TRACKING and DETECTION in COMPUTER VISION

Size: px
Start display at page:

Download "TRACKING and DETECTION in COMPUTER VISION"

Transcription

1 Technischen Universität München Winter Semester 2013/2014 TRACKING and DETECTION in COMPUTER VISION Template tracking methods Slobodan Ilić

2 Template based-tracking Energy-based methods The Lucas-Kanade(LK) algorithm Compositional Algorithm Inverse Compositional Algorithm (IC) Efficient Second Order Method (ESM) Learning methods Learning linear predictors(hyperplane template matching of Jurie-Dhome) 2

3 Motivation template image Follow a template image in an image sequence by estimating the warp. 3

4 Template warping 4

5 Template warping Given the template T which we want to track: Template image T (x) 4

6 Template warping Given the template T which we want to track: Take all pixels x form the template and Template image T (x) 4

7 Template warping Given the template T which we want to track: Take all pixels x form the template and Warp them using the function W (x; p) parameterized in terms of parameters p to the input image I Template image Input image warp T (x) W (x; p) 4

8 Template warping Given the template T which we want to track: Take all pixels x form the template and Warp them using the function W (x; p) parameterized in terms of parameters p to the input image I Assign the pixel intensity values of the input image at the warped location to the template image I(W (x; p)) Template image Input image warp W (x; p) T (x) 4 I(W (x; p))

9 The tracking task The goal of template-based tracking is to find the parameters p such that: p by minimizing the norm of: I(W(x; p )) = T (x) Using a prediction as an approximation of the estimation p we can reformulate the goal: Find the parameter increments p p p + p such that: This is a non-linear minimization problem. (1) 5

10 Assumptions 6

11 Assumptions No errors in the template image boundaries: only the appearance of the object to be tracked appears in the template image. 6

12 Assumptions No errors in the template image boundaries: only the appearance of the object to be tracked appears in the template image. No large occlusions: the entire template is visible in the input image. 6

13 Assumptions No errors in the template image boundaries: only the appearance of the object to be tracked appears in the template image. No large occlusions: the entire template is visible in the input image. Brightness constancy assumption: the intensity of the object appearance is always the same. 6

14 The Lucas-Kanade Uses the Gauss-Newton method for minimization: Applies a first-order approximation Minimizes iteratively The warp has to be differentiable. 7

15 The derivation of Lucas-Kanade Linearize the error function of Eq. (1) on slide 5 by using a first-order Taylor series approximation of warped source image : = And minimize the following function: (2) 8

16 The derivation of Lucas-Kanade Linearize the error function of Eq. (1) on slide 5 by using a first-order Taylor series approximation of warped source image : = And minimize the following function: (2) Image gradient evaluated at W(x; p) 8

17 The derivation of Lucas-Kanade Linearize the error function of Eq. (1) on slide 5 by using a first-order Taylor series approximation of warped source image : = And minimize the following function: (2) Image gradient evaluated at W(x; p) Jacobian of the warp 8

18 Jacobian of the warp If warp is a function: then its Jacobian is: 9

19 Typical warps Translation, like in optical-flow: Affine, like in template tracking: 10

20 LK derivation Minimizing the Eq. 2 from slide 8 is a least-square problem and has a closed form solution. The partial derivatives of Eq.2 in respect with the parameter update p is: setting equation to zero gives closed-form solution: where H is nxn (Gauss-Newton) approximation of the Hessian matrix: 11

21 The LK alg. summary Iterate until p < 12

22 Alternative approaches Lucas-Kanade approximately minimizes: with respect to pand updates the parameters is step 9 like p p + p BUT, these are not the only ways to minimize this function, thus 3 other approaches are introduced: Compositional Image Alignment Inverse Compositional Image Alignment Inverse Additive Image Alignment 13

23 Compositional Image Alignment The warp is composed of two warps: which can be written as: and the solution is sought for the warp instead of additive update of the parameters p Thus the problem to minimize becomes: (3) 14

24 Compositional Affine Warp Affine warp: Compositional affine wrap: W(W(x; p); p)) = 1+p 1 p3 p5 p2 1+p4 p6 1+ p 1 p3 p5 p2 1+ p4 p x y 1 15

25 Derivation After applying first order Taylor approximation to I(W(x; p); p)) the Eq. 3 from slide 14 becomes: where I(W(x)) denotes the warped image and in order to proceed we assume that the warp W(x; 0) =x simplifies to: is identity warp, thus the above eq. I(W(x; p)) 16

26 Compositional vs. Additive Approach Forward additive approach: Compute image gradient and warp it with W(x; p) Compositional approach: Jacobian of the warp is evaluated at (x; p) Compute image gradient of the warped image I(W) Jacobian of the warp is evaluated at (x; 0) and is constant 17

27 Compositional vs. Additive Differences The gradient of I(W(x; p)) should be used in step (3) of the algorithm from slide 12. The Jacobian of the warp can be pre-computed because it is evaluated at (x;0) rather then being recomputed at each iteration in step (4). The warp is updated in step 9 and not warp parameters. 18

