneh, A Multigrid Approach for Fast Geodesic Active Contours, 2001 G. Papandreou and P. Maragos, "Multigrid Geometric Active Contour Models", TIP 2007 A. Bruhn, J. Weickert, T. Kohlberger, C. Schnörr: A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. IJCV 2006

46 Optical Flow: Iterative Estimation 46 estimate update Initial guess: Estimate: x 0 x (using d for displacement here instead of u)

47 Optical Flow: Iterative Estimation 47 estimate update Initial guess: Estimate: x 0 x

48 Optical Flow: Iterative Estimation 48 estimate update Initial guess: Estimate: x 0 x

49 Optical Flow: Iterative Estimation 49 x 0 x

50 Large Displacements: Reduce Resolution! 50

51 Coarse-to-fine Optical Flow Estimation 51 u=1.25 pixels u=2.5 pixels u=5 pixels Image 1 u=10 pixels Image 2 Gaussian pyramid of image 1 Gaussian pyramid of image 2 51

52 Coarse-to-fine Optical Flow Estimation 52 Run iterative OF Run iterative OF Warp & upsample... Image 1 Image 2 Gaussian pyramid of image 1 Gaussian pyramid of image 2 52

53 Beyond the brightness constancy constraint 53 SIFT flow: dense correspondence across different scenes, C Liu, J Yuen, A Torralba, J. Sivic, W. Freeman, ECCV 2008 T. Brox, J. Malik, Large displacement optical flow: descriptor matching in variational motion estimation, PAMI 2011

54 Beyond the brightness constancy constraint 54 E. Trulls, I. Kokkinos, A. Sanfeliu, and F. Moreno, Dense Segmentation-Aware Descriptors, CVPR 2013

55 Motion-based action recognition Discovering Discriminative Action Parts from Mid-Level Video Representations, M. Raptis, I. Kokkinos and S. Soatto. CVPR,

56 Motion-based action recognition Discovering Discriminative Action Parts from Mid-Level Video Representations, M. Raptis, I. Kokkinos and S. Soatto. CVPR

57 Motion-based action recognition Discovering Discriminative Action Parts from Mid-Level Video Representations, M. Raptis, I. Kokkinos and S. Soatto. CVPR,

58 Motion-based action recognition Discovering Discriminative Action Parts from Mid-Level Video Representations, M. Raptis, I. Kokkinos and S. Soatto. CVPR,

59 Motion-based segmentation 59 Unsupervised segmentation incorporating colour, texture, and motion. T Brox, M Rousson, R Deriche, J Weickert, IVC 2010

60 Further Literature Pointers 60 Layered motion, parametric models, motion segmentation: Layered Representation for Motion Analysis. CVPR J. Wang and E. Adelson Black, M. J. and Anandan, P., The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields, CVIU 1996 D. Cremers, S. Soatto, Motion Competition: A Variational Approach to Piecewise Parametric. Motion Segmentation, IJCV 2004 Unsupervised segmentation incorporating colour, texture, and motion. T Brox, M Rousson, R Deriche, J Weickert, IVC 2010 (wait for R. Szeliski s talk) Learning: Roth, S., Black, M.J.: On the spatial statistics of optical flow. IJCV 74, (2007) Discrete optimization: (W. Freeman s talk today) Fusion Moves for Markov Random Field Optimization. V. Lempitsky, C. Rother, S. Roth, and A. Blake, PAMI B. Glocker, N. Komodakis, G. Tziritas, N. Navab, N. Paragios Dense Image Registration through MRFs and Efficient Linear Programming MIA, 2008

61 Code 61 Secrets of optical flow estimation and their principles, Sun., Roth., and Black, CVPR 10 T. Brox, J. Malik, Large displacement optical flow: descriptor matching in variational motion estimation, PAMI 2011 Action recognition & descriptor works: Registration service:

Motion Estimation (I) Ce Liu Microsoft Research New England

Motion Estimation (I) Ce Liu Microsoft Research New England Motion Estimation (I) Ce Liu celiu@microsoft.com Microsoft Research New England We live in a moving world Perceiving, understanding and predicting motion is an important part of our daily lives Motion

More information

Motion Estimation (I)

Motion Estimation (I) Motion Estimation (I) Ce Liu celiu@microsoft.com Microsoft Research New England We live in a moving world Perceiving, understanding and predicting motion is an important part of our daily lives Motion

More information

Optical Flow, Motion Segmentation, Feature Tracking

Optical Flow, Motion Segmentation, Feature Tracking BIL 719 - Computer Vision May 21, 2014 Optical Flow, Motion Segmentation, Feature Tracking Aykut Erdem Dept. of Computer Engineering Hacettepe University Motion Optical Flow Motion Segmentation Feature

More information

Introduction to Nonlinear Image Processing

Introduction to Nonlinear Image Processing Introduction to Nonlinear Image Processing 1 IPAM Summer School on Computer Vision July 22, 2013 Iasonas Kokkinos Center for Visual Computing Ecole Centrale Paris / INRIA Saclay Mean and median 2 Observations

