A STATISTICAL APPROACH TO IMAGE WARPING. Chris Glasbey. Biomathematics and Statistics Scotland

Size: px
Start display at page:

Download "A STATISTICAL APPROACH TO IMAGE WARPING. Chris Glasbey. Biomathematics and Statistics Scotland"

Transcription

1 A STATISTICAL APPROACH TO IMAGE WARPING Chris Glasbey Biomathematics and Statistics Scotland

2 IMAGE ANALYSIS: the extraction of information from pictures Which line is longer? Who is this? 2

3 The human eye/brain is a superb image analyser So, why use a computer? better for quantitative tasks (repeatable/non-subjective) cheaper, faster and less tedious capable of different techniques 3

4 An example of non-automated image analysis: Cross-section of turbinate bone = Using sno-pake and black ink. 4

5 But automating image analysis is hard, because all a computer sees is: Could you recognise Mona Lisa from this? 5

6 Question 1: Can we superimpose microscope images? brightfield DIC phase contrast 6

7 Question 2: Can we distinguish between species of fish? haddock whiting 7

8 Question 3: Are the E. coli samples already in database? Pulsed-field gel electrophoresis (PFGE) database 8

9 Who is this? 9

10 George W. Bush Arnold Schwarzenegger Image morphing c 10

11 These are all examples of IMAGE WARPING j k i (i, j) f l (k, l) Y µ Y x µ f(x) OR Y (i,j) µ f(i,j) where f(i, j) =(k, l) is a matching criterion f is warping function, either parametric or with distortion penalty 11

12 Polynomial warps Translation k = i + a 00 l = j + b 00 Translation + Dilation k = ci + a 00 l = cj + b 00 Procrustes k = ci cos θ + cj sin θ + a 00 l = ci sin θ + cj cos θ + b 00 Translation + Rotation k = i cos θ + j sin θ + a 00 l = i sin θ + j cos θ + b 00 Bilinear k = a 10 i + a 01 j + a 11 ij + a 00 l = b 10 i + b 01 j + b 11 ij + b 00 Polynomial k = a mn i m j n l = b mn i m j n Affine k = a 10 i + a 01 j + a 00 l = b 10 i + b 01 j + b 00 Perspective k =(a 10 i + a 01 j + a 00 )/(c 10 i + c 01 j +1) l =(b 10 i + b 01 j + b 00 )/(c 10 i + c 01 j +1) 12

13 Parametric warping between species of fish: D Arcy Thompson, On Growth and Form (1917) 13

14 Distortion penalties have been motivated by: elastic membranes optical or fluid flow diffusion Markov random fields thin plate splines ( kriging) 14

15 An example of thin plate splines: Venus Venus warped average Arad et al. (CVGIP: Graphical Models and Image Processing, 1994) 15

16 PLAN 0. Introduction 1. Matching criteria 2. Distortion penalties 3. Algorithms 4. Summary 16

17 1. Matching criteria Question 1: Can we superimpose microscope images? The Fourier representation of Y is Y x = ω A ω cos θω +2πω T x x X. Y A (amplitude) θ (phase) 17

18 µ A (µ) θ (µ) Consider a second image, µ, and difference the phases θ θ (µ) 18

19 We propose a Fourier-von Mises model to estimate translation α θ ω θ ω (µ) M(2πω T α, κ ω ) where precision κ ω (A ω ) γ 1 A (µ) γ 2 exp γ3 ω + γ 4 ω 2 ω 19

20 We propose a Fourier-von Mises model to estimate translation α θ ω θ ω (µ) M(2πω T α, κ ω ) where precision κ ω (A ω ) γ 1 A (µ) γ 2 exp γ3 ω + γ 4 ω 2 ω The log-likelihood L ω κ ω cos θω θ (µ) ω +2πω T α generalises the cross-covariance C(α) = x µ xy x+α = ω A ωa ω (µ) cos θω θ ω (µ) and the phase correlation C (α) = cos θω θ (µ) ω ω +2πω T α +2πω T α for special cases γ =(1, 1, 0, 0) and γ =(0, 0, 0, 0) 20

21 Alignment of multiple subimages Similarity criterion s.d. α 1 α 2 Covariance Phase-correlation Fourier-von Mises log-likelihood

22 Pseudo-coloured composite image 22

23 Landsat Thematic Mapper (TM) images of east coast of Scotland band 1 band 2 band 3 band 4 band 5 band 7 23

24 Phase differences between Fourier transforms of pairs of bands 24

25 mean angle precision omega_2 Phase difference between bands 1 and 2 The linear trend in phase differences is affected by aliasing at high frequencies 25

26 We have developed a method for aligning images, which takes account of aliasing We use a parametric model for the power- and cross-spectra of the multivariate, stochastic process in continuous-space A side benefit is improved interpolation: de-aliasing using information from other bands 26

27 Tay bridge fields original cubic interpolation new result 27

28 PLAN 0. Introduction 1. Matching criteria 2. Distortion penalties 3. Algorithms 4. Summary 28

29 Question 2: Can we distinguish between species of fish? one species another species 29

30 We estimate the warp, f =(f 1,f 2 ), to minimise a penalised sum of squares P = Yx µ 2 x f(x) + λd(f,c) where D is a distortion penalty such that D(f,C) =0 f C > 0 f / C. For the commonly used thin-plate-spline penalty D = 2 i=1 2 2 j=1 k=1 C is the set of affine transformations 2 f i x j x k 2 dx 30