28 Inverse Compositional (IC) Approach (4) W(x; p) W(x; p) T(x) Template image W(x; p) W(x; p) W(x; p) 1 Source image 19

29 Derivation After first order Taylor expansion Eq. 4 becomes: and assuming that solution is: W(x; 0) =x is the identity warp the where the Hessian of image is replaced by the one of the template: since the there is nothing in H which depends on p it is constant and can be pre-computed 20

30 IC Algorithm 21

31 ESM (Efficient Second-order Method) (1) I = T + J p=0 dp + dp T H p=0 dp [second-order Taylor expansion] (2) J p=dp = J p=0 + 2dp T H p=0 [derivation of (1) wrt dp] (3) dp T H p=0 = ½(J p=dp - J p=0 ) [from Equation (2)] (4) I = T + J p=0 + ½(J p=dp - J p=0 )dp [by injecting (3) in (1)] (5) dp = [½(J p=0 + J p=dp )] + (I - T) [from Equation (4)] Like Gauss-Newton but replace J p=0 by ½(J p=0 + J p=dp ). Need to compute J p=dp at each iteration, and a pseudo-inverse at each iteration, but need much less iterations. 22

32 ESM Convergence Gauss-Newton ESM 23

33 Learning a Linear Predictor [Jurie&Dhome PAMI02] From the IC approach we had: Where we can denote J = T W to be p Jacobian of the error function we minimize Thus we can rewrite it: p =(J T (0)J (0)) 1 J T (0) or p = A 24

34 Hyperplane approximation If for each pixel we write an error function: y i ( p) =T(W(x i ; p)) I(W(x i ; p) and the total error function is with the solution being: we can rewrite it like: p = A E = i y i ( p) 2 we see that a 11,...,a ij...a nn are coefficients of n hyperplanes that can be estimated using linear least-squares N is a number of image sample points, e.g number of pixels in the template 25 p 1 p j p N

35 Training Can we learn A and make computation even faster? A is computed offline by regression: {(, ), (, ),...,(, )} p 0 p 1 y 1 (0) y 2 (0) image differences by minimizing: By writing N t k=1 ( p k Ay k (0)) 2 y Nt (0) p Nt H =(y i (0),...,y Nt (0)) Y =( p 1,..., p Nt ) and assuming N t >N= Y [n Nt ] = A h[nxn] H [N Nt ] A h = YH T (HH T ) 1 26

36 Advantages Can "jump" over local minimums. Handle faster motion. O p 27

37 Active Shape Models For deformable objects: p = x t u t v θ s with x = u i v i (u i, v i ) (t u, t v ): 2D translation; ϑ: 2D rotation; s: scale. 28

38 Dimensionality Reduction Training set: { } x i Covariance matrix of the training data: Cov = λ 1 λ SVD of the covariance matrix: Cov = U 2 Keep only the first columns of U : U = ( R x ). x = x + R x c 29 i ( x i x )( x i x ) T λ n U T U 2 c U 1

39 First Modes x = x + R x c Can be considered as a linear warp: W(x; c) = x + R x c Can constrain with c i < 3 λ i c are parameter of the warp we are searching 30

40 Fit Function min c,t u,t v,θ,s i dist( Tr ( tu,t v,θ,s x ),y ) i i Optimum can be found with linear algebra operations. 31

41 Convergence 32

42 Active Appearance Models g = g + R g c g 33

43 Fit Function min c,t u,t v,θ,s Tr ( tu,t v,θ,s g( c) ) I 2 = min c,t u,t v,θ,s ([ Tr ( tu,t v,θ,s g( c) )] I ) i i Non-linear least-squares. Optimization can be performed with the Gauss-Newton algorithm. i 2 34

44 Convergence 35

45 Example 36

Motion Estimation (I) Ce Liu Microsoft Research New England

Motion Estimation (I) Ce Liu Microsoft Research New England Motion Estimation (I) Ce Liu celiu@microsoft.com Microsoft Research New England We live in a moving world Perceiving, understanding and predicting motion is an important part of our daily lives Motion

More information

Motion Estimation (I)

Motion Estimation (I) Motion Estimation (I) Ce Liu celiu@microsoft.com Microsoft Research New England We live in a moving world Perceiving, understanding and predicting motion is an important part of our daily lives Motion

More information

Image Alignment Computer Vision (Kris Kitani) Carnegie Mellon University

Image Alignment Computer Vision (Kris Kitani) Carnegie Mellon University Lucas Kanade Image Alignment 16-385 Comuter Vision (Kris Kitani) Carnegie Mellon University htt://www.humansensing.cs.cmu.edu/intraface/ How can I find in the image? Idea #1: Temlate Matching Slow, combinatory,

More information

Efficient & Robust LK for Mobile Vision

Efficient & Robust LK for Mobile Vision Efficient & Robust LK for Mobile Vision Instructor - Simon Lucey 16-623 - Designing Comuter Vision As Direct Method (ours) Indirect Method (ORB+RANSAC) H. Alismail, B. Browning, S. Lucey Bit-Planes: Dense

