Learning Task Grouping and Overlap in Multi-Task Learning

Size: px
Start display at page:

Download "Learning Task Grouping and Overlap in Multi-Task Learning"

Transcription

1 Learning Task Grouping and Overlap in Multi-Task Learning Abhishek Kumar Hal Daumé III Department of Computer Science University of Mayland, College Park 20 May 2013 Proceedings of the 29 th International Conference on Machine Learning Presented by Kyle Ulrich A. Kumar and H. Daumé III (UMD) GO-MTL 20 May / 20

2 Outline 1 Multi-Task Learning 2 Learning Task Grouping and Overlap Regression: Squared Loss Classification: Logistic Loss 3 Experiments Synthetic Data Real Data A. Kumar and H. Daumé III (UMD) GO-MTL 20 May / 20

3 Outline 1 Multi-Task Learning 2 Learning Task Grouping and Overlap Regression: Squared Loss Classification: Logistic Loss 3 Experiments Synthetic Data Real Data A. Kumar and H. Daumé III (UMD) GO-MTL 20 May / 20

4 Multi-Task Learning Simultaneously learning multiple prediction tasks that are related Idea: common information is shared among tasks and learning them jointly can result in better performance Introduce an inductive bias in the joint hypothesis space (prior belief about relationship structure) Common bias assumptions: Clustering, disjoint groups (Jacob et al., 2008; Xue et al., 2007) Manifold assumption (Agarwal et al., 2010) Shared sparsity in features (Jalali et al., 2010; Chen et al. 2011) Subspace assumption (Argyriou et al., 2008) A. Kumar and H. Daumé III (UMD) GO-MTL 20 May / 20

5 Subspace Assumption Task parameters lie in a low dimensional subspace that captures the predictive structure for all the tasks Concept of latent tasks Individual tasks from different groups are allowed to overlap in one or more bases Latent tasks can influence more than one group Tasks form clusters and tasks within each cluster are a sparse combination of a task dictionary. Nonparametric Bayesian approach in (Passos et al., 2012) A. Kumar and H. Daumé III (UMD) GO-MTL 20 May / 20

6 Outline 1 Multi-Task Learning 2 Learning Task Grouping and Overlap Regression: Squared Loss Classification: Logistic Loss 3 Experiments Synthetic Data Real Data A. Kumar and H. Daumé III (UMD) GO-MTL 20 May / 20

7 GO-MTL Model Grouping and Overlap in Multitask Learning (GO-MTL) We have T tasks and Z t = {(x ti, y ti ) : i = 1, 2,..., N t } is the training set for each task t = 1, 2,..., T Task weight matrix W R d T, d is feature dimension. Let W = LS where L R d k is the latent task parameters, and S R k T contains sparse weights for each task. Each task weight vector w t is a linear combination of latent tasks A. Kumar and H. Daumé III (UMD) GO-MTL 20 May / 20

8 GO-MTL Objective Function The cost function takes the form: t (x ti,y ti ) Z t L(y ti, s tl x ti ) + µ S 1 + λ L 2 F (1) For a convex empirical loss function, this is convex in L for a fixed S and is convex in S for a fixed L. Therefore, an alternating optimization function is used. For a fixed L, decompose into individual problems for s t : For a fixed S: s t = argmin s min L T t=1 (x ti,y ti ) Z t L(y ti, s L x ti ) + µ s 1 (2) (x ti,y ti ) Z t L(y ti, s tl x ti ) + λ L 2 F (3) A. Kumar and H. Daumé III (UMD) GO-MTL 20 May / 20

9 Algorithm 1 GO-MTL: Grouping and Overlap for Multi-Task Learning 1: Input: Z t : Labeled training data for all tasks k: Number of latent tasks µ: Parameter for controlling sparsity 2: Output: Task predictor matrix W, L and S. 3: Learn individual predictors for each task using only its own data 4: Let W 0 be the matrix that contains these initial predictors as columns 5: Compute top-k singular vectors: W 0 = UΣV T 6: Initialize L to first k columns of U 7: while not converged do 8: for t = 1 to T do 9: Solve Eq. 2 to obtain s t 10: end for 11: Construct matrix S = [s 1 s 2... s T ] 12: Save the previous L: L old = L 13: Fix S and solve Eq. 3 to obtain L 14: end while 15: Return outputs: L = L old, S and W = L old S A. Kumar and H. Daumé III (UMD) GO-MTL 20 May / 20

10 Regression: Squared Loss Consider squared loss L(a, b) = (a b) 2 The cost function for task t is min L,S T t=1 where X t R d Nt. 1 N t y t X tls t 2 + µ S 1 + λ L 2 F (4) For fixed L, optimize for s t with the two-metric projection method, which requires the gradient and Hessian of the squared loss function f (s t ): st f (s t ) = 2 N t L X t (X tls t y t ) 2 s t f (s t ) = 2 N t L X t X tl A. Kumar and H. Daumé III (UMD) GO-MTL 20 May / 20