31 For shape comparisons, we wish to restrict C to Procrustes similarity transformations (S). We do this by modifying an existing (base) distortion penalty (D B ): D(f,S) = min g S D B(f g) If then D B (f) = 2 i=1 2 j=1 f i x j 2 dx D(f,S) = D B (f) 2n 1 n 2 ( α α 2 12), where the images are of size n 1 n 2 and α 11 = 1 f 1 + f 2 2n 1 n 2 x 1 x 2 α 12 = 1 f 1 f 2 2n 1 n 2 x 2 x 1 dx, dx. 31

32 Using D(f,S), all values of P for within species comparisons are less than those for between species comparisons: between within Whereas, if the thin-plate-spline penalty is used, within species values of P are no smaller than between species comparisons: P between within P (λ chosen to maximise studentised difference between sets of comparisons) 32

33 haddock 1 haddock 2 warping haddock 1 impersonating haddock 2 33

34 haddock 1 whiting 1 warping haddock 1 impersonating whiting 1 34

35 We formed average fish by warping into alignment 8 haddock and 8 whiting average haddock average whiting 35

36 Distances between average fish and 16 used in training plus 4 more (circled) 36

37 PLAN 0. Introduction 1. Matching criteria 2. Distortion penalties 3. Algorithms 4. Summary 37

38 Question 3: Are the E. coli samples already in database? Track markers Y µ We seek the warping function (f) and lane labels (l) that minimise C(f,l) = i j (Yij µ i+fij,l j ) 2 + λ 1 (f ij f i 1,j ) 2 + λ 2 (f ij f i,j 1 ) 2 38

39 Three Generalisations of DP A) Iterated DP (Leung et al, 2004) 0) Initialise f =0 1) For each column j in turn, use DP to minimise C(f,l) w.r.t. f.j and l j, given current values of all other f s and l s, i.e. minimise i Yij µ 2 i+fij,l j + λ1 (f ij f i 1,j ) 2 { + λ 2 (fij f i,j 1 ) 2 +(f ij f i,j+1 ) 2} where (f i f i 1 )=0.2, 0.4,...,1.8 2) Repeat (1) until convergence OR DP-IDP: replace step (0) by 0) For each column j in turn, use DP to minimise w.r.t. f.j and l j 2 Y ij µ i+fij,l + λ1 (f j ij f i 1,j ) 2 i 39

40 B) Stochastic IDP 0) Initialise f =0and T =10 5 1) Simulate e ijfl U[0,T] for all i, j, f, l Then, for each column j in turn, use DP to minimise i Yij µ 2 +eij,fij i+fij,l j,l j + λ 1 (f ij f i 1,j ) 2 { + λ 2 (fij f i,j 1 ) 2 +(f ij f i,j+1 ) 2} w.r.t. f.j and l j 2) Reduce T αt, and repeat (1) until f unchanged, with α such that {# iterations} 2 6,

41 C) Forward-Backwards (FB) sampler + simulated annealing 0) Initialise f =0and T =10 5 1) For each column j in turn, use FB (Eddy, 1995; Scott, 2002) to sample f.j and l j with probability e C(f,l)/T, given current values of all other f s and l s, i.e. sample from exp 1 T i (Y ij µ i+fij,lj ) 2 + λ1 (f ij f i 1,j ) 2 + λ 2 { (fij f i,j 1 ) 2 +(f ij f i,j+1 ) 2} 2) Reduce T αt, and repeat (1) until f unchanged 41

42 Gel 1 Gel 2 C(f,l) IDP DP IDP stoch IDP FB SA C(f,l) IDP DP IDP stoch IDP FB SA CPU (sec) CPU (sec) 42

43 Y f 1 ij,j, where f 1 is an inverse function in the first index, defined such that f f 1 ij,j i. gel 1 gel 2 gel 3 43

44 Re-ordered class 1 class 2 class 3 class 4 new class Arrowed columns visually identified as belonging to E. coli strains not in database 44

45 4. Summary We have considered some aspects of the broad subject of image warping: Fourier matching criteria null-set distortion penalties iterated dynamic programming algorithms With applications in: microscopy remote sensing digital photography bioinformatics For further details, see papers on 45

IMAGE WARPING APPLICATIONS. register multiple images (registration) correct system distortions. register image to map (rectification)

IMAGE WARPING APPLICATIONS. register multiple images (registration) correct system distortions. register image to map (rectification) APPLICATIONS IMAGE WARPING N correct system distortions Rectification of Landsat TM image register multiple images (registration) original register image to map (rectification) N fill Speedway rectified

More information

Time and Spatial Series and Transforms

Time and Spatial Series and Transforms Time and Spatial Series and Transforms Z- and Fourier transforms Gibbs' phenomenon Transforms and linear algebra Wavelet transforms Reading: Sheriff and Geldart, Chapter 15 Z-Transform Consider a digitized

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 254 Part V

More information

TRACKING and DETECTION in COMPUTER VISION

TRACKING and DETECTION in COMPUTER VISION Technischen Universität München Winter Semester 2013/2014 TRACKING and DETECTION in COMPUTER VISION Template tracking methods Slobodan Ilić Template based-tracking Energy-based methods The Lucas-Kanade(LK)