More information

Iterative Image Registration: Lucas & Kanade Revisited. Kentaro Toyama Vision Technology Group Microsoft Research

Iterative Image Registration: Lucas & Kanade Revisited. Kentaro Toyama Vision Technology Group Microsoft Research Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research Every writer creates his own precursors. His work modifies our conception of the past, as

More information

Motion estimation. Digital Visual Effects Yung-Yu Chuang. with slides by Michael Black and P. Anandan

Motion estimation. Digital Visual Effects Yung-Yu Chuang. with slides by Michael Black and P. Anandan Motion estimation Digital Visual Effects Yung-Yu Chuang with slides b Michael Black and P. Anandan Motion estimation Parametric motion image alignment Tracking Optical flow Parametric motion direct method

More information

Method 1: Geometric Error Optimization

Method 1: Geometric Error Optimization Method 1: Geometric Error Optimization we need to encode the constraints ŷ i F ˆx i = 0, rank F = 2 idea: reconstruct 3D point via equivalent projection matrices and use reprojection error equivalent projection

More information

Lucas-Kanade Optical Flow. Computer Vision Carnegie Mellon University (Kris Kitani)

Lucas-Kanade Optical Flow. Computer Vision Carnegie Mellon University (Kris Kitani) Lucas-Kanade Optical Flow Computer Vision 16-385 Carnegie Mellon University (Kris Kitani) I x u + I y v + I t =0 I x = @I @x I y = @I u = dx v = dy I @y t = @I dt dt @t spatial derivative optical flow

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning First-Order Methods, L1-Regularization, Coordinate Descent Winter 2016 Some images from this lecture are taken from Google Image Search. Admin Room: We ll count final numbers

More information

nonrobust estimation The n measurement vectors taken together give the vector X R N. The unknown parameter vector is P R M.

nonrobust estimation The n measurement vectors taken together give the vector X R N. The unknown parameter vector is P R M. Introduction to nonlinear LS estimation R. I. Hartley and A. Zisserman: Multiple View Geometry in Computer Vision. Cambridge University Press, 2ed., 2004. After Chapter 5 and Appendix 6. We will use x

More information

Non-linear least squares

Non-linear least squares Non-linear least squares Concept of non-linear least squares We have extensively studied linear least squares or linear regression. We see that there is a unique regression line that can be determined

More information

Video and Motion Analysis Computer Vision Carnegie Mellon University (Kris Kitani)

Video and Motion Analysis Computer Vision Carnegie Mellon University (Kris Kitani) Video and Motion Analysis 16-385 Computer Vision Carnegie Mellon University (Kris Kitani) Optical flow used for feature tracking on a drone Interpolated optical flow used for super slow-mo optical flow

More information

Image Alignment and Mosaicing Feature Tracking and the Kalman Filter

Image Alignment and Mosaicing Feature Tracking and the Kalman Filter Image Alignment and Mosaicing Feature Tracking and the Kalman Filter Image Alignment Applications Local alignment: Tracking Stereo Global alignment: Camera jitter elimination Image enhancement Panoramic

More information

Learning Task Grouping and Overlap in Multi-Task Learning

Learning Task Grouping and Overlap in Multi-Task Learning Learning Task Grouping and Overlap in Multi-Task Learning Abhishek Kumar Hal Daumé III Department of Computer Science University of Mayland, College Park 20 May 2013 Proceedings of the 29 th International

More information

Visual SLAM Tutorial: Bundle Adjustment

Visual SLAM Tutorial: Bundle Adjustment Visual SLAM Tutorial: Bundle Adjustment Frank Dellaert June 27, 2014 1 Minimizing Re-projection Error in Two Views In a two-view setting, we are interested in finding the most likely camera poses T1 w

More information

Lecture 6: CS395T Numerical Optimization for Graphics and AI Line Search Applications

Lecture 6: CS395T Numerical Optimization for Graphics and AI Line Search Applications Lecture 6: CS395T Numerical Optimization for Graphics and AI Line Search Applications Qixing Huang The University of Texas at Austin huangqx@cs.utexas.edu 1 Disclaimer This note is adapted from Section

More information

Global parametric image alignment via high-order approximation

Global parametric image alignment via high-order approximation Global parametric image alignment via high-order approximation Y. Keller, A. Averbuch 2 Electrical & Computer Engineering Department, Ben-Gurion University of the Negev. 2 School of Computer Science, Tel

More information

Neural Network Training

Neural Network Training Neural Network Training Sargur Srihari Topics in Network Training 0. Neural network parameters Probabilistic problem formulation Specifying the activation and error functions for Regression Binary classification

More information

Last updated: Oct 22, 2012 LINEAR CLASSIFIERS. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition

Last updated: Oct 22, 2012 LINEAR CLASSIFIERS. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition Last updated: Oct 22, 2012 LINEAR CLASSIFIERS Problems 2 Please do Problem 8.3 in the textbook. We will discuss this in class. Classification: Problem Statement 3 In regression, we are modeling the relationship