11 Regression: Squared Loss (continued) For a fixed S, the gradient of Equation 4 gives T t=1 1 N t X t y t s t = T t=1 1 N t X t X tls t s t + λl which is a linear equation in L. To solve this, we vectorize both sides: T 1 vec ( ( X t y N t s ) T ) 1 t = vec X t X t=1 t N tls t s t + λl t=1 t [ T ] 1 = (s t s N t) (X t X t) + λi vec(l) t t=1 since vec(axb) = (B A)vec(X). The symbol represents the Kronecker product. This linear equation can now be solved in many ways, such as a matrix inverse, the LU decomposition, or by iterative methods. A. Kumar and H. Daumé III (UMD) GO-MTL 20 May / 20

12 Classification: Logistic Loss Consider logistic loss: L(y, f (x)) = log(1 + exp( yf (x))) For fixed L, again solve for s t using the two-metric projection method. To do so, we need the gradient and Hessian of the loss function w.r.t. s t : f (s t ) = 1 N t st f (s t ) = 1 N t 2 s t f (s t ) = 1 N t N t i=1 N t i=1 N t i=1 log(1 + exp( y ti s tl x ti )) (y ti σ(w tx ti ))L x ti σ(w tx ti )(1 σ(w tx ti ))L x ti x til where w t = Ls t is the weight vector for task t, and σ(x) = 1 1+e x is the logistic function. A. Kumar and H. Daumé III (UMD) GO-MTL 20 May / 20

13 Classification: Logistic Loss (continued) For fixed S, the objective is convex in L and is solved in various ways Gradient update: L : T 1 N t N t=1 t i=1 (y ti σ(w tx ti ))x ti s t + 2λL Newton-Raphson update: Use Taylor series expansion up to second order around L to obtain the step direction M: [ T ] N 1 t δ ti [vec(x ti s t) vec(x ti s t) ] + 2λI vec(m) N t=1 t i=1 = vec ( T 1 N t N t=1 t i=1 (y ti σ(w tx ti ))x ti s t 2λL where δ ti = σ(w tx ti )(1 σ(w tx ti )). The step size is computed using Armijo rule. ) A. Kumar and H. Daumé III (UMD) GO-MTL 20 May / 20

14 Outline 1 Multi-Task Learning 2 Learning Task Grouping and Overlap Regression: Squared Loss Classification: Logistic Loss 3 Experiments Synthetic Data Real Data A. Kumar and H. Daumé III (UMD) GO-MTL 20 May / 20

15 Parameter Selection t (x ti,y ti ) Z t L(y ti, s tl x ti ) + µ S 1 + λ L 2 F λ is fixed at 0.1 in all experiments µ is selected using cross validation with four different random splits (70% train, 30% validation) on the training set Selection of k (number of latent tasks) k < T Large value of k is controlled by increasing the sparsity penalty µ A. Kumar and H. Daumé III (UMD) GO-MTL 20 May / 20

16 Baseline Comparisons No-group MTL (Argyriou et al., 2008): All tasks are assumed to be related, and the task parameters are assumed to lie in a low dimensional subspace. This is done by penalizing the nuclear norm of the weight matrix. Disjoint-Group MTL (DG-MTL) (Kang et al., 2011): Assumes multiple disjoint groups of tasks. Task parameters within a group lie in a low dimensional space. Single Task Learning (STL): Tasks are learned independently. A. Kumar and H. Daumé III (UMD) GO-MTL 20 May / 20

17 Synthetic Dataset 1 Three disjoint groups of tasks Each latent task generates one group Able to recover the true support which is given by three latent tasks (even for K > 3) Figure: Left: RMSE with DG-MTL vs. number of groups (G), Right: RMSE with GO-MTL vs. number of latent tasks (k). Figure: Recovered sparsity patterns (the matrix S) with GO-MTL with 3 disjoint groups. Along horizontal and vertical axes are the observed tasks and the latent tasks, respectively. Top: For k = 3, Middle: For k = 10 after three iterations, Bottom: For k = 10 after convergence (15 iterations). A. Kumar and H. Daumé III (UMD) GO-MTL 20 May / 20

18 Synthetic Dataset 2 Three overlapping groups of tasks Generated by 4 latent tasks Figure: Left: RMSE with DG-MTL vs. number of groups (G), Right: RMSE with GO-MTL vs. number of latent tasks (k). Figure: Sparsity patterns (the matrix S) with three overlapping groups generated by 4 latent tasks. Bottom: True task grouping structure, Top: Recovered support for k = 5. Only the first four latent tasks are active. A. Kumar and H. Daumé III (UMD) GO-MTL 20 May / 20

19 Real Data Table: Results on different datasets: Reported numbers are root mean square error (RMSE) for regression datasets and multi-class classification errors for MNIST and USPS. Numbers in parentheses are std. dev. Regression Computer Survey data: 190 tasks, 20 examples per task, 75-25% split School data: 139 tasks, 100 examples per task on avg, 60-40% split Classification USPS: 10 classes, 1000 training examples, 500 test examples MNIST: 10 classes, 1000 training examples, 500 test examples A. Kumar and H. Daumé III (UMD) GO-MTL 20 May / 20