More information

Optical flow. Subhransu Maji. CMPSCI 670: Computer Vision. October 20, 2016

Optical flow. Subhransu Maji. CMPSCI 670: Computer Vision. October 20, 2016 Optical flow Subhransu Maji CMPSC 670: Computer Vision October 20, 2016 Visual motion Man slides adapted from S. Seitz, R. Szeliski, M. Pollefes CMPSC 670 2 Motion and perceptual organization Sometimes,

More information

Video and Motion Analysis Computer Vision Carnegie Mellon University (Kris Kitani)

Video and Motion Analysis Computer Vision Carnegie Mellon University (Kris Kitani) Video and Motion Analysis 16-385 Computer Vision Carnegie Mellon University (Kris Kitani) Optical flow used for feature tracking on a drone Interpolated optical flow used for super slow-mo optical flow

More information

Elaborazione delle Immagini Informazione multimediale - Immagini. Raffaella Lanzarotti

Elaborazione delle Immagini Informazione multimediale - Immagini. Raffaella Lanzarotti Elaborazione delle Immagini Informazione multimediale - Immagini Raffaella Lanzarotti OPTICAL FLOW Thanks to prof. Mubarak Shah,UCF 2 Video Video: sequence of frames (images) catch in the time Data: function

More information

Iterative Image Registration: Lucas & Kanade Revisited. Kentaro Toyama Vision Technology Group Microsoft Research

Iterative Image Registration: Lucas & Kanade Revisited. Kentaro Toyama Vision Technology Group Microsoft Research Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research Every writer creates his own precursors. His work modifies our conception of the past, as

More information

Motion estimation. Digital Visual Effects Yung-Yu Chuang. with slides by Michael Black and P. Anandan

Motion estimation. Digital Visual Effects Yung-Yu Chuang. with slides by Michael Black and P. Anandan Motion estimation Digital Visual Effects Yung-Yu Chuang with slides b Michael Black and P. Anandan Motion estimation Parametric motion image alignment Tracking Optical flow Parametric motion direct method

More information

Lucas-Kanade Optical Flow. Computer Vision Carnegie Mellon University (Kris Kitani)

Lucas-Kanade Optical Flow. Computer Vision Carnegie Mellon University (Kris Kitani) Lucas-Kanade Optical Flow Computer Vision 16-385 Carnegie Mellon University (Kris Kitani) I x u + I y v + I t =0 I x = @I @x I y = @I u = dx v = dy I @y t = @I dt dt @t spatial derivative optical flow

More information

Revisiting Horn and Schunck: Interpretation as Gauß-Newton Optimisation

Revisiting Horn and Schunck: Interpretation as Gauß-Newton Optimisation ZIKIC, KAMEN, AND NAVAB: REVISITING HORN AND SCHUNCK 1 Revisiting Horn and Schunck: Interpretation as Gauß-Newton Optimisation Darko Zikic 1 zikic@in.tum.de Ali Kamen ali.kamen@siemens.com Nassir Navab

More information

INTEREST POINTS AT DIFFERENT SCALES

INTEREST POINTS AT DIFFERENT SCALES INTEREST POINTS AT DIFFERENT SCALES Thank you for the slides. They come mostly from the following sources. Dan Huttenlocher Cornell U David Lowe U. of British Columbia Martial Hebert CMU Intuitively, junctions

More information

An Adaptive Confidence Measure for Optical Flows Based on Linear Subspace Projections

An Adaptive Confidence Measure for Optical Flows Based on Linear Subspace Projections An Adaptive Confidence Measure for Optical Flows Based on Linear Subspace Projections Claudia Kondermann, Daniel Kondermann, Bernd Jähne, Christoph Garbe Interdisciplinary Center for Scientific Computing

More information

Lecture 8: Interest Point Detection. Saad J Bedros

Lecture 8: Interest Point Detection. Saad J Bedros #1 Lecture 8: Interest Point Detection Saad J Bedros sbedros@umn.edu Review of Edge Detectors #2 Today s Lecture Interest Points Detection What do we mean with Interest Point Detection in an Image Goal:

More information

Lecture 13: Tracking mo3on features op3cal flow

Lecture 13: Tracking mo3on features op3cal flow Lecture 13: Tracking mo3on features op3cal flow Professor Fei- Fei Li Stanford Vision Lab Lecture 14-1! What we will learn today? Introduc3on Op3cal flow Feature tracking Applica3ons Reading: [Szeliski]

More information

Lecture 8: Interest Point Detection. Saad J Bedros

Lecture 8: Interest Point Detection. Saad J Bedros #1 Lecture 8: Interest Point Detection Saad J Bedros sbedros@umn.edu Last Lecture : Edge Detection Preprocessing of image is desired to eliminate or at least minimize noise effects There is always tradeoff

