Nonparametric Bayes Density Estimation and Regression with High Dimensional Data

Size: px
Start display at page:

Download "Nonparametric Bayes Density Estimation and Regression with High Dimensional Data"

Transcription

1 Nonparametric Bayes Density Estimation and Regression with High Dimensional Data Abhishek Bhattacharya, Garritt Page Department of Statistics, Duke University Joint work with Prof. D.Dunson September 2010

2 Contents 1 Background & Motivation 2 Density Model 3 Regression and Classification 4 Further Work 5 Numerical Examples

3 Background & Motivation Density Estimation on High Dimensional Space A common approach for modelling the distribution of multivariate data is to use an infinite mixture density. Results in great difficulty in posterior computations when the data dimension is huge. The reason being that, even in case of heavy tailed distributions, most of the variability is along a few directions. That is why when fitting an infinite mixture density model, we end up with a finite number of clusters, say k many, which is much smaller than the data dimension m.

4 Background & Motivation Our Approach Instead we model the projection of the data on to some k dimensional (affine) subspace using a np model and fit some parametric distribution on the remaining part such as mean 0 Gaussian. This amounts to fitting an infinite mixture model but with cluster locations drawn from some k dimensional affine subspace S. Then by setting a prior on the subsapce and its dimension, we can approximate any density on R m.

5 Background & Motivation NP Regression & Classification A common approach for regression/classification is modelling the joint using a np mixture density. But when feature dimension m is too high compared to that of the response, again lot of problems - the model fails to capture the association between x & y and instead focuses on getting the marginal of x. To address such situations, many alternatives exist, such as directly model the conditional of y given x, assuming it to depend on a few selected x-coordinates (Chung and Dunson 2009) or assuming it to be stochastic process depending on the projection P S (x) of x on to some smaller, say k dimensional (linear) subspace S (Tokdar et. al. 2010).

6 Background & Motivation Our Approach We instead propose to model the joint of y and P S (x) using a np mixture while let the remaining x component have an independent parametric distribution such as Gaussian (not mean 0). Our approach is more flexible than Chung and Dunson(2009) and lot easier to implement than Tokdar et.al.(2010). Further by setting a prior on k and S, we can flexibly model the true conditional whatever it is.

7 Density Model X f (x; Θ) = R k N m (x; φ(µ), Σ)P(dµ) φ(µ) = Uµ + θ, U