20 Conclusion Framework for learning grouping and overlap structure in multi-task learning Parameters of each task group lie in a low dimensional subspace Does not assume disjoint grouping structure Tasks in different groups are allowed to overlap through the sharing of latent basis tasks A. Kumar and H. Daumé III (UMD) GO-MTL 20 May / 20

A Randomized Approach for Crowdsourcing in the Presence of Multiple Views

A Randomized Approach for Crowdsourcing in the Presence of Multiple Views A Randomized Approach for Crowdsourcing in the Presence of Multiple Views Presenter: Yao Zhou joint work with: Jingrui He - 1 - Roadmap Motivation Proposed framework: M2VW Experimental results Conclusion

More information

Learning Good Representations for Multiple Related Tasks

Learning Good Representations for Multiple Related Tasks Learning Good Representations for Multiple Related Tasks Massimiliano Pontil Computer Science Dept UCL and ENSAE-CREST March 25, 2015 1 / 35 Plan Problem formulation and examples Analysis of multitask

More information

Learning Multiple Tasks with a Sparse Matrix-Normal Penalty

Learning Multiple Tasks with a Sparse Matrix-Normal Penalty Learning Multiple Tasks with a Sparse Matrix-Normal Penalty Yi Zhang and Jeff Schneider NIPS 2010 Presented by Esther Salazar Duke University March 25, 2011 E. Salazar (Reading group) March 25, 2011 1

More information

Statistical Data Mining and Machine Learning Hilary Term 2016

Statistical Data Mining and Machine Learning Hilary Term 2016 Statistical Data Mining and Machine Learning Hilary Term 2016 Dino Sejdinovic Department of Statistics Oxford Slides and other materials available at: http://www.stats.ox.ac.uk/~sejdinov/sdmml Naïve Bayes

More information

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception LINEAR MODELS FOR CLASSIFICATION Classification: Problem Statement 2 In regression, we are modeling the relationship between a continuous input variable x and a continuous target variable t. In classification,

More information

Convex Optimization Algorithms for Machine Learning in 10 Slides

Convex Optimization Algorithms for Machine Learning in 10 Slides Convex Optimization Algorithms for Machine Learning in 10 Slides Presenter: Jul. 15. 2015 Outline 1 Quadratic Problem Linear System 2 Smooth Problem Newton-CG 3 Composite Problem Proximal-Newton-CD 4 Non-smooth,

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Logistic Regression Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574

More information

Least Squares Regression

Least Squares Regression E0 70 Machine Learning Lecture 4 Jan 7, 03) Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are a brief summary of the topics covered in the lecture. They are not a substitute

More information

Linear and logistic regression

Linear and logistic regression Linear and logistic regression Guillaume Obozinski Ecole des Ponts - ParisTech Master MVA Linear and logistic regression 1/22 Outline 1 Linear regression 2 Logistic regression 3 Fisher discriminant analysis

More information

Least Squares Regression

Least Squares Regression CIS 50: Machine Learning Spring 08: Lecture 4 Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may not cover all the

More information

https://goo.gl/kfxweg KYOTO UNIVERSITY Statistical Machine Learning Theory Sparsity Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT OF INTELLIGENCE SCIENCE AND TECHNOLOGY 1 KYOTO UNIVERSITY Topics:

More information

A Spectral Regularization Framework for Multi-Task Structure Learning

A Spectral Regularization Framework for Multi-Task Structure Learning A Spectral Regularization Framework for Multi-Task Structure Learning Massimiliano Pontil Department of Computer Science University College London (Joint work with A. Argyriou, T. Evgeniou, C.A. Micchelli,

More information

A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices

A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices Ryota Tomioka 1, Taiji Suzuki 1, Masashi Sugiyama 2, Hisashi Kashima 1 1 The University of Tokyo 2 Tokyo Institute of Technology 2010-06-22

More information

SCMA292 Mathematical Modeling : Machine Learning. Krikamol Muandet. Department of Mathematics Faculty of Science, Mahidol University.

SCMA292 Mathematical Modeling : Machine Learning. Krikamol Muandet. Department of Mathematics Faculty of Science, Mahidol University. SCMA292 Mathematical Modeling : Machine Learning Krikamol Muandet Department of Mathematics Faculty of Science, Mahidol University February 9, 2016 Outline Quick Recap of Least Square Ridge Regression

More information

Last updated: Oct 22, 2012 LINEAR CLASSIFIERS. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition

Last updated: Oct 22, 2012 LINEAR CLASSIFIERS. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition Last updated: Oct 22, 2012 LINEAR CLASSIFIERS Problems 2 Please do Problem 8.3 in the textbook. We will discuss this in class. Classification: Problem Statement 3 In regression, we are modeling the relationship

More information

Neural Network Training

Neural Network Training Neural Network Training Sargur Srihari Topics in Network Training 0. Neural network parameters Probabilistic problem formulation Specifying the activation and error functions for Regression Binary classification