More information

Steven L. Scott. Presented by Ahmet Engin Ural

Steven L. Scott. Presented by Ahmet Engin Ural Steven L. Scott Presented by Ahmet Engin Ural Overview of HMM Evaluating likelihoods The Likelihood Recursion The Forward-Backward Recursion Sampling HMM DG and FB samplers Autocovariance of samplers Some

More information

Image preprocessing in spatial domain

Image preprocessing in spatial domain Image preprocessing in spatial domain Sampling theorem, aliasing, interpolation, geometrical transformations Revision: 1.4, dated: May 25, 2006 Tomáš Svoboda Czech Technical University, Faculty of Electrical

More information

Image preprocessing in spatial domain

Image preprocessing in spatial domain Image preprocessing in spatial domain Sampling theorem, aliasing, interpolation, geometrical transformations Revision: 1.3, dated: December 7, 2005 Tomáš Svoboda Czech Technical University, Faculty of

More information

Spatial Transformer Networks

Spatial Transformer Networks BIL722 - Deep Learning for Computer Vision Spatial Transformer Networks Max Jaderberg Andrew Zisserman Karen Simonyan Koray Kavukcuoglu Contents Introduction to Spatial Transformers Related Works Spatial

More information

DESIGN OF CMOS ANALOG INTEGRATED CIRCUITS

DESIGN OF CMOS ANALOG INTEGRATED CIRCUITS DESIGN OF CMOS ANALOG INEGRAED CIRCUIS Franco Maloberti Integrated Microsistems Laboratory University of Pavia Discrete ime Signal Processing F. Maloberti: Design of CMOS Analog Integrated Circuits Discrete

More information

University of Cambridge. MPhil in Computer Speech Text & Internet Technology. Module: Speech Processing II. Lecture 2: Hidden Markov Models I

University of Cambridge. MPhil in Computer Speech Text & Internet Technology. Module: Speech Processing II. Lecture 2: Hidden Markov Models I University of Cambridge MPhil in Computer Speech Text & Internet Technology Module: Speech Processing II Lecture 2: Hidden Markov Models I o o o o o 1 2 3 4 T 1 b 2 () a 12 2 a 3 a 4 5 34 a 23 b () b ()

More information

Cubic Splines MATH 375. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Cubic Splines

Cubic Splines MATH 375. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Cubic Splines Cubic Splines MATH 375 J. Robert Buchanan Department of Mathematics Fall 2006 Introduction Given data {(x 0, f(x 0 )), (x 1, f(x 1 )),...,(x n, f(x n ))} which we wish to interpolate using a polynomial...

More information

Strain analysis.

Strain analysis. Strain analysis ecalais@purdue.edu Plates vs. continuum Gordon and Stein, 1991 Most plates are rigid at the until know we have studied a purely discontinuous approach where plates are

More information

R-INLA. Sam Clifford Su-Yun Kang Jeff Hsieh. 30 August Bayesian Research and Analysis Group 1 / 14

R-INLA. Sam Clifford Su-Yun Kang Jeff Hsieh. 30 August Bayesian Research and Analysis Group 1 / 14 1 / 14 R-INLA Sam Clifford Su-Yun Kang Jeff Hsieh Bayesian Research and Analysis Group 30 August 2012 What is R-INLA? R package for Bayesian computation Integrated Nested Laplace Approximation MCMC free

More information

Engineering Part IIB: Module 4F10 Statistical Pattern Processing Lecture 5: Single Layer Perceptrons & Estimating Linear Classifiers

Engineering Part IIB: Module 4F10 Statistical Pattern Processing Lecture 5: Single Layer Perceptrons & Estimating Linear Classifiers Engineering Part IIB: Module 4F0 Statistical Pattern Processing Lecture 5: Single Layer Perceptrons & Estimating Linear Classifiers Phil Woodland: pcw@eng.cam.ac.uk Michaelmas 202 Engineering Part IIB:

More information

University of British Columbia Math 307, Final

University of British Columbia Math 307, Final 1 University of British Columbia Math 307, Final April 23, 2012 3.30-6.00pm Name: Student Number: Signature: Instructor: Instructions: 1. No notes, books or calculators are allowed. A MATLAB/Octave formula

More information

Learning Mixtures of Truncated Basis Functions from Data

Learning Mixtures of Truncated Basis Functions from Data Learning Mixtures of Truncated Basis Functions from Data Helge Langseth, Thomas D. Nielsen, and Antonio Salmerón PGM This work is supported by an Abel grant from Iceland, Liechtenstein, and Norway through

More information

Generative Models and Stochastic Algorithms for Population Average Estimation and Image Analysis

Generative Models and Stochastic Algorithms for Population Average Estimation and Image Analysis Generative Models and Stochastic Algorithms for Population Average Estimation and Image Analysis Stéphanie Allassonnière CIS, JHU July, 15th 28 Context : Computational Anatomy Context and motivations :

More information

Math Numerical Analysis Mid-Term Test Solutions

Math Numerical Analysis Mid-Term Test Solutions Math 400 - Numerical Analysis Mid-Term Test Solutions. Short Answers (a) A sufficient and necessary condition for the bisection method to find a root of f(x) on the interval [a,b] is f(a)f(b) < 0 or f(a)