More information

Introduction to Linear Image Processing

Introduction to Linear Image Processing Introduction to Linear Image Processing 1 IPAM - UCLA July 22, 2013 Iasonas Kokkinos Center for Visual Computing Ecole Centrale Paris / INRIA Saclay Image Sciences in a nutshell 2 Image Processing Image

More information

Edges and Scale. Image Features. Detecting edges. Origin of Edges. Solution: smooth first. Effects of noise

Edges and Scale. Image Features. Detecting edges. Origin of Edges. Solution: smooth first. Effects of noise Edges and Scale Image Features From Sandlot Science Slides revised from S. Seitz, R. Szeliski, S. Lazebnik, etc. Origin of Edges surface normal discontinuity depth discontinuity surface color discontinuity

More information

CS4495/6495 Introduction to Computer Vision. 6B-L1 Dense flow: Brightness constraint

CS4495/6495 Introduction to Computer Vision. 6B-L1 Dense flow: Brightness constraint CS4495/6495 Introduction to Computer Vision 6B-L1 Dense flow: Brightness constraint Motion estimation techniques Feature-based methods Direct, dense methods Motion estimation techniques Direct, dense methods

More information

A Generative Model Based Approach to Motion Segmentation

A Generative Model Based Approach to Motion Segmentation A Generative Model Based Approach to Motion Segmentation Daniel Cremers 1 and Alan Yuille 2 1 Department of Computer Science University of California at Los Angeles 2 Department of Statistics and Psychology

More information

Methods in Computer Vision: Introduction to Optical Flow

Methods in Computer Vision: Introduction to Optical Flow Methods in Computer Vision: Introduction to Optical Flow Oren Freifeld Computer Science, Ben-Gurion University March 22 and March 26, 2017 Mar 22, 2017 1 / 81 A Preliminary Discussion Example and Flow

More information

Computer Vision I. Announcements

Computer Vision I. Announcements Announcements Motion II No class Wednesda (Happ Thanksgiving) HW4 will be due Frida 1/8 Comment on Non-maximal supression CSE5A Lecture 15 Shi-Tomasi Corner Detector Filter image with a Gaussian. Compute

More information

Modulation-Feature based Textured Image Segmentation Using Curve Evolution

Modulation-Feature based Textured Image Segmentation Using Curve Evolution Modulation-Feature based Textured Image Segmentation Using Curve Evolution Iasonas Kokkinos, Giorgos Evangelopoulos and Petros Maragos Computer Vision, Speech Communication and Signal Processing Group

More information

Corners, Blobs & Descriptors. With slides from S. Lazebnik & S. Seitz, D. Lowe, A. Efros

Corners, Blobs & Descriptors. With slides from S. Lazebnik & S. Seitz, D. Lowe, A. Efros Corners, Blobs & Descriptors With slides from S. Lazebnik & S. Seitz, D. Lowe, A. Efros Motivation: Build a Panorama M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003 How do we build panorama?

More information

Optic Flow Computation with High Accuracy

Optic Flow Computation with High Accuracy Cognitive Computer Vision Colloquium Prague, January 12 13, 2004 Optic Flow Computation with High ccuracy Joachim Weickert Saarland University Saarbrücken, Germany joint work with Thomas Brox ndrés Bruhn

More information

Image Alignment and Mosaicing

Image Alignment and Mosaicing Image Alignment and Mosaicing Image Alignment Applications Local alignment: Tracking Stereo Global alignment: Camera jitter elimination Image enhancement Panoramic mosaicing Image Enhancement Original

More information

Blobs & Scale Invariance

Blobs & Scale Invariance Blobs & Scale Invariance Prof. Didier Stricker Doz. Gabriele Bleser Computer Vision: Object and People Tracking With slides from Bebis, S. Lazebnik & S. Seitz, D. Lowe, A. Efros 1 Apertizer: some videos

More information

Feature extraction: Corners and blobs

Feature extraction: Corners and blobs Feature extraction: Corners and blobs Review: Linear filtering and edge detection Name two different kinds of image noise Name a non-linear smoothing filter What advantages does median filtering have over

More information

Analysis of Numerical Methods for Level Set Based Image Segmentation

Analysis of Numerical Methods for Level Set Based Image Segmentation Analysis of Numerical Methods for Level Set Based Image Segmentation Björn Scheuermann and Bodo Rosenhahn Institut für Informationsverarbeitung Leibnitz Universität Hannover {scheuerm,rosenhahn}@tnt.uni-hannover.de

More information

Multigrid Acceleration of the Horn-Schunck Algorithm for the Optical Flow Problem

Multigrid Acceleration of the Horn-Schunck Algorithm for the Optical Flow Problem Multigrid Acceleration of the Horn-Schunck Algorithm for the Optical Flow Problem El Mostafa Kalmoun kalmoun@cs.fau.de Ulrich Ruede ruede@cs.fau.de Institute of Computer Science 10 Friedrich Alexander

More information

Global parametric image alignment via high-order approximation

Global parametric image alignment via high-order approximation Global parametric image alignment via high-order approximation Y. Keller, A. Averbuch 2 Electrical & Computer Engineering Department, Ben-Gurion University of the Negev. 2 School of Computer Science, Tel