More information

Big Data Analytics. Lucas Rego Drumond

Big Data Analytics. Lucas Rego Drumond Big Data Analytics Lucas Rego Drumond Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany Predictive Models Predictive Models 1 / 34 Outline

More information

Machine Learning. Linear Models. Fabio Vandin October 10, 2017

Machine Learning. Linear Models. Fabio Vandin October 10, 2017 Machine Learning Linear Models Fabio Vandin October 10, 2017 1 Linear Predictors and Affine Functions Consider X = R d Affine functions: L d = {h w,b : w R d, b R} where ( d ) h w,b (x) = w, x + b = w

More information

Sparse regression. Optimization-Based Data Analysis. Carlos Fernandez-Granda

Sparse regression. Optimization-Based Data Analysis.   Carlos Fernandez-Granda Sparse regression Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 3/28/2016 Regression Least-squares regression Example: Global warming Logistic

More information

Behavioral Data Mining. Lecture 7 Linear and Logistic Regression

Behavioral Data Mining. Lecture 7 Linear and Logistic Regression Behavioral Data Mining Lecture 7 Linear and Logistic Regression Outline Linear Regression Regularization Logistic Regression Stochastic Gradient Fast Stochastic Methods Performance tips Linear Regression

More information

Accelerated Block-Coordinate Relaxation for Regularized Optimization

Accelerated Block-Coordinate Relaxation for Regularized Optimization Accelerated Block-Coordinate Relaxation for Regularized Optimization Stephen J. Wright Computer Sciences University of Wisconsin, Madison October 09, 2012 Problem descriptions Consider where f is smooth

More information

When Dictionary Learning Meets Classification

When Dictionary Learning Meets Classification When Dictionary Learning Meets Classification Bufford, Teresa 1 Chen, Yuxin 2 Horning, Mitchell 3 Shee, Liberty 1 Mentor: Professor Yohann Tendero 1 UCLA 2 Dalhousie University 3 Harvey Mudd College August

More information

Overfitting, Bias / Variance Analysis

Overfitting, Bias / Variance Analysis Overfitting, Bias / Variance Analysis Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 8, 207 / 40 Outline Administration 2 Review of last lecture 3 Basic

More information

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique Master 2 MathBigData S. Gaïffas 1 3 novembre 2014 1 CMAP - Ecole Polytechnique 1 Supervised learning recap Introduction Loss functions, linearity 2 Penalization Introduction Ridge Sparsity Lasso 3 Some

More information

Spectral k-support Norm Regularization

Spectral k-support Norm Regularization Spectral k-support Norm Regularization Andrew McDonald Department of Computer Science, UCL (Joint work with Massimiliano Pontil and Dimitris Stamos) 25 March, 2015 1 / 19 Problem: Matrix Completion Goal:

More information

Logistic Regression. COMP 527 Danushka Bollegala

Logistic Regression. COMP 527 Danushka Bollegala Logistic Regression COMP 527 Danushka Bollegala Binary Classification Given an instance x we must classify it to either positive (1) or negative (0) class We can use {1,-1} instead of {1,0} but we will

More information

Logistic Regression. Seungjin Choi

Logistic Regression. Seungjin Choi Logistic Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Regression with Numerical Optimization. Logistic

Regression with Numerical Optimization. Logistic CSG220 Machine Learning Fall 2008 Regression with Numerical Optimization. Logistic regression Regression with Numerical Optimization. Logistic regression based on a document by Andrew Ng October 3, 204

More information

Linear and Logistic Regression. Dr. Xiaowei Huang

Linear and Logistic Regression. Dr. Xiaowei Huang Linear and Logistic Regression Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/ Up to now, Two Classical Machine Learning Algorithms Decision tree learning K-nearest neighbor Model Evaluation Metrics

More information

ECE521 Lectures 9 Fully Connected Neural Networks

ECE521 Lectures 9 Fully Connected Neural Networks ECE521 Lectures 9 Fully Connected Neural Networks Outline Multi-class classification Learning multi-layer neural networks 2 Measuring distance in probability space We learnt that the squared L2 distance

More information

Decoupled Collaborative Ranking

Decoupled Collaborative Ranking Decoupled Collaborative Ranking Jun Hu, Ping Li April 24, 2017 Jun Hu, Ping Li WWW2017 April 24, 2017 1 / 36 Recommender Systems Recommendation system is an information filtering technique, which provides

More information

Linear Regression. Aarti Singh. Machine Learning / Sept 27, 2010

Linear Regression. Aarti Singh. Machine Learning / Sept 27, 2010 Linear Regression Aarti Singh Machine Learning 10-701/15-781 Sept 27, 2010 Discrete to Continuous Labels Classification Sports Science News Anemic cell Healthy cell Regression X = Document Y = Topic X

More information

Feature Learning for Multitask Learning Using l 2,1 Norm Minimization

Feature Learning for Multitask Learning Using l 2,1 Norm Minimization Feature Learning for Multitask Learning Using l, Norm Minimization Priya Venkateshan Abstract We look at solving the task of Multitask Feature Learning by way of feature selection. We find that formulating