More information

Gradient Descent. Dr. Xiaowei Huang

Gradient Descent. Dr. Xiaowei Huang Gradient Descent Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/ Up to now, Three machine learning algorithms: decision tree learning k-nn linear regression only optimization objectives are discussed,

More information

Point Distribution Models

Point Distribution Models Point Distribution Models Jan Kybic winter semester 2007 Point distribution models (Cootes et al., 1992) Shape description techniques A family of shapes = mean + eigenvectors (eigenshapes) Shapes described

More information

Visual Tracking via Geometric Particle Filtering on the Affine Group with Optimal Importance Functions

Visual Tracking via Geometric Particle Filtering on the Affine Group with Optimal Importance Functions Monday, June 22 Visual Tracking via Geometric Particle Filtering on the Affine Group with Optimal Importance Functions Junghyun Kwon 1, Kyoung Mu Lee 1, and Frank C. Park 2 1 Department of EECS, 2 School

More information

INTEREST POINTS AT DIFFERENT SCALES

INTEREST POINTS AT DIFFERENT SCALES INTEREST POINTS AT DIFFERENT SCALES Thank you for the slides. They come mostly from the following sources. Dan Huttenlocher Cornell U David Lowe U. of British Columbia Martial Hebert CMU Intuitively, junctions

More information

Machine Learning Basics

Machine Learning Basics Security and Fairness of Deep Learning Machine Learning Basics Anupam Datta CMU Spring 2019 Image Classification Image Classification Image classification pipeline Input: A training set of N images, each

More information

Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/!

Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/! Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/!! WARNING! this class will be dense! will learn how to use nonlinear optimization

More information

Nonlinear Optimization for Optimal Control

Nonlinear Optimization for Optimal Control Nonlinear Optimization for Optimal Control Pieter Abbeel UC Berkeley EECS Many slides and figures adapted from Stephen Boyd [optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 11 [optional]

More information

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 BASEL. Logistic Regression. Pattern Recognition 2016 Sandro Schönborn University of Basel

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 BASEL. Logistic Regression. Pattern Recognition 2016 Sandro Schönborn University of Basel Logistic Regression Pattern Recognition 2016 Sandro Schönborn University of Basel Two Worlds: Probabilistic & Algorithmic We have seen two conceptual approaches to classification: data class density estimation

More information

Numerical optimization

Numerical optimization Numerical optimization Lecture 4 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 2 Longest Slowest Shortest Minimal Maximal

More information

Numerical optimization. Numerical optimization. Longest Shortest where Maximal Minimal. Fastest. Largest. Optimization problems

Numerical optimization. Numerical optimization. Longest Shortest where Maximal Minimal. Fastest. Largest. Optimization problems 1 Numerical optimization Alexander & Michael Bronstein, 2006-2009 Michael Bronstein, 2010 tosca.cs.technion.ac.il/book Numerical optimization 048921 Advanced topics in vision Processing and Analysis of

More information

CS 4495 Computer Vision Principle Component Analysis

CS 4495 Computer Vision Principle Component Analysis CS 4495 Computer Vision Principle Component Analysis (and it s use in Computer Vision) Aaron Bobick School of Interactive Computing Administrivia PS6 is out. Due *** Sunday, Nov 24th at 11:55pm *** PS7

More information

COMP 558 lecture 18 Nov. 15, 2010

COMP 558 lecture 18 Nov. 15, 2010 Least squares We have seen several least squares problems thus far, and we will see more in the upcoming lectures. For this reason it is good to have a more general picture of these problems and how to

More information

Computer Vision Motion

Computer Vision Motion Computer Vision Motion Professor Hager http://www.cs.jhu.edu/~hager 12/1/12 CS 461, Copyright G.D. Hager Outline From Stereo to Motion The motion field and optical flow (2D motion) Factorization methods

More information

Introduction to gradient descent

Introduction to gradient descent 6-1: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction to gradient descent Derivation and intuitions Hessian 6-2: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction Our

More information

Machine Learning for Signal Processing Sparse and Overcomplete Representations

Machine Learning for Signal Processing Sparse and Overcomplete Representations Machine Learning for Signal Processing Sparse and Overcomplete Representations Abelino Jimenez (slides from Bhiksha Raj and Sourish Chaudhuri) Oct 1, 217 1 So far Weights Data Basis Data Independent ICA

More information

CSC2515 Winter 2015 Introduction to Machine Learning. Lecture 2: Linear regression

CSC2515 Winter 2015 Introduction to Machine Learning. Lecture 2: Linear regression CSC2515 Winter 2015 Introduction to Machine Learning Lecture 2: Linear regression All lecture slides will be available as.pdf on the course website: http://www.cs.toronto.edu/~urtasun/courses/csc2515/csc2515_winter15.html

More information

17 Solution of Nonlinear Systems

17 Solution of Nonlinear Systems 17 Solution of Nonlinear Systems We now discuss the solution of systems of nonlinear equations. An important ingredient will be the multivariate Taylor theorem. Theorem 17.1 Let D = {x 1, x 2,..., x m