More information

Markov Point Process for Multiple Object Detection

Markov Point Process for Multiple Object Detection Markov Point Process for Multiple Object Detection Xavier Descombes INRIA Sophia Antipolis Méditerranée 24/06/2013 Outline Motivation The different issues : - objects - reference measure - prior - data

More information

Nonparametric Drift Estimation for Stochastic Differential Equations

Nonparametric Drift Estimation for Stochastic Differential Equations Nonparametric Drift Estimation for Stochastic Differential Equations Gareth Roberts 1 Department of Statistics University of Warwick Brazilian Bayesian meeting, March 2010 Joint work with O. Papaspiliopoulos,

More information

Introduction to Probabilistic Graphical Models: Exercises

Introduction to Probabilistic Graphical Models: Exercises Introduction to Probabilistic Graphical Models: Exercises Cédric Archambeau Xerox Research Centre Europe cedric.archambeau@xrce.xerox.com Pascal Bootcamp Marseille, France, July 2010 Exercise 1: basics

More information

Augmented Reality VU Camera Registration. Prof. Vincent Lepetit

Augmented Reality VU Camera Registration. Prof. Vincent Lepetit Augmented Reality VU Camera Registration Prof. Vincent Lepetit Different Approaches to Vision-based 3D Tracking [From D. Wagner] [From Drummond PAMI02] [From Davison ICCV01] Consider natural features Consider

More information

Mark Gales October y (x) x 1. x 2 y (x) Inputs. Outputs. x d. y (x) Second Output layer layer. layer.

Mark Gales October y (x) x 1. x 2 y (x) Inputs. Outputs. x d. y (x) Second Output layer layer. layer. University of Cambridge Engineering Part IIB & EIST Part II Paper I0: Advanced Pattern Processing Handouts 4 & 5: Multi-Layer Perceptron: Introduction and Training x y (x) Inputs x 2 y (x) 2 Outputs x

More information

Learning from Data Logistic Regression

Learning from Data Logistic Regression Learning from Data Logistic Regression Copyright David Barber 2-24. Course lecturer: Amos Storkey a.storkey@ed.ac.uk Course page : http://www.anc.ed.ac.uk/ amos/lfd/ 2.9.8.7.6.5.4.3.2...2.3.4.5.6.7.8.9

More information

Applied Numerical Analysis Homework #3

Applied Numerical Analysis Homework #3 Applied Numerical Analysis Homework #3 Interpolation: Splines, Multiple dimensions, Radial Bases, Least-Squares Splines Question Consider a cubic spline interpolation of a set of data points, and derivatives

More information

Figure 1: Functions Viewed Optically. Math 425 Lecture 4. The Chain Rule

Figure 1: Functions Viewed Optically. Math 425 Lecture 4. The Chain Rule Figure 1: Functions Viewed Optically Math 425 Lecture 4 The Chain Rule The Chain Rule in the One Variable Case We explain the chain rule in the one variable case. To do this we view a function f as a impossible

More information

HMM: Parameter Estimation

HMM: Parameter Estimation I529: Machine Learning in Bioinformatics (Spring 2017) HMM: Parameter Estimation Yuzhen Ye School of Informatics and Computing Indiana University, Bloomington Spring 2017 Content Review HMM: three problems

More information

Doug Cochran. 3 October 2011

Doug Cochran. 3 October 2011 ) ) School Electrical, Computer, & Energy Arizona State University (Joint work with Stephen Howard and Bill Moran) 3 October 2011 Tenets ) The purpose sensor networks is to sense; i.e., to enable detection,

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 The Generative Model POV We think of the data as being generated from some process. We assume

More information

Jim Lambers MAT 460/560 Fall Semester Practice Final Exam

Jim Lambers MAT 460/560 Fall Semester Practice Final Exam Jim Lambers MAT 460/560 Fall Semester 2009-10 Practice Final Exam 1. Let f(x) = sin 2x + cos 2x. (a) Write down the 2nd Taylor polynomial P 2 (x) of f(x) centered around x 0 = 0. (b) Write down the corresponding

More information

HMM part 1. Dr Philip Jackson

HMM part 1. Dr Philip Jackson Centre for Vision Speech & Signal Processing University of Surrey, Guildford GU2 7XH. HMM part 1 Dr Philip Jackson Probability fundamentals Markov models State topology diagrams Hidden Markov models -

More information

Date: 1 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Date: 1 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. PH1140: Oscillations and Waves Name: Solutions Conference: Date: 1 April 2005 EXAM #1: D2005 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. (2) Show

More information

Morphing. Xiao-Ming Fu

Morphing. Xiao-Ming Fu Morphing Xiao-Ming Fu Outlines Definition Angle, length, area, volume, and curvature Example-Driven Deformations Based on Discrete Shells Affine transformation As-Rigid-As-Possible Shape Interpolation

More information

n 1 f n 1 c 1 n+1 = c 1 n $ c 1 n 1. After taking logs, this becomes

n 1 f n 1 c 1 n+1 = c 1 n $ c 1 n 1. After taking logs, this becomes Root finding: 1 a The points {x n+1, }, {x n, f n }, {x n 1, f n 1 } should be co-linear Say they lie on the line x + y = This gives the relations x n+1 + = x n +f n = x n 1 +f n 1 = Eliminating α and

More information

Automatic Control (MSc in Mechanical Engineering) Lecturer: Andrea Zanchettin Date: Student ID number... Signature...