More information

Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms

Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms François Caron Department of Statistics, Oxford STATLEARN 2014, Paris April 7, 2014 Joint work with Adrien Todeschini,

More information

Introduction to Probabilistic Machine Learning

Introduction to Probabilistic Machine Learning Introduction to Probabilistic Machine Learning Piyush Rai Dept. of CSE, IIT Kanpur (Mini-course 1) Nov 03, 2015 Piyush Rai (IIT Kanpur) Introduction to Probabilistic Machine Learning 1 Machine Learning

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

LINEAR CLASSIFIERS. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition

LINEAR CLASSIFIERS. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition LINEAR CLASSIFIERS Classification: Problem Statement 2 In regression, we are modeling the relationship between a continuous input variable x and a continuous target variable t. In classification, the input

More information

10-725/36-725: Convex Optimization Prerequisite Topics

10-725/36-725: Convex Optimization Prerequisite Topics 10-725/36-725: Convex Optimization Prerequisite Topics February 3, 2015 This is meant to be a brief, informal refresher of some topics that will form building blocks in this course. The content of the

More information

EE613 Machine Learning for Engineers. Kernel methods Support Vector Machines. jean-marc odobez 2015

EE613 Machine Learning for Engineers. Kernel methods Support Vector Machines. jean-marc odobez 2015 EE613 Machine Learning for Engineers Kernel methods Support Vector Machines jean-marc odobez 2015 overview Kernel methods introductions and main elements defining kernels Kernelization of k-nn, K-Means,

More information

EE 381V: Large Scale Optimization Fall Lecture 24 April 11

EE 381V: Large Scale Optimization Fall Lecture 24 April 11 EE 381V: Large Scale Optimization Fall 2012 Lecture 24 April 11 Lecturer: Caramanis & Sanghavi Scribe: Tao Huang 24.1 Review In past classes, we studied the problem of sparsity. Sparsity problem is that

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Linear Regression Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574 1

More information

CSC2515 Winter 2015 Introduction to Machine Learning. Lecture 2: Linear regression

CSC2515 Winter 2015 Introduction to Machine Learning. Lecture 2: Linear regression CSC2515 Winter 2015 Introduction to Machine Learning Lecture 2: Linear regression All lecture slides will be available as.pdf on the course website: http://www.cs.toronto.edu/~urtasun/courses/csc2515/csc2515_winter15.html

More information

MLCC 2018 Variable Selection and Sparsity. Lorenzo Rosasco UNIGE-MIT-IIT

MLCC 2018 Variable Selection and Sparsity. Lorenzo Rosasco UNIGE-MIT-IIT MLCC 2018 Variable Selection and Sparsity Lorenzo Rosasco UNIGE-MIT-IIT Outline Variable Selection Subset Selection Greedy Methods: (Orthogonal) Matching Pursuit Convex Relaxation: LASSO & Elastic Net

More information

Adaptive Gradient Methods AdaGrad / Adam. Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade

Adaptive Gradient Methods AdaGrad / Adam. Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade Adaptive Gradient Methods AdaGrad / Adam Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade 1 Announcements: HW3 posted Dual coordinate ascent (some review of SGD and random

More information

QUIC & DIRTY: A Quadratic Approximation Approach for Dirty Statistical Models

QUIC & DIRTY: A Quadratic Approximation Approach for Dirty Statistical Models QUIC & DIRTY: A Quadratic Approximation Approach for Dirty Statistical Models Cho-Jui Hsieh, Inderjit S. Dhillon, Pradeep Ravikumar University of Texas at Austin Austin, TX 7872 USA {cjhsieh,inderjit,pradeepr}@cs.utexas.edu

More information

Modeling Data with Linear Combinations of Basis Functions. Read Chapter 3 in the text by Bishop

Modeling Data with Linear Combinations of Basis Functions. Read Chapter 3 in the text by Bishop Modeling Data with Linear Combinations of Basis Functions Read Chapter 3 in the text by Bishop A Type of Supervised Learning Problem We want to model data (x 1, t 1 ),..., (x N, t N ), where x i is a vector

More information

Iterative Reweighted Least Squares

Iterative Reweighted Least Squares Iterative Reweighted Least Squares Sargur. University at Buffalo, State University of ew York USA Topics in Linear Classification using Probabilistic Discriminative Models Generative vs Discriminative

More information

Adaptive Crowdsourcing via EM with Prior

Adaptive Crowdsourcing via EM with Prior Adaptive Crowdsourcing via EM with Prior Peter Maginnis and Tanmay Gupta May, 205 In this work, we make two primary contributions: derivation of the EM update for the shifted and rescaled beta prior and

More information

COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS16

COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS16 COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS6 Lecture 3: Classification with Logistic Regression Advanced optimization techniques Underfitting & Overfitting Model selection (Training-

More information

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io Machine Learning Lecture 4: Regularization and Bayesian Statistics Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 207 Overfitting Problem