More information

Linear Classifiers. Michael Collins. January 18, 2012

Linear Classifiers. Michael Collins. January 18, 2012 Linear Classifiers Michael Collins January 18, 2012 Today s Lecture Binary classification problems Linear classifiers The perceptron algorithm Classification Problems: An Example Goal: build a system that

More information

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception LINEAR MODELS FOR CLASSIFICATION Classification: Problem Statement 2 In regression, we are modeling the relationship between a continuous input variable x and a continuous target variable t. In classification,

More information

13. Nonlinear least squares

13. Nonlinear least squares L. Vandenberghe ECE133A (Fall 2018) 13. Nonlinear least squares definition and examples derivatives and optimality condition Gauss Newton method Levenberg Marquardt method 13.1 Nonlinear least squares

More information

BACKPROPAGATION. Neural network training optimization problem. Deriving backpropagation

BACKPROPAGATION. Neural network training optimization problem. Deriving backpropagation BACKPROPAGATION Neural network training optimization problem min J(w) w The application of gradient descent to this problem is called backpropagation. Backpropagation is gradient descent applied to J(w)

More information

Regression with Numerical Optimization. Logistic

Regression with Numerical Optimization. Logistic CSG220 Machine Learning Fall 2008 Regression with Numerical Optimization. Logistic regression Regression with Numerical Optimization. Logistic regression based on a document by Andrew Ng October 3, 204

More information

Mobile Robotics 1. A Compact Course on Linear Algebra. Giorgio Grisetti

Mobile Robotics 1. A Compact Course on Linear Algebra. Giorgio Grisetti Mobile Robotics 1 A Compact Course on Linear Algebra Giorgio Grisetti SA-1 Vectors Arrays of numbers They represent a point in a n dimensional space 2 Vectors: Scalar Product Scalar-Vector Product Changes

More information

KillingFusion: Non-rigid 3D Reconstruction without Correspondences. Supplementary Material

KillingFusion: Non-rigid 3D Reconstruction without Correspondences. Supplementary Material KillingFusion: Non-rigid 3D Reconstruction without Correspondences Supplementary Material Miroslava Slavcheva 1, Maximilian Baust 1 Daniel Cremers 1 Slobodan Ilic 1, {mira.slavcheva,maximilian.baust,cremers}@tum.de,

More information

Recap: edge detection. Source: D. Lowe, L. Fei-Fei

Recap: edge detection. Source: D. Lowe, L. Fei-Fei Recap: edge detection Source: D. Lowe, L. Fei-Fei Canny edge detector 1. Filter image with x, y derivatives of Gaussian 2. Find magnitude and orientation of gradient 3. Non-maximum suppression: Thin multi-pixel

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models Mixed effects models - Part IV Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

More information

1 Bayesian Linear Regression (BLR)

1 Bayesian Linear Regression (BLR) Statistical Techniques in Robotics (STR, S15) Lecture#10 (Wednesday, February 11) Lecturer: Byron Boots Gaussian Properties, Bayesian Linear Regression 1 Bayesian Linear Regression (BLR) In linear regression,

More information

Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09

Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09 Numerical Optimization 1 Working Horse in Computer Vision Variational Methods Shape Analysis Machine Learning Markov Random Fields Geometry Common denominator: optimization problems 2 Overview of Methods

More information

Introduction to motion correspondence

Introduction to motion correspondence Introduction to motion correspondence 1 IPAM - UCLA July 24, 2013 Iasonas Kokkinos Center for Visual Computing Ecole Centrale Paris / INRIA Saclay Why estimate visual motion? 2 Tracking Segmentation Structure

More information

Methods in Computer Vision: Introduction to Optical Flow

Methods in Computer Vision: Introduction to Optical Flow Methods in Computer Vision: Introduction to Optical Flow Oren Freifeld Computer Science, Ben-Gurion University March 22 and March 26, 2017 Mar 22, 2017 1 / 81 A Preliminary Discussion Example and Flow

More information

On prediction. Jussi Hakanen Post-doctoral researcher. TIES445 Data mining (guest lecture)

On prediction. Jussi Hakanen Post-doctoral researcher. TIES445 Data mining (guest lecture) On prediction Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi Learning outcomes To understand the basic principles of prediction To understand linear regression in prediction To be aware of

More information

CS229 Supplemental Lecture notes

CS229 Supplemental Lecture notes CS229 Supplemental Lecture notes John Duchi 1 Boosting We have seen so far how to solve classification (and other) problems when we have a data representation already chosen. We now talk about a procedure,

More information

Optimization Tutorial 1. Basic Gradient Descent

Optimization Tutorial 1. Basic Gradient Descent E0 270 Machine Learning Jan 16, 2015 Optimization Tutorial 1 Basic Gradient Descent Lecture by Harikrishna Narasimhan Note: This tutorial shall assume background in elementary calculus and linear algebra.