More information

Feature detectors and descriptors. Fei-Fei Li

Feature detectors and descriptors. Fei-Fei Li Feature detectors and descriptors Fei-Fei Li Feature Detection e.g. DoG detected points (~300) coordinates, neighbourhoods Feature Description e.g. SIFT local descriptors (invariant) vectors database of

More information

Dense Optical Flow Estimation from the Monogenic Curvature Tensor

Dense Optical Flow Estimation from the Monogenic Curvature Tensor Dense Optical Flow Estimation from the Monogenic Curvature Tensor Di Zang 1, Lennart Wietzke 1, Christian Schmaltz 2, and Gerald Sommer 1 1 Department of Computer Science, Christian-Albrechts-University

More information

Feature detectors and descriptors. Fei-Fei Li

Feature detectors and descriptors. Fei-Fei Li Feature detectors and descriptors Fei-Fei Li Feature Detection e.g. DoG detected points (~300) coordinates, neighbourhoods Feature Description e.g. SIFT local descriptors (invariant) vectors database of

More information

Advances in Computer Vision. Prof. Bill Freeman. Image and shape descriptors. Readings: Mikolajczyk and Schmid; Belongie et al.

Advances in Computer Vision. Prof. Bill Freeman. Image and shape descriptors. Readings: Mikolajczyk and Schmid; Belongie et al. 6.869 Advances in Computer Vision Prof. Bill Freeman March 3, 2005 Image and shape descriptors Affine invariant features Comparison of feature descriptors Shape context Readings: Mikolajczyk and Schmid;

More information

6.869 Advances in Computer Vision. Prof. Bill Freeman March 1, 2005

6.869 Advances in Computer Vision. Prof. Bill Freeman March 1, 2005 6.869 Advances in Computer Vision Prof. Bill Freeman March 1 2005 1 2 Local Features Matching points across images important for: object identification instance recognition object class recognition pose

More information

CS 3710: Visual Recognition Describing Images with Features. Adriana Kovashka Department of Computer Science January 8, 2015

CS 3710: Visual Recognition Describing Images with Features. Adriana Kovashka Department of Computer Science January 8, 2015 CS 3710: Visual Recognition Describing Images with Features Adriana Kovashka Department of Computer Science January 8, 2015 Plan for Today Presentation assignments + schedule changes Image filtering Feature

More information

TRACKING and DETECTION in COMPUTER VISION

TRACKING and DETECTION in COMPUTER VISION Technischen Universität München Winter Semester 2013/2014 TRACKING and DETECTION in COMPUTER VISION Template tracking methods Slobodan Ilić Template based-tracking Energy-based methods The Lucas-Kanade(LK)

More information

Image Alignment and Mosaicing Feature Tracking and the Kalman Filter

Image Alignment and Mosaicing Feature Tracking and the Kalman Filter Image Alignment and Mosaicing Feature Tracking and the Kalman Filter Image Alignment Applications Local alignment: Tracking Stereo Global alignment: Camera jitter elimination Image enhancement Panoramic

More information

CS5670: Computer Vision

CS5670: Computer Vision CS5670: Computer Vision Noah Snavely Lecture 5: Feature descriptors and matching Szeliski: 4.1 Reading Announcements Project 1 Artifacts due tomorrow, Friday 2/17, at 11:59pm Project 2 will be released

More information

Image Analysis. Feature extraction: corners and blobs

Image Analysis. Feature extraction: corners and blobs Image Analysis Feature extraction: corners and blobs Christophoros Nikou cnikou@cs.uoi.gr Images taken from: Computer Vision course by Svetlana Lazebnik, University of North Carolina at Chapel Hill (http://www.cs.unc.edu/~lazebnik/spring10/).

More information

Invariant local features. Invariant Local Features. Classes of transformations. (Good) invariant local features. Case study: panorama stitching

Invariant local features. Invariant Local Features. Classes of transformations. (Good) invariant local features. Case study: panorama stitching Invariant local eatures Invariant Local Features Tuesday, February 6 Subset o local eature types designed to be invariant to Scale Translation Rotation Aine transormations Illumination 1) Detect distinctive

More information

Non Linear Observation Equation For Motion Estimation

Non Linear Observation Equation For Motion Estimation Non Linear Observation Equation For Motion Estimation Dominique Béréziat, Isabelle Herlin To cite this version: Dominique Béréziat, Isabelle Herlin. Non Linear Observation Equation For Motion Estimation.