More information

Machine Learning Practice Page 2 of 2 10/28/13

Machine Learning Practice Page 2 of 2 10/28/13 Machine Learning 10-701 Practice Page 2 of 2 10/28/13 1. True or False Please give an explanation for your answer, this is worth 1 pt/question. (a) (2 points) No classifier can do better than a naive Bayes

More information

Composite Objective Mirror Descent

Composite Objective Mirror Descent Composite Objective Mirror Descent John C. Duchi 1,3 Shai Shalev-Shwartz 2 Yoram Singer 3 Ambuj Tewari 4 1 University of California, Berkeley 2 Hebrew University of Jerusalem, Israel 3 Google Research

More information

Machine Learning. Linear Models. Fabio Vandin October 10, 2017

Machine Learning. Linear Models. Fabio Vandin October 10, 2017 Machine Learning Linear Models Fabio Vandin October 10, 2017 1 Linear Predictors and Affine Functions Consider X = R d Affine functions: L d = {h w,b : w R d, b R} where ( d ) h w,b (x) = w, x + b = w

More information

Lecture 2 Machine Learning Review

Lecture 2 Machine Learning Review Lecture 2 Machine Learning Review CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago March 29, 2017 Things we will look at today Formal Setup for Supervised Learning Things

More information

Linear Regression. CSL603 - Fall 2017 Narayanan C Krishnan

Linear Regression. CSL603 - Fall 2017 Narayanan C Krishnan Linear Regression CSL603 - Fall 2017 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Univariate regression Multivariate regression Probabilistic view of regression Loss functions Bias-Variance analysis Regularization

More information

Afternoon Meeting on Bayesian Computation 2018 University of Reading

Afternoon Meeting on Bayesian Computation 2018 University of Reading Gabriele Abbati 1, Alessra Tosi 2, Seth Flaxman 3, Michael A Osborne 1 1 University of Oxford, 2 Mind Foundry Ltd, 3 Imperial College London Afternoon Meeting on Bayesian Computation 2018 University of

More information

Dictionary Learning for photo-z estimation

Dictionary Learning for photo-z estimation Dictionary Learning for photo-z estimation Joana Frontera-Pons, Florent Sureau, Jérôme Bobin 5th September 2017 - Workshop Dictionary Learning on Manifolds MOTIVATION! Goal : Measure the radial positions

More information

Linear Regression. CSL465/603 - Fall 2016 Narayanan C Krishnan

Linear Regression. CSL465/603 - Fall 2016 Narayanan C Krishnan Linear Regression CSL465/603 - Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Univariate regression Multivariate regression Probabilistic view of regression Loss functions Bias-Variance analysis

More information

A Gradient-based Adaptive Learning Framework for Efficient Personal Recommendation

A Gradient-based Adaptive Learning Framework for Efficient Personal Recommendation A Gradient-based Adaptive Learning Framework for Efficient Personal Recommendation Yue Ning 1 Yue Shi 2 Liangjie Hong 2 Huzefa Rangwala 3 Naren Ramakrishnan 1 1 Virginia Tech 2 Yahoo Research. Yue Shi

More information

MLCC 2017 Regularization Networks I: Linear Models

MLCC 2017 Regularization Networks I: Linear Models MLCC 2017 Regularization Networks I: Linear Models Lorenzo Rosasco UNIGE-MIT-IIT June 27, 2017 About this class We introduce a class of learning algorithms based on Tikhonov regularization We study computational

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Proximal-Gradient Mark Schmidt University of British Columbia Winter 2018 Admin Auditting/registration forms: Pick up after class today. Assignment 1: 2 late days to hand in

More information

A Least Squares Formulation for Canonical Correlation Analysis

A Least Squares Formulation for Canonical Correlation Analysis A Least Squares Formulation for Canonical Correlation Analysis Liang Sun, Shuiwang Ji, and Jieping Ye Department of Computer Science and Engineering Arizona State University Motivation Canonical Correlation

More information

Discriminative Models

Discriminative Models No.5 Discriminative Models Hui Jiang Department of Electrical Engineering and Computer Science Lassonde School of Engineering York University, Toronto, Canada Outline Generative vs. Discriminative models

More information

CSE 417T: Introduction to Machine Learning. Lecture 11: Review. Henry Chai 10/02/18

CSE 417T: Introduction to Machine Learning. Lecture 11: Review. Henry Chai 10/02/18 CSE 417T: Introduction to Machine Learning Lecture 11: Review Henry Chai 10/02/18 Unknown Target Function!: # % Training data Formal Setup & = ( ), + ),, ( -, + - Learning Algorithm 2 Hypothesis Set H

More information

Machine Learning And Applications: Supervised Learning-SVM

Machine Learning And Applications: Supervised Learning-SVM Machine Learning And Applications: Supervised Learning-SVM Raphaël Bournhonesque École Normale Supérieure de Lyon, Lyon, France raphael.bournhonesque@ens-lyon.fr 1 Supervised vs unsupervised learning Machine

More information

Machine Learning for NLP

Machine Learning for NLP Machine Learning for NLP Linear Models Joakim Nivre Uppsala University Department of Linguistics and Philology Slides adapted from Ryan McDonald, Google Research Machine Learning for NLP 1(26) Outline