Automatic Control (MSc in Mechanical Engineering) Lecturer: Andrea Zanchettin Date: Student ID number... Signature... Automatic Control (MSc in Mechanical Engineering) Lecturer: Andrea Zanchettin Date: 29..23 Given and family names......................solutions...................... Student ID number..........................

More information

Date: 31 March (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Date: 31 March (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. PH1140: Oscillations and Waves Name: SOLUTIONS AT END Conference: Date: 31 March 2005 EXAM #1: D2006 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

More information

Applied Numerical Analysis Quiz #2

Applied Numerical Analysis Quiz #2 Applied Numerical Analysis Quiz #2 Modules 3 and 4 Name: Student number: DO NOT OPEN UNTIL ASKED Instructions: Make sure you have a machine-readable answer form. Write your name and student number in the

More information

Neural Network Training

Neural Network Training Neural Network Training Sargur Srihari Topics in Network Training 0. Neural network parameters Probabilistic problem formulation Specifying the activation and error functions for Regression Binary classification

More information

Nonconservative Loading: Overview

Nonconservative Loading: Overview 35 Nonconservative Loading: Overview 35 Chapter 35: NONCONSERVATIVE LOADING: OVERVIEW TABLE OF CONTENTS Page 35. Introduction..................... 35 3 35.2 Sources...................... 35 3 35.3 Three

More information

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis. 26 October - 20 November, 2009

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis. 26 October - 20 November, 2009 2065-33 Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis 26 October - 20 November, 2009 Introduction to two-dimensional digital signal processing Fabio Mammano University

More information

Information geometry for bivariate distribution control

Information geometry for bivariate distribution control Information geometry for bivariate distribution control C.T.J.Dodson + Hong Wang Mathematics + Control Systems Centre, University of Manchester Institute of Science and Technology Optimal control of stochastic

More information

Random Eigenvalue Problems Revisited

Random Eigenvalue Problems Revisited Random Eigenvalue Problems Revisited S Adhikari Department of Aerospace Engineering, University of Bristol, Bristol, U.K. Email: S.Adhikari@bristol.ac.uk URL: http://www.aer.bris.ac.uk/contact/academic/adhikari/home.html

More information

Random Matrix Eigenvalue Problems in Probabilistic Structural Mechanics

Random Matrix Eigenvalue Problems in Probabilistic Structural Mechanics Random Matrix Eigenvalue Problems in Probabilistic Structural Mechanics S Adhikari Department of Aerospace Engineering, University of Bristol, Bristol, U.K. URL: http://www.aer.bris.ac.uk/contact/academic/adhikari/home.html

More information

Pairwise sequence alignment and pair hidden Markov models

Pairwise sequence alignment and pair hidden Markov models Pairwise sequence alignment and pair hidden Markov models Martin C. Frith April 13, 2012 ntroduction Pairwise alignment and pair hidden Markov models (phmms) are basic textbook fare [2]. However, there

More information

Linear Dynamical Systems

Linear Dynamical Systems Linear Dynamical Systems Sargur N. srihari@cedar.buffalo.edu Machine Learning Course: http://www.cedar.buffalo.edu/~srihari/cse574/index.html Two Models Described by Same Graph Latent variables Observations

More information

Bayesian Machine Learning - Lecture 7

Bayesian Machine Learning - Lecture 7 Bayesian Machine Learning - Lecture 7 Guido Sanguinetti Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh gsanguin@inf.ed.ac.uk March 4, 2015 Today s lecture 1

More information

Root Finding (and Optimisation)

Root Finding (and Optimisation) Root Finding (and Optimisation) M.Sc. in Mathematical Modelling & Scientific Computing, Practical Numerical Analysis Michaelmas Term 2018, Lecture 4 Root Finding The idea of root finding is simple we want

More information

Principles of Pattern Recognition. C. A. Murthy Machine Intelligence Unit Indian Statistical Institute Kolkata

Principles of Pattern Recognition. C. A. Murthy Machine Intelligence Unit Indian Statistical Institute Kolkata Principles of Pattern Recognition C. A. Murthy Machine Intelligence Unit Indian Statistical Institute Kolkata e-mail: murthy@isical.ac.in Pattern Recognition Measurement Space > Feature Space >Decision

More information

MIT (Spring 2014)

MIT (Spring 2014) 18.311 MIT (Spring 014) Rodolfo R. Rosales May 6, 014. Problem Set # 08. Due: Last day of lectures. IMPORTANT: Turn in the regular and the special problems stapled in two SEPARATE packages. Print your

More information

Geometric Modeling Summer Semester 2012 Linear Algebra & Function Spaces

Geometric Modeling Summer Semester 2012 Linear Algebra & Function Spaces Geometric Modeling Summer Semester 2012 Linear Algebra & Function Spaces (Recap) Announcement Room change: On Thursday, April 26th, room 024 is occupied. The lecture will be moved to room 021, E1 4 (the

More information

Machine Learning for Large-Scale Data Analysis and Decision Making A. Neural Networks Week #6