More information

Efficient Nonlocal Regularization for Optical Flow

Efficient Nonlocal Regularization for Optical Flow Efficient Nonlocal Regularization for Optical Flow Philipp Krähenbühl and Vladlen Koltun Stanford University {philkr,vladlen}@cs.stanford.edu Abstract. Dense optical flow estimation in images is a challenging

More information

CSE 473/573 Computer Vision and Image Processing (CVIP)

CSE 473/573 Computer Vision and Image Processing (CVIP) CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu inwogu@buffalo.edu Lecture 11 Local Features 1 Schedule Last class We started local features Today More on local features Readings for

More information

Probabilistic Exploitation of the Lucas and Kanade Smoothness Constraint

Probabilistic Exploitation of the Lucas and Kanade Smoothness Constraint Probabilistic Exploitation of the Lucas and Kanade Smoothness Constraint Volker Willert, Julian Eggert, Marc Toussaint, Edgar Körner HRI Europe GmbH TU Berlin Carl-Legien-Str. 30 Franklinstr. 28/29 D-63073

More information

Templates, Image Pyramids, and Filter Banks

Templates, Image Pyramids, and Filter Banks Templates, Image Pyramids, and Filter Banks 09/9/ Computer Vision James Hays, Brown Slides: Hoiem and others Review. Match the spatial domain image to the Fourier magnitude image 2 3 4 5 B A C D E Slide:

More information

Properties of detectors Edge detectors Harris DoG Properties of descriptors SIFT HOG Shape context

Properties of detectors Edge detectors Harris DoG Properties of descriptors SIFT HOG Shape context Lecture 10 Detectors and descriptors Properties of detectors Edge detectors Harris DoG Properties of descriptors SIFT HOG Shape context Silvio Savarese Lecture 10-16-Feb-15 From the 3D to 2D & vice versa

More information

Level-Set Person Segmentation and Tracking with Multi-Region Appearance Models and Top-Down Shape Information Appendix

Level-Set Person Segmentation and Tracking with Multi-Region Appearance Models and Top-Down Shape Information Appendix Level-Set Person Segmentation and Tracking with Multi-Region Appearance Models and Top-Down Shape Information Appendix Esther Horbert, Konstantinos Rematas, Bastian Leibe UMIC Research Centre, RWTH Aachen

More information

Vlad Estivill-Castro (2016) Robots for People --- A project for intelligent integrated systems

Vlad Estivill-Castro (2016) Robots for People --- A project for intelligent integrated systems 1 Vlad Estivill-Castro (2016) Robots for People --- A project for intelligent integrated systems V. Estivill-Castro 2 Perception Concepts Vision Chapter 4 (textbook) Sections 4.3 to 4.5 What is the course

More information

Nonlinear Diffusion. Journal Club Presentation. Xiaowei Zhou

Nonlinear Diffusion. Journal Club Presentation. Xiaowei Zhou 1 / 41 Journal Club Presentation Xiaowei Zhou Department of Electronic and Computer Engineering The Hong Kong University of Science and Technology 2009-12-11 2 / 41 Outline 1 Motivation Diffusion process

More information

Distinguish between different types of scenes. Matching human perception Understanding the environment

Distinguish between different types of scenes. Matching human perception Understanding the environment Scene Recognition Adriana Kovashka UTCS, PhD student Problem Statement Distinguish between different types of scenes Applications Matching human perception Understanding the environment Indexing of images

More information

Performance of Optical Flow Techniques. Abstract. While dierent optical ow techniques continue to appear, there has been a

Performance of Optical Flow Techniques. Abstract. While dierent optical ow techniques continue to appear, there has been a 1 Performance of Optical Flow Techniques J.L. Barron 1, D.J. Fleet 2 and S.S. Beauchemin 1 1 Dept. of Computer Science University of Western Ontario London, Ontario, N6A 5B7 2 Dept. of Computing Science

More information

Overview. Harris interest points. Comparing interest points (SSD, ZNCC, SIFT) Scale & affine invariant interest points

Overview. Harris interest points. Comparing interest points (SSD, ZNCC, SIFT) Scale & affine invariant interest points Overview Harris interest points Comparing interest points (SSD, ZNCC, SIFT) Scale & affine invariant interest points Evaluation and comparison of different detectors Region descriptors and their performance

More information

Bayesian Approaches to Motion-Based Image and Video Segmentation

Bayesian Approaches to Motion-Based Image and Video Segmentation Bayesian Approaches to Motion-Based Image and Video Segmentation Daniel Cremers Department of Computer Science University of California, Los Angeles, USA http://www.cs.ucla.edu/ cremers Abstract. We present

More information

SURF Features. Jacky Baltes Dept. of Computer Science University of Manitoba WWW:

SURF Features. Jacky Baltes Dept. of Computer Science University of Manitoba   WWW: SURF Features Jacky Baltes Dept. of Computer Science University of Manitoba Email: jacky@cs.umanitoba.ca WWW: http://www.cs.umanitoba.ca/~jacky Salient Spatial Features Trying to find interest points Points

More information

6.869 Advances in Computer Vision. Bill Freeman, Antonio Torralba and Phillip Isola MIT Oct. 3, 2018

6.869 Advances in Computer Vision. Bill Freeman, Antonio Torralba and Phillip Isola MIT Oct. 3, 2018 6.869 Advances in Computer Vision Bill Freeman, Antonio Torralba and Phillip Isola MIT Oct. 3, 2018 1 Sampling Sampling Pixels Continuous world 3 Sampling 4 Sampling 5 Continuous image f (x, y) Sampling