More information

Learning task structure via sparsity grouped multitask learning

Learning task structure via sparsity grouped multitask learning Learning task structure via sparsity grouped multitask learning Meghana Kshirsagar 1, Eunho Yang 2, and Aurélie C. Lozano 3 1 Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY kshirsam@mskcc.org

More information

CS-E3210 Machine Learning: Basic Principles

CS-E3210 Machine Learning: Basic Principles CS-E3210 Machine Learning: Basic Principles Lecture 3: Regression I slides by Markus Heinonen Department of Computer Science Aalto University, School of Science Autumn (Period I) 2017 1 / 48 In a nutshell

More information

Machine Learning Basics Lecture 7: Multiclass Classification. Princeton University COS 495 Instructor: Yingyu Liang

Machine Learning Basics Lecture 7: Multiclass Classification. Princeton University COS 495 Instructor: Yingyu Liang Machine Learning Basics Lecture 7: Multiclass Classification Princeton University COS 495 Instructor: Yingyu Liang Example: image classification indoor Indoor outdoor Example: image classification (multiclass)

More information

Scaling Neighbourhood Methods

Scaling Neighbourhood Methods Quick Recap Scaling Neighbourhood Methods Collaborative Filtering m = #items n = #users Complexity : m * m * n Comparative Scale of Signals ~50 M users ~25 M items Explicit Ratings ~ O(1M) (1 per billion)

More information

A Multi-task Learning Strategy for Unsupervised Clustering via Explicitly Separating the Commonality

A Multi-task Learning Strategy for Unsupervised Clustering via Explicitly Separating the Commonality A Multi-task Learning Strategy for Unsupervised Clustering via Explicitly Separating the Commonality Shu Kong, Donghui Wang Dept. of Computer Science and Technology, Zhejiang University, Hangzhou 317,

More information

Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods.

Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods. Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods. Linear models for classification Logistic regression Gradient descent and second-order methods

More information

Lecture 4: Types of errors. Bayesian regression models. Logistic regression

Lecture 4: Types of errors. Bayesian regression models. Logistic regression Lecture 4: Types of errors. Bayesian regression models. Logistic regression A Bayesian interpretation of regularization Bayesian vs maximum likelihood fitting more generally COMP-652 and ECSE-68, Lecture

More information

Learning gradients: prescriptive models

Learning gradients: prescriptive models Department of Statistical Science Institute for Genome Sciences & Policy Department of Computer Science Duke University May 11, 2007 Relevant papers Learning Coordinate Covariances via Gradients. Sayan

More information

Max Margin-Classifier

Max Margin-Classifier Max Margin-Classifier Oliver Schulte - CMPT 726 Bishop PRML Ch. 7 Outline Maximum Margin Criterion Math Maximizing the Margin Non-Separable Data Kernels and Non-linear Mappings Where does the maximization

More information

Linear & nonlinear classifiers

Linear & nonlinear classifiers Linear & nonlinear classifiers Machine Learning Hamid Beigy Sharif University of Technology Fall 1396 Hamid Beigy (Sharif University of Technology) Linear & nonlinear classifiers Fall 1396 1 / 44 Table

More information

5.6 Nonparametric Logistic Regression

5.6 Nonparametric Logistic Regression 5.6 onparametric Logistic Regression Dmitri Dranishnikov University of Florida Statistical Learning onparametric Logistic Regression onparametric? Doesnt mean that there are no parameters. Just means that

More information

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 BASEL. Logistic Regression. Pattern Recognition 2016 Sandro Schönborn University of Basel

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 BASEL. Logistic Regression. Pattern Recognition 2016 Sandro Schönborn University of Basel Logistic Regression Pattern Recognition 2016 Sandro Schönborn University of Basel Two Worlds: Probabilistic & Algorithmic We have seen two conceptual approaches to classification: data class density estimation

More information

Support Vector Machines for Classification and Regression. 1 Linearly Separable Data: Hard Margin SVMs

Support Vector Machines for Classification and Regression. 1 Linearly Separable Data: Hard Margin SVMs E0 270 Machine Learning Lecture 5 (Jan 22, 203) Support Vector Machines for Classification and Regression Lecturer: Shivani Agarwal Disclaimer: These notes are a brief summary of the topics covered in

More information

r=1 r=1 argmin Q Jt (20) After computing the descent direction d Jt 2 dt H t d + P (x + d) d i = 0, i / J

r=1 r=1 argmin Q Jt (20) After computing the descent direction d Jt 2 dt H t d + P (x + d) d i = 0, i / J 7 Appendix 7. Proof of Theorem Proof. There are two main difficulties in proving the convergence of our algorithm, and none of them is addressed in previous works. First, the Hessian matrix H is a block-structured

More information

Parameter Norm Penalties. Sargur N. Srihari

Parameter Norm Penalties. Sargur N. Srihari Parameter Norm Penalties Sargur N. srihari@cedar.buffalo.edu 1 Regularization Strategies 1. Parameter Norm Penalties 2. Norm Penalties as Constrained Optimization 3. Regularization and Underconstrained

More information

Linear & nonlinear classifiers

Linear & nonlinear classifiers Linear & nonlinear classifiers Machine Learning Hamid Beigy Sharif University of Technology Fall 1394 Hamid Beigy (Sharif University of Technology) Linear & nonlinear classifiers Fall 1394 1 / 34 Table

More information

Linear Inverse Problems

Linear Inverse Problems Linear Inverse Problems Ajinkya Kadu Utrecht University, The Netherlands February 26, 2018 Outline Introduction Least-squares Reconstruction Methods Examples Summary Introduction 2 What are inverse problems?