Machine Learning for Large-Scale Data Analysis and Decision Making A. Neural Networks Week #6 Machine Learning for Large-Scale Data Analysis and Decision Making 80-629-17A Neural Networks Week #6 Today Neural Networks A. Modeling B. Fitting C. Deep neural networks Today s material is (adapted)

More information

Towards a Bayesian model for Cyber Security

Towards a Bayesian model for Cyber Security Towards a Bayesian model for Cyber Security Mark Briers (mbriers@turing.ac.uk) Joint work with Henry Clausen and Prof. Niall Adams (Imperial College London) 27 September 2017 The Alan Turing Institute

More information

Orthogonality of hat functions in Sobolev spaces

Orthogonality of hat functions in Sobolev spaces 1 Orthogonality of hat functions in Sobolev spaces Ulrich Reif Technische Universität Darmstadt A Strobl, September 18, 27 2 3 Outline: Recap: quasi interpolation Recap: orthogonality of uniform B-splines

More information

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics STA414/2104 Lecture 11: Gaussian Processes Department of Statistics www.utstat.utoronto.ca Delivered by Mark Ebden with thanks to Russ Salakhutdinov Outline Gaussian Processes Exam review Course evaluations

More information

A Harmonic Balance Approach for Large-Scale Problems in Nonlinear Structural Dynamics

A Harmonic Balance Approach for Large-Scale Problems in Nonlinear Structural Dynamics A Harmonic Balance Approach for Large-Scale Problems in Nonlinear Structural Dynamics Allen R, PhD Candidate Peter J Attar, Assistant Professor University of Oklahoma Aerospace and Mechanical Engineering

More information

10. Multi-objective least squares

10. Multi-objective least squares L Vandenberghe ECE133A (Winter 2018) 10 Multi-objective least squares multi-objective least squares regularized data fitting control estimation and inversion 10-1 Multi-objective least squares we have

More information

MATH4406 Assignment 5

MATH4406 Assignment 5 MATH4406 Assignment 5 Patrick Laub (ID: 42051392) October 7, 2014 1 The machine replacement model 1.1 Real-world motivation Consider the machine to be the entire world. Over time the creator has running

More information

p(d θ ) l(θ ) 1.2 x x x

p(d θ ) l(θ ) 1.2 x x x p(d θ ).2 x 0-7 0.8 x 0-7 0.4 x 0-7 l(θ ) -20-40 -60-80 -00 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ θ x FIGURE 3.. The top graph shows several training points in one dimension, known or assumed to

More information

Machine Learning - MT & 5. Basis Expansion, Regularization, Validation

Machine Learning - MT & 5. Basis Expansion, Regularization, Validation Machine Learning - MT 2016 4 & 5. Basis Expansion, Regularization, Validation Varun Kanade University of Oxford October 19 & 24, 2016 Outline Basis function expansion to capture non-linear relationships

More information

Introduction to PDEs and Numerical Methods: Exam 1

Introduction to PDEs and Numerical Methods: Exam 1 Prof Dr Thomas Sonar, Institute of Analysis Winter Semester 2003/4 17122003 Introduction to PDEs and Numerical Methods: Exam 1 To obtain full points explain your solutions thoroughly and self-consistently

More information

Markov Chains and Hidden Markov Models

Markov Chains and Hidden Markov Models Chapter 1 Markov Chains and Hidden Markov Models In this chapter, we will introduce the concept of Markov chains, and show how Markov chains can be used to model signals using structures such as hidden

More information

Matlab Sheet 3. Plotting in Matlab

Matlab Sheet 3. Plotting in Matlab Matlab Sheet 3 Plotting in Matlab 1. a. Estimate the roots of the following equation by plotting the equation. x 3 3x 2 + 5x sin ( πx 4 5π 4 ) + 3 = 0 b. Use the estimates found in part a to find the roots

More information

Recent Developments in Numerical Methods for 4d-Var

Recent Developments in Numerical Methods for 4d-Var Recent Developments in Numerical Methods for 4d-Var Mike Fisher Slide 1 Recent Developments Numerical Methods 4d-Var Slide 2 Outline Non-orthogonal wavelets on the sphere: - Motivation: Covariance Modelling

More information

Numerical methods Revised March 2001

Numerical methods Revised March 2001 Revised March 00 By R. W. Riddaway (revised by M. Hortal) Table of contents. Some introductory ideas. Introduction. Classification of PDE's.3 Existence and uniqueness.4 Discretization.5 Convergence, consistency

More information

Video and Motion Analysis Computer Vision Carnegie Mellon University (Kris Kitani)

Video and Motion Analysis Computer Vision Carnegie Mellon University (Kris Kitani) Video and Motion Analysis 16-385 Computer Vision Carnegie Mellon University (Kris Kitani) Optical flow used for feature tracking on a drone Interpolated optical flow used for super slow-mo optical flow

More information

FOURIER ANALYSIS using Python

FOURIER ANALYSIS using Python (version September 5) FOURIER ANALYSIS using Python his practical introduces the following: Fourier analysis of both periodic and non-periodic signals (Fourier series, Fourier transform, discrete Fourier

More information

Introduction - Motivation. Many phenomena (physical, chemical, biological, etc.) are model by differential equations. f f(x + h) f(x) (x) = lim