More information

Robust Motion Segmentation by Spectral Clustering

Robust Motion Segmentation by Spectral Clustering Robust Motion Segmentation by Spectral Clustering Hongbin Wang and Phil F. Culverhouse Centre for Robotics Intelligent Systems University of Plymouth Plymouth, PL4 8AA, UK {hongbin.wang, P.Culverhouse}@plymouth.ac.uk

More information

Overview. Introduction to local features. Harris interest points + SSD, ZNCC, SIFT. Evaluation and comparison of different detectors

Overview. Introduction to local features. Harris interest points + SSD, ZNCC, SIFT. Evaluation and comparison of different detectors Overview Introduction to local features Harris interest points + SSD, ZNCC, SIFT Scale & affine invariant interest point detectors Evaluation and comparison of different detectors Region descriptors and

More information

Maximally Stable Local Description for Scale Selection

Maximally Stable Local Description for Scale Selection Maximally Stable Local Description for Scale Selection Gyuri Dorkó and Cordelia Schmid INRIA Rhône-Alpes, 655 Avenue de l Europe, 38334 Montbonnot, France {gyuri.dorko,cordelia.schmid}@inrialpes.fr Abstract.

More information

Lecture 12. Local Feature Detection. Matching with Invariant Features. Why extract features? Why extract features? Why extract features?

Lecture 12. Local Feature Detection. Matching with Invariant Features. Why extract features? Why extract features? Why extract features? Lecture 1 Why extract eatures? Motivation: panorama stitching We have two images how do we combine them? Local Feature Detection Guest lecturer: Alex Berg Reading: Harris and Stephens David Lowe IJCV We

More information

Robustifying the Flock of Trackers

Robustifying the Flock of Trackers 16 th Computer Vision Winter Workshop Andreas Wendel, Sabine Sternig, Martin Godec (eds.) Mitterberg, Austria, February 2-4, 2011 Robustifying the Flock of Trackers Jiří Matas and Tomáš Vojíř The Center

More information

Overview. Introduction to local features. Harris interest points + SSD, ZNCC, SIFT. Evaluation and comparison of different detectors

Overview. Introduction to local features. Harris interest points + SSD, ZNCC, SIFT. Evaluation and comparison of different detectors Overview Introduction to local features Harris interest points + SSD, ZNCC, SIFT Scale & affine invariant interest point detectors Evaluation and comparison of different detectors Region descriptors and

More information

Single-Image-Based Rain and Snow Removal Using Multi-guided Filter

Single-Image-Based Rain and Snow Removal Using Multi-guided Filter Single-Image-Based Rain and Snow Removal Using Multi-guided Filter Xianhui Zheng 1, Yinghao Liao 1,,WeiGuo 2, Xueyang Fu 2, and Xinghao Ding 2 1 Department of Electronic Engineering, Xiamen University,

More information

Asaf Bar Zvi Adi Hayat. Semantic Segmentation

Asaf Bar Zvi Adi Hayat. Semantic Segmentation Asaf Bar Zvi Adi Hayat Semantic Segmentation Today s Topics Fully Convolutional Networks (FCN) (CVPR 2015) Conditional Random Fields as Recurrent Neural Networks (ICCV 2015) Gaussian Conditional random

More information

Image matching. by Diva Sian. by swashford

Image matching. by Diva Sian. by swashford Image matching by Diva Sian by swashford Harder case by Diva Sian by scgbt Invariant local features Find features that are invariant to transformations geometric invariance: translation, rotation, scale

More information

EE 6882 Visual Search Engine

EE 6882 Visual Search Engine EE 6882 Visual Search Engine Prof. Shih Fu Chang, Feb. 13 th 2012 Lecture #4 Local Feature Matching Bag of Word image representation: coding and pooling (Many slides from A. Efors, W. Freeman, C. Kambhamettu,

More information

Random walks for deformable image registration Dana Cobzas

Random walks for deformable image registration Dana Cobzas Random walks for deformable image registration Dana Cobzas with Abhishek Sen, Martin Jagersand, Neil Birkbeck, Karteek Popuri Computing Science, University of Alberta, Edmonton Deformable image registration?t

More information

Human Pose Tracking I: Basics. David Fleet University of Toronto

Human Pose Tracking I: Basics. David Fleet University of Toronto Human Pose Tracking I: Basics David Fleet University of Toronto CIFAR Summer School, 2009 Looking at People Challenges: Complex pose / motion People have many degrees of freedom, comprising an articulated

More information

Computer Vision Motion

Computer Vision Motion Computer Vision Motion Professor Hager http://www.cs.jhu.edu/~hager 12/1/12 CS 461, Copyright G.D. Hager Outline From Stereo to Motion The motion field and optical flow (2D motion) Factorization methods