More information

Optical Flow, Motion Segmentation, Feature Tracking

Optical Flow, Motion Segmentation, Feature Tracking BIL 719 - Computer Vision May 21, 2014 Optical Flow, Motion Segmentation, Feature Tracking Aykut Erdem Dept. of Computer Engineering Hacettepe University Motion Optical Flow Motion Segmentation Feature

More information

Linear Regression 1 / 25. Karl Stratos. June 18, 2018

Linear Regression 1 / 25. Karl Stratos. June 18, 2018 Linear Regression Karl Stratos June 18, 2018 1 / 25 The Regression Problem Problem. Find a desired input-output mapping f : X R where the output is a real value. x = = y = 0.1 How much should I turn my

More information

Generalized Gradient Descent Algorithms

Generalized Gradient Descent Algorithms ECE 275AB Lecture 11 Fall 2008 V1.1 c K. Kreutz-Delgado, UC San Diego p. 1/1 Lecture 11 ECE 275A Generalized Gradient Descent Algorithms ECE 275AB Lecture 11 Fall 2008 V1.1 c K. Kreutz-Delgado, UC San

More information

Normalization Techniques

Normalization Techniques Normalization Techniques Devansh Arpit Normalization Techniques 1 / 39 Table of Contents 1 Introduction 2 Motivation 3 Batch Normalization 4 Normalization Propagation 5 Weight Normalization 6 Layer Normalization

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Linear Classifiers. Blaine Nelson, Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Linear Classifiers. Blaine Nelson, Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Linear Classifiers Blaine Nelson, Tobias Scheffer Contents Classification Problem Bayesian Classifier Decision Linear Classifiers, MAP Models Logistic

More information

Presentation in Convex Optimization

Presentation in Convex Optimization Dec 22, 2014 Introduction Sample size selection in optimization methods for machine learning Introduction Sample size selection in optimization methods for machine learning Main results: presents a methodology

More information

Introduction to Mobile Robotics Compact Course on Linear Algebra. Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz

Introduction to Mobile Robotics Compact Course on Linear Algebra. Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz Introduction to Mobile Robotics Compact Course on Linear Algebra Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz Vectors Arrays of numbers Vectors represent a point in a n dimensional space

More information

Iterative Reweighted Least Squares

Iterative Reweighted Least Squares Iterative Reweighted Least Squares Sargur. University at Buffalo, State University of ew York USA Topics in Linear Classification using Probabilistic Discriminative Models Generative vs Discriminative

More information

Big Data Analytics. Lucas Rego Drumond

Big Data Analytics. Lucas Rego Drumond Big Data Analytics Lucas Rego Drumond Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany Predictive Models Predictive Models 1 / 34 Outline

More information

Feature extraction: Corners and blobs

Feature extraction: Corners and blobs Feature extraction: Corners and blobs Review: Linear filtering and edge detection Name two different kinds of image noise Name a non-linear smoothing filter What advantages does median filtering have over

More information

Spatial Transformer Networks

Spatial Transformer Networks BIL722 - Deep Learning for Computer Vision Spatial Transformer Networks Max Jaderberg Andrew Zisserman Karen Simonyan Koray Kavukcuoglu Contents Introduction to Spatial Transformers Related Works Spatial

More information

11 a 12 a 21 a 11 a 22 a 12 a 21. (C.11) A = The determinant of a product of two matrices is given by AB = A B 1 1 = (C.13) and similarly.

11 a 12 a 21 a 11 a 22 a 12 a 21. (C.11) A = The determinant of a product of two matrices is given by AB = A B 1 1 = (C.13) and similarly. C PROPERTIES OF MATRICES 697 to whether the permutation i 1 i 2 i N is even or odd, respectively Note that I =1 Thus, for a 2 2 matrix, the determinant takes the form A = a 11 a 12 = a a 21 a 11 a 22 a

More information

Ch6-Normalized Least Mean-Square Adaptive Filtering

Ch6-Normalized Least Mean-Square Adaptive Filtering Ch6-Normalized Least Mean-Square Adaptive Filtering LMS Filtering The update equation for the LMS algorithm is wˆ wˆ u ( n 1) ( n) ( n) e ( n) Step size Filter input which is derived from SD as an approximation

More information

Lecture 6. Notes on Linear Algebra. Perceptron

Lecture 6. Notes on Linear Algebra. Perceptron Lecture 6. Notes on Linear Algebra. Perceptron COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Andrey Kan Copyright: University of Melbourne This lecture Notes on linear algebra Vectors

More information

DATA MINING AND MACHINE LEARNING. Lecture 4: Linear models for regression and classification Lecturer: Simone Scardapane

DATA MINING AND MACHINE LEARNING. Lecture 4: Linear models for regression and classification Lecturer: Simone Scardapane DATA MINING AND MACHINE LEARNING Lecture 4: Linear models for regression and classification Lecturer: Simone Scardapane Academic Year 2016/2017 Table of contents Linear models for regression Regularized

More information

Corners, Blobs & Descriptors. With slides from S. Lazebnik & S. Seitz, D. Lowe, A. Efros

Corners, Blobs & Descriptors. With slides from S. Lazebnik & S. Seitz, D. Lowe, A. Efros Corners, Blobs & Descriptors With slides from S. Lazebnik & S. Seitz, D. Lowe, A. Efros Motivation: Build a Panorama M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003 How do we build panorama?

More information

Machine Learning I Continuous Reinforcement Learning

Machine Learning I Continuous Reinforcement Learning Machine Learning I Continuous Reinforcement Learning Thomas Rückstieß Technische Universität München January 7/8, 2010 RL Problem Statement (reminder) state s t+1 ENVIRONMENT reward r t+1 new step r t

More information

Visual meta-learning for planning and control

Visual meta-learning for planning and control Visual meta-learning for planning and control Seminar on Current Works in Computer Vision @ Chair of Pattern Recognition and Image Processing. Samuel Roth Winter Semester 2018/19 Albert-Ludwigs-Universität

More information

Lecture 14: October 17

Lecture 14: October 17 1-725/36-725: Convex Optimization Fall 218 Lecture 14: October 17 Lecturer: Lecturer: Ryan Tibshirani Scribes: Pengsheng Guo, Xian Zhou Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Optimization and Root Finding. Kurt Hornik

Optimization and Root Finding. Kurt Hornik Optimization and Root Finding Kurt Hornik Basics Root finding and unconstrained smooth optimization are closely related: Solving ƒ () = 0 can be accomplished via minimizing ƒ () 2 Slide 2 Basics Root finding

More information

A STATISTICAL APPROACH TO IMAGE WARPING. Chris Glasbey. Biomathematics and Statistics Scotland

A STATISTICAL APPROACH TO IMAGE WARPING. Chris Glasbey. Biomathematics and Statistics Scotland A STATISTICAL APPROACH TO IMAGE WARPING Chris Glasbey Biomathematics and Statistics Scotland IMAGE ANALYSIS: the extraction of information from pictures Which line is longer? Who is this? 2 The human eye/brain

More information

Reconnaissance d objetsd et vision artificielle

Reconnaissance d objetsd et vision artificielle Reconnaissance d objetsd et vision artificielle http://www.di.ens.fr/willow/teaching/recvis09 Lecture 6 Face recognition Face detection Neural nets Attention! Troisième exercice de programmation du le

More information

Sparse Levenberg-Marquardt algorithm.

Sparse Levenberg-Marquardt algorithm. Sparse Levenberg-Marquardt algorithm. R. I. Hartley and A. Zisserman: Multiple View Geometry in Computer Vision. Cambridge University Press, second edition, 2004. Appendix 6 was used in part. The Levenberg-Marquardt

More information

Computational statistics

Computational statistics Computational statistics Lecture 3: Neural networks Thierry Denœux 5 March, 2016 Neural networks A class of learning methods that was developed separately in different fields statistics and artificial

More information

Normalization Techniques in Training of Deep Neural Networks

Normalization Techniques in Training of Deep Neural Networks Normalization Techniques in Training of Deep Neural Networks Lei Huang ( 黄雷 ) State Key Laboratory of Software Development Environment, Beihang University Mail:huanglei@nlsde.buaa.edu.cn August 17 th,

More information

On-line Support Vector Machine Regression

On-line Support Vector Machine Regression Index On-line Support Vector Machine Regression Mario Martín Software Department KEML Group Universitat Politècnica de Catalunya Motivation and antecedents Formulation of SVM regression Characterization

More information

A Generative Perspective on MRFs in Low-Level Vision Supplemental Material

A Generative Perspective on MRFs in Low-Level Vision Supplemental Material A Generative Perspective on MRFs in Low-Level Vision Supplemental Material Uwe Schmidt Qi Gao Stefan Roth Department of Computer Science, TU Darmstadt 1. Derivations 1.1. Sampling the Prior We first rewrite

More information

Max Margin-Classifier

Max Margin-Classifier Max Margin-Classifier Oliver Schulte - CMPT 726 Bishop PRML Ch. 7 Outline Maximum Margin Criterion Math Maximizing the Margin Non-Separable Data Kernels and Non-linear Mappings Where does the maximization

More information

Logistic Regression. Seungjin Choi

Logistic Regression. Seungjin Choi Logistic Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Cox regression: Estimation

Cox regression: Estimation Cox regression: Estimation Patrick Breheny October 27 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/19 Introduction The Cox Partial Likelihood In our last lecture, we introduced the Cox partial

More information

Linear Methods for Regression. Lijun Zhang

Linear Methods for Regression. Lijun Zhang Linear Methods for Regression Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Linear Regression Models and Least Squares Subset Selection Shrinkage Methods Methods Using Derived

More information

Differential Motion Analysis

Differential Motion Analysis Differential Motion Analysis Ying Wu Electrical Engineering and Computer Science Northwestern University, Evanston, IL 60208 yingwu@ece.northwestern.edu http://www.eecs.northwestern.edu/~yingwu July 19,

More information

Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore

Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore Lecture - 27 Multilayer Feedforward Neural networks with Sigmoidal

More information

Lecture 4: Linear predictors and the Perceptron

Lecture 4: Linear predictors and the Perceptron Lecture 4: Linear predictors and the Perceptron Introduction to Learning and Analysis of Big Data Kontorovich and Sabato (BGU) Lecture 4 1 / 34 Inductive Bias Inductive bias is critical to prevent overfitting.