Introduction - Motivation. Many phenomena (physical, chemical, biological, etc.) are model by differential equations. f f(x + h) f(x) (x) = lim Introduction - Motivation Many phenomena (physical, chemical, biological, etc.) are model by differential equations. Recall the definition of the derivative of f(x) f f(x + h) f(x) (x) = lim. h 0 h Its

More information

Chapter 3. Riemannian Manifolds - I. The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves

Chapter 3. Riemannian Manifolds - I. The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves Chapter 3 Riemannian Manifolds - I The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves embedded in Riemannian manifolds. A Riemannian manifold is an abstraction

More information

MS 3011 Exercises. December 11, 2013

MS 3011 Exercises. December 11, 2013 MS 3011 Exercises December 11, 2013 The exercises are divided into (A) easy (B) medium and (C) hard. If you are particularly interested I also have some projects at the end which will deepen your understanding

More information

A Variable-Step Double-Integration Multi-Step Integrator

A Variable-Step Double-Integration Multi-Step Integrator A Variable-Step Double-Integration Multi-Step Integrator Matt Berry Virginia Tech Liam Healy Naval Research Laboratory 1 Overview Background Motivation Derivation Preliminary Results Future Work 2 Background

More information

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision The Particle Filter Non-parametric implementation of Bayes filter Represents the belief (posterior) random state samples. by a set of This representation is approximate. Can represent distributions that

More information

Bayesian Aggregation for Extraordinarily Large Dataset

Bayesian Aggregation for Extraordinarily Large Dataset Bayesian Aggregation for Extraordinarily Large Dataset Guang Cheng 1 Department of Statistics Purdue University www.science.purdue.edu/bigdata Department Seminar Statistics@LSE May 19, 2017 1 A Joint Work

More information

Some general observations.

Some general observations. Modeling and analyzing data from computer experiments. Some general observations. 1. For simplicity, I assume that all factors (inputs) x1, x2,, xd are quantitative. 2. Because the code always produces

More information

Tensor Transformations and the Maximum Shear Stress. (Draft 1, 1/28/07)

Tensor Transformations and the Maximum Shear Stress. (Draft 1, 1/28/07) Tensor Transformations and the Maximum Shear Stress (Draft 1, 1/28/07) Introduction The order of a tensor is the number of subscripts it has. For each subscript it is multiplied by a direction cosine array

More information

Affine invariant Fourier descriptors

Affine invariant Fourier descriptors Affine invariant Fourier descriptors Sought: a generalization of the previously introduced similarityinvariant Fourier descriptors H. Burkhardt, Institut für Informatik, Universität Freiburg ME-II, Kap.

More information

Active Appearances. Statistical Appearance Models

Active Appearances. Statistical Appearance Models Active Appearances The material following is based on T.F. Cootes, G.J. Edwards, and C.J. Taylor, Active Appearance Models, Proc. Fifth European Conf. Computer Vision, H. Burkhardt and B. Neumann, eds.,

More information

Analysing geoadditive regression data: a mixed model approach

Analysing geoadditive regression data: a mixed model approach Analysing geoadditive regression data: a mixed model approach Institut für Statistik, Ludwig-Maximilians-Universität München Joint work with Ludwig Fahrmeir & Stefan Lang 25.11.2005 Spatio-temporal regression

More information

Artificial Neural Networks. MGS Lecture 2

Artificial Neural Networks. MGS Lecture 2 Artificial Neural Networks MGS 2018 - Lecture 2 OVERVIEW Biological Neural Networks Cell Topology: Input, Output, and Hidden Layers Functional description Cost functions Training ANNs Back-Propagation

More information

6.896 Quantum Complexity Theory October 2, Lecture 9

6.896 Quantum Complexity Theory October 2, Lecture 9 6896 Quantum Complexity heory October, 008 Lecturer: Scott Aaronson Lecture 9 In this class we discuss Grover s search algorithm as well as the BBBV proof that it is optimal 1 Grover s Algorithm 11 Setup

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Dr Philip Jackson Centre for Vision, Speech & Signal Processing University of Surrey, UK 1 3 2 http://www.ee.surrey.ac.uk/personal/p.jackson/isspr/ Outline 1. Recognizing patterns

More information

Nonparametric Bayes Density Estimation and Regression with High Dimensional Data

Nonparametric Bayes Density Estimation and Regression with High Dimensional Data Nonparametric Bayes Density Estimation and Regression with High Dimensional Data Abhishek Bhattacharya, Garritt Page Department of Statistics, Duke University Joint work with Prof. D.Dunson September 2010

More information

Machine Learning, Fall 2009: Midterm

Machine Learning, Fall 2009: Midterm 10-601 Machine Learning, Fall 009: Midterm Monday, November nd hours 1. Personal info: Name: Andrew account: E-mail address:. You are permitted two pages of notes and a calculator. Please turn off all

More information

Human Mobility Pattern Prediction Algorithm using Mobile Device Location and Time Data

Human Mobility Pattern Prediction Algorithm using Mobile Device Location and Time Data Human Mobility Pattern Prediction Algorithm using Mobile Device Location and Time Data 0. Notations Myungjun Choi, Yonghyun Ro, Han Lee N = number of states in the model T = length of observation sequence

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 12: Gaussian Belief Propagation, State Space Models and Kalman Filters Guest Kalman Filter Lecture by