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation.

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation. CS 189 Spring 2015 Introduction to Machine Learning Midterm You have 80 minutes for the exam. The exam is closed book, closed notes except your one-page crib sheet. No calculators or electronic items.

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

Motivation Subgradient Method Stochastic Subgradient Method. Convex Optimization. Lecture 15 - Gradient Descent in Machine Learning

Motivation Subgradient Method Stochastic Subgradient Method. Convex Optimization. Lecture 15 - Gradient Descent in Machine Learning Convex Optimization Lecture 15 - Gradient Descent in Machine Learning Instructor: Yuanzhang Xiao University of Hawaii at Manoa Fall 2017 1 / 21 Today s Lecture 1 Motivation 2 Subgradient Method 3 Stochastic

More information

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015 Sequence Modelling with Features: Linear-Chain Conditional Random Fields COMP-599 Oct 6, 2015 Announcement A2 is out. Due Oct 20 at 1pm. 2 Outline Hidden Markov models: shortcomings Generative vs. discriminative

More information

Linear Methods for Regression. Lijun Zhang

Linear Methods for Regression. Lijun Zhang Linear Methods for Regression Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Linear Regression Models and Least Squares Subset Selection Shrinkage Methods Methods Using Derived

More information

MTTTS16 Learning from Multiple Sources

MTTTS16 Learning from Multiple Sources MTTTS16 Learning from Multiple Sources 5 ECTS credits Autumn 2018, University of Tampere Lecturer: Jaakko Peltonen Lecture 6: Multitask learning with kernel methods and nonparametric models On this lecture:

More information

Optimization for Compressed Sensing

Optimization for Compressed Sensing Optimization for Compressed Sensing Robert J. Vanderbei 2014 March 21 Dept. of Industrial & Systems Engineering University of Florida http://www.princeton.edu/ rvdb Lasso Regression The problem is to solve

More information

Linear Models for Regression. Sargur Srihari

Linear Models for Regression. Sargur Srihari Linear Models for Regression Sargur srihari@cedar.buffalo.edu 1 Topics in Linear Regression What is regression? Polynomial Curve Fitting with Scalar input Linear Basis Function Models Maximum Likelihood

More information

Linear Models. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis.

Linear Models. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis. Linear Models DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Linear regression Least-squares estimation

More information

Computer Vision Group Prof. Daniel Cremers. 9. Gaussian Processes - Regression

Computer Vision Group Prof. Daniel Cremers. 9. Gaussian Processes - Regression Group Prof. Daniel Cremers 9. Gaussian Processes - Regression Repetition: Regularized Regression Before, we solved for w using the pseudoinverse. But: we can kernelize this problem as well! First step:

More information

Ranking from Crowdsourced Pairwise Comparisons via Matrix Manifold Optimization

Ranking from Crowdsourced Pairwise Comparisons via Matrix Manifold Optimization Ranking from Crowdsourced Pairwise Comparisons via Matrix Manifold Optimization Jialin Dong ShanghaiTech University 1 Outline Introduction FourVignettes: System Model and Problem Formulation Problem Analysis

More information

Multi-Task Learning and Matrix Regularization

Multi-Task Learning and Matrix Regularization Multi-Task Learning and Matrix Regularization Andreas Argyriou Department of Computer Science University College London Collaborators T. Evgeniou (INSEAD) R. Hauser (University of Oxford) M. Herbster (University

More information

25 : Graphical induced structured input/output models

25 : Graphical induced structured input/output models 10-708: Probabilistic Graphical Models 10-708, Spring 2013 25 : Graphical induced structured input/output models Lecturer: Eric P. Xing Scribes: Meghana Kshirsagar (mkshirsa), Yiwen Chen (yiwenche) 1 Graph

More information

Warm up: risk prediction with logistic regression

Warm up: risk prediction with logistic regression Warm up: risk prediction with logistic regression Boss gives you a bunch of data on loans defaulting or not: {(x i,y i )} n i= x i 2 R d, y i 2 {, } You model the data as: P (Y = y x, w) = + exp( yw T

More information

Large Scale Semi-supervised Linear SVMs. University of Chicago

Large Scale Semi-supervised Linear SVMs. University of Chicago Large Scale Semi-supervised Linear SVMs Vikas Sindhwani and Sathiya Keerthi University of Chicago SIGIR 2006 Semi-supervised Learning (SSL) Motivation Setting Categorize x-billion documents into commercial/non-commercial.

More information