More information

Lecture 13 Visual recognition

Lecture 13 Visual recognition Lecture 13 Visual recognition Announcements Silvio Savarese Lecture 13-20-Feb-14 Lecture 13 Visual recognition Object classification bag of words models Discriminative methods Generative methods Object

More information

Detectors part II Descriptors

Detectors part II Descriptors EECS 442 Computer vision Detectors part II Descriptors Blob detectors Invariance Descriptors Some slides of this lectures are courtesy of prof F. Li, prof S. Lazebnik, and various other lecturers Goal:

More information

Recap: edge detection. Source: D. Lowe, L. Fei-Fei

Recap: edge detection. Source: D. Lowe, L. Fei-Fei Recap: edge detection Source: D. Lowe, L. Fei-Fei Canny edge detector 1. Filter image with x, y derivatives of Gaussian 2. Find magnitude and orientation of gradient 3. Non-maximum suppression: Thin multi-pixel

More information

arxiv: v1 [cs.cv] 10 Feb 2016

arxiv: v1 [cs.cv] 10 Feb 2016 GABOR WAVELETS IN IMAGE PROCESSING David Bařina Doctoral Degree Programme (2), FIT BUT E-mail: xbarin2@stud.fit.vutbr.cz Supervised by: Pavel Zemčík E-mail: zemcik@fit.vutbr.cz arxiv:162.338v1 [cs.cv]

More information

Tensor-based Image Diffusions Derived from Generalizations of the Total Variation and Beltrami Functionals

Tensor-based Image Diffusions Derived from Generalizations of the Total Variation and Beltrami Functionals Generalizations of the Total Variation and Beltrami Functionals 29 September 2010 International Conference on Image Processing 2010, Hong Kong Anastasios Roussos and Petros Maragos Computer Vision, Speech

More information

Blob Detection CSC 767

Blob Detection CSC 767 Blob Detection CSC 767 Blob detection Slides: S. Lazebnik Feature detection with scale selection We want to extract features with characteristic scale that is covariant with the image transformation Blob

More information

The state of the art and beyond

The state of the art and beyond Feature Detectors and Descriptors The state of the art and beyond Local covariant detectors and descriptors have been successful in many applications Registration Stereo vision Motion estimation Matching

More information

Scale & Affine Invariant Interest Point Detectors

Scale & Affine Invariant Interest Point Detectors Scale & Affine Invariant Interest Point Detectors Krystian Mikolajczyk and Cordelia Schmid Presented by Hunter Brown & Gaurav Pandey, February 19, 2009 Roadmap: Motivation Scale Invariant Detector Affine

More information

Simultaneous Segmentation and Object Behavior Classification of Image Sequences

Simultaneous Segmentation and Object Behavior Classification of Image Sequences Simultaneous Segmentation and Object Behavior Classification of Image Sequences Laura Gui 1, Jean-Philippe Thiran 1 and Nikos Paragios 1 Signal Processing Institute (ITS), Ecole Polytechnique Fédérale

More information

CS 231A Section 1: Linear Algebra & Probability Review. Kevin Tang

CS 231A Section 1: Linear Algebra & Probability Review. Kevin Tang CS 231A Section 1: Linear Algebra & Probability Review Kevin Tang Kevin Tang Section 1-1 9/30/2011 Topics Support Vector Machines Boosting Viola Jones face detector Linear Algebra Review Notation Operations

More information

CS 231A Section 1: Linear Algebra & Probability Review

CS 231A Section 1: Linear Algebra & Probability Review CS 231A Section 1: Linear Algebra & Probability Review 1 Topics Support Vector Machines Boosting Viola-Jones face detector Linear Algebra Review Notation Operations & Properties Matrix Calculus Probability

More information

Reconnaissance d objetsd et vision artificielle

Reconnaissance d objetsd et vision artificielle Reconnaissance d objetsd et vision artificielle http://www.di.ens.fr/willow/teaching/recvis09 Lecture 6 Face recognition Face detection Neural nets Attention! Troisième exercice de programmation du le

More information

Lecture 7: Finding Features (part 2/2)

Lecture 7: Finding Features (part 2/2) Lecture 7: Finding Features (part 2/2) Professor Fei- Fei Li Stanford Vision Lab Lecture 7 -! 1 What we will learn today? Local invariant features MoHvaHon Requirements, invariances Keypoint localizahon

More information

Mutual information for multi-modal, discontinuity-preserving image registration

Mutual information for multi-modal, discontinuity-preserving image registration Mutual information for multi-modal, discontinuity-preserving image registration Giorgio Panin German Aerospace Center (DLR) Institute for Robotics and Mechatronics Münchner Straße 20, 82234 Weßling Abstract.