More information

INTRODUCTION TO COMPUTATIONAL MATHEMATICS

INTRODUCTION TO COMPUTATIONAL MATHEMATICS INTRODUCTION TO COMPUTATIONAL MATHEMATICS Course Notes for CM 271 / AMATH 341 / CS 371 Fall 2007 Instructor: Prof. Justin Wan School of Computer Science University of Waterloo Course notes by Prof. Hans

More information

Linearization and Extreme Values of Functions

Linearization and Extreme Values of Functions Linearization and Extreme Values of Functions 3.10 Linearization and Differentials Linear or Tangent Line Approximations of function values Equation of tangent to y = f(x) at (a, f(a)): Tangent line approximation

More information

KINEMATICS OF CONTINUA

KINEMATICS OF CONTINUA KINEMATICS OF CONTINUA Introduction Deformation of a continuum Configurations of a continuum Deformation mapping Descriptions of motion Material time derivative Velocity and acceleration Transformation

More information

Gaussian with mean ( µ ) and standard deviation ( σ)

Gaussian with mean ( µ ) and standard deviation ( σ) Slide from Pieter Abbeel Gaussian with mean ( µ ) and standard deviation ( σ) 10/6/16 CSE-571: Robotics X ~ N( µ, σ ) Y ~ N( aµ + b, a σ ) Y = ax + b + + + + 1 1 1 1 1 1 1 1 1 1, ~ ) ( ) ( ), ( ~ ), (

More information

Master s Written Examination

Master s Written Examination Master s Written Examination Option: Statistics and Probability Spring 05 Full points may be obtained for correct answers to eight questions Each numbered question (which may have several parts) is worth

More information

Sequential Importance Sampling for Rare Event Estimation with Computer Experiments

Sequential Importance Sampling for Rare Event Estimation with Computer Experiments Sequential Importance Sampling for Rare Event Estimation with Computer Experiments Brian Williams and Rick Picard LA-UR-12-22467 Statistical Sciences Group, Los Alamos National Laboratory Abstract Importance

More information

3.1 Scott s March Madness

3.1 Scott s March Madness 3.1 Scott s March Madness A Develop Understanding Task Each year, Scott participates in the Macho March promotion. The goal of Macho March is to raise money for charity by finding sponsors to donate based

More information

20.3. Further Laplace Transforms. Introduction. Prerequisites. Learning Outcomes

20.3. Further Laplace Transforms. Introduction. Prerequisites. Learning Outcomes Further Laplace Transforms 2.3 Introduction In this Section we introduce the second shift theorem which simplifies the determination of Laplace and inverse Laplace transforms in some complicated cases.

More information

Exercise: concepts from chapter 5

Exercise: concepts from chapter 5 Reading: Fundamentals of Structural Geology, Ch 5 1) Study the oöids depicted in Figure 1a and 1b. Figure 1a Figure 1b Figure 1. Nearly undeformed (1a) and significantly deformed (1b) oöids with spherulitic

More information

Examination paper for TMA4122/TMA4123/TMA4125/TMA4130 Matematikk 4M/N

Examination paper for TMA4122/TMA4123/TMA4125/TMA4130 Matematikk 4M/N Department of Mathematical Sciences Examination paper for TMA4122/TMA4123/TMA4125/TMA4130 Matematikk 4M/N Academic contact during examination: Markus Grasmair Phone: 97 58 04 35 Code C): Basic calculator.

More information

Outline DP paradigm Discrete optimisation Viterbi algorithm DP: 0 1 Knapsack. Dynamic Programming. Georgy Gimel farb

Outline DP paradigm Discrete optimisation Viterbi algorithm DP: 0 1 Knapsack. Dynamic Programming. Georgy Gimel farb Outline DP paradigm Discrete optimisation Viterbi algorithm DP: Knapsack Dynamic Programming Georgy Gimel farb (with basic contributions by Michael J. Dinneen) COMPSCI 69 Computational Science / Outline

More information

Fourier Series Example

Fourier Series Example Fourier Series Example Let us compute the Fourier series for the function on the interval [ π,π]. f(x) = x f is an odd function, so the a n are zero, and thus the Fourier series will be of the form f(x)

More information

An example of panel solution in the elastic-plastic regime

An example of panel solution in the elastic-plastic regime An example of panel solution in the elastic-plastic regime Piotr Mika May, 2014 2013-05-08 1. Example solution of the panel with ABAQUS program The purpose is to analyze the elastic-plastic panel. The

More information

D.S.G. POLLOCK: BRIEF NOTES

D.S.G. POLLOCK: BRIEF NOTES BIVARIATE SPECTRAL ANALYSIS Let x(t) and y(t) be two stationary stochastic processes with E{x(t)} = E{y(t)} =. These processes have the following spectral representations: (1) x(t) = y(t) = {cos(ωt)da

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenourseWare http://ocw.mit.edu 18.02 Multivariable alculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.02 Lecture 21. Test for

More information

11.6. Parametric Differentiation. Introduction. Prerequisites. Learning Outcomes

11.6. Parametric Differentiation. Introduction. Prerequisites. Learning Outcomes Parametric Differentiation 11.6 Introduction Sometimes the equation of a curve is not be given in Cartesian form y f(x) but in parametric form: x h(t), y g(t). In this Section we see how to calculate the

More information