More information

Neural Networks Learning the network: Backprop , Fall 2018 Lecture 4

Neural Networks Learning the network: Backprop , Fall 2018 Lecture 4 Neural Networks Learning the network: Backprop 11-785, Fall 2018 Lecture 4 1 Recap: The MLP can represent any function The MLP can be constructed to represent anything But how do we construct it? 2 Recap:

More information

Optimization 2. CS5240 Theoretical Foundations in Multimedia. Leow Wee Kheng

Optimization 2. CS5240 Theoretical Foundations in Multimedia. Leow Wee Kheng Optimization 2 CS5240 Theoretical Foundations in Multimedia Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore Leow Wee Kheng (NUS) Optimization 2 1 / 38

More information

10-725/36-725: Convex Optimization Prerequisite Topics

10-725/36-725: Convex Optimization Prerequisite Topics 10-725/36-725: Convex Optimization Prerequisite Topics February 3, 2015 This is meant to be a brief, informal refresher of some topics that will form building blocks in this course. The content of the

More information

More Optimization. Optimization Methods. Methods

More Optimization. Optimization Methods. Methods More More Optimization Optimization Methods Methods Yann YannLeCun LeCun Courant CourantInstitute Institute http://yann.lecun.com http://yann.lecun.com (almost) (almost) everything everything you've you've

More information

Incremental and Decremental Training for Linear Classification

Incremental and Decremental Training for Linear Classification Incremental and Decremental Training for Linear Classification Authors: Cheng-Hao Tsai, Chieh-Yen Lin, and Chih-Jen Lin Department of Computer Science National Taiwan University Presenter: Ching-Pei Lee

More information

Vasil Khalidov & Miles Hansard. C.M. Bishop s PRML: Chapter 5; Neural Networks

Vasil Khalidov & Miles Hansard. C.M. Bishop s PRML: Chapter 5; Neural Networks C.M. Bishop s PRML: Chapter 5; Neural Networks Introduction The aim is, as before, to find useful decompositions of the target variable; t(x) = y(x, w) + ɛ(x) (3.7) t(x n ) and x n are the observations,

More information

CSC321 Lecture 2: Linear Regression

CSC321 Lecture 2: Linear Regression CSC32 Lecture 2: Linear Regression Roger Grosse Roger Grosse CSC32 Lecture 2: Linear Regression / 26 Overview First learning algorithm of the course: linear regression Task: predict scalar-valued targets,

More information

j=1 r 1 x 1 x n. r m r j (x) r j r j (x) r j (x). r j x k

j=1 r 1 x 1 x n. r m r j (x) r j r j (x) r j (x). r j x k Maria Cameron Nonlinear Least Squares Problem The nonlinear least squares problem arises when one needs to find optimal set of parameters for a nonlinear model given a large set of data The variables x,,

More information

Learning gradients: prescriptive models

Learning gradients: prescriptive models Department of Statistical Science Institute for Genome Sciences & Policy Department of Computer Science Duke University May 11, 2007 Relevant papers Learning Coordinate Covariances via Gradients. Sayan

More information

Spatial Transformation

Spatial Transformation Spatial Transformation Presented by Liqun Chen June 30, 2017 1 Overview 2 Spatial Transformer Networks 3 STN experiments 4 Recurrent Models of Visual Attention (RAM) 5 Recurrent Models of Visual Attention

More information

Machine Learning. Regression. Manfred Huber

Machine Learning. Regression. Manfred Huber Machine Learning Regression Manfred Huber 2015 1 Regression Regression refers to supervised learning problems where the target output is one or more continuous values Continuous output values imply that

More information

5 Handling Constraints

5 Handling Constraints 5 Handling Constraints Engineering design optimization problems are very rarely unconstrained. Moreover, the constraints that appear in these problems are typically nonlinear. This motivates our interest

More information

Numerical solution of Least Squares Problems 1/32

Numerical solution of Least Squares Problems 1/32 Numerical solution of Least Squares Problems 1/32 Linear Least Squares Problems Suppose that we have a matrix A of the size m n and the vector b of the size m 1. The linear least square problem is to find

More information

Edges and Scale. Image Features. Detecting edges. Origin of Edges. Solution: smooth first. Effects of noise

Edges and Scale. Image Features. Detecting edges. Origin of Edges. Solution: smooth first. Effects of noise Edges and Scale Image Features From Sandlot Science Slides revised from S. Seitz, R. Szeliski, S. Lazebnik, etc. Origin of Edges surface normal discontinuity depth discontinuity surface color discontinuity

More information