More information

Lecture 7: Finding Features (part 2/2)

Lecture 7: Finding Features (part 2/2) Lecture 7: Finding Features (part 2/2) Dr. Juan Carlos Niebles Stanford AI Lab Professor Fei- Fei Li Stanford Vision Lab 1 What we will learn today? Local invariant features MoPvaPon Requirements, invariances

More information

Stochastic uncertainty models for the luminance consistency assumption

Stochastic uncertainty models for the luminance consistency assumption JOURNAL OF L A TEX CLASS FILES, VOL., NO., MONTH 1 Stochastic uncertainty models for the luminance consistency assumption Thomas Corpetti 1 and Etienne Mémin 2 1 : CNRS/LIAMA, Institute of Automation,

More information

Uncertainty Models in Quasiconvex Optimization for Geometric Reconstruction

Uncertainty Models in Quasiconvex Optimization for Geometric Reconstruction Uncertainty Models in Quasiconvex Optimization for Geometric Reconstruction Qifa Ke and Takeo Kanade Department of Computer Science, Carnegie Mellon University Email: ke@cmu.edu, tk@cs.cmu.edu Abstract

More information

ing a minimal set of layers, each describing a coherent motion from the scene, which yield a complete description of motion when superposed. Jepson an

ing a minimal set of layers, each describing a coherent motion from the scene, which yield a complete description of motion when superposed. Jepson an The Structure of Occlusion in Fourier Space S. S. Beauchemin Dept. of Computer Science The University of Western Ontario London, Canada N6A 5B7 e-mail: beau@csd.uwo.ca J. L. Barron Dept. of Computer Science

More information

Corner detection: the basic idea

Corner detection: the basic idea Corner detection: the basic idea At a corner, shifting a window in any direction should give a large change in intensity flat region: no change in all directions edge : no change along the edge direction

More information

T H E S I S. Computer Engineering May Smoothing of Matrix-Valued Data. Thomas Brox

T H E S I S. Computer Engineering May Smoothing of Matrix-Valued Data. Thomas Brox D I P L O M A Computer Engineering May 2002 T H E S I S Smoothing of Matrix-Valued Data Thomas Brox Computer Vision, Graphics, and Pattern Recognition Group Department of Mathematics and Computer Science

More information

Differential Motion Analysis

Differential Motion Analysis Differential Motion Analysis Ying Wu Electrical Engineering and Computer Science Northwestern University, Evanston, IL 60208 yingwu@ece.northwestern.edu http://www.eecs.northwestern.edu/~yingwu July 19,

More information

Achieving scale covariance

Achieving scale covariance Achieving scale covariance Goal: independently detect corresponding regions in scaled versions of the same image Need scale selection mechanism for finding characteristic region size that is covariant

More information

Galilean-diagonalized spatio-temporal interest operators

Galilean-diagonalized spatio-temporal interest operators Galilean-diagonalized spatio-temporal interest operators Tony Lindeberg, Amir Akbarzadeh and Ivan Laptev Computational Vision and Active Perception Laboratory (CVAP) Department of Numerical Analysis and

More information

A Background Layer Model for Object Tracking through Occlusion

A Background Layer Model for Object Tracking through Occlusion A Background Layer Model for Object Tracking through Occlusion Yue Zhou and Hai Tao UC-Santa Cruz Presented by: Mei-Fang Huang CSE252C class, November 6, 2003 Overview Object tracking problems Dynamic

More information

CSCI 250: Intro to Robotics. Spring Term 2017 Prof. Levy. Computer Vision: A Brief Survey

CSCI 250: Intro to Robotics. Spring Term 2017 Prof. Levy. Computer Vision: A Brief Survey CSCI 25: Intro to Robotics Spring Term 27 Prof. Levy Computer Vision: A Brief Survey What Is Computer Vision? Higher-order tasks Face recognition Object recognition (Deep Learning) What Is Computer Vision?

More information

Fantope Regularization in Metric Learning

Fantope Regularization in Metric Learning Fantope Regularization in Metric Learning CVPR 2014 Marc T. Law (LIP6, UPMC), Nicolas Thome (LIP6 - UPMC Sorbonne Universités), Matthieu Cord (LIP6 - UPMC Sorbonne Universités), Paris, France Introduction

More information

COURSE INTRODUCTION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

COURSE INTRODUCTION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception COURSE INTRODUCTION COMPUTATIONAL MODELING OF VISUAL PERCEPTION 2 The goal of this course is to provide a framework and computational tools for modeling visual inference, motivated by interesting examples

More information

A Generative Perspective on MRFs in Low-Level Vision Supplemental Material

A Generative Perspective on MRFs in Low-Level Vision Supplemental Material A Generative Perspective on MRFs in Low-Level Vision Supplemental Material Uwe Schmidt Qi Gao Stefan Roth Department of Computer Science, TU Darmstadt 1. Derivations 1.1. Sampling the Prior We first rewrite

More information

Instance-level l recognition. Cordelia Schmid & Josef Sivic INRIA

Instance-level l recognition. Cordelia Schmid & Josef Sivic INRIA nstance-level l recognition Cordelia Schmid & Josef Sivic NRA nstance-level recognition Particular objects and scenes large databases Application Search photos on the web for particular places Find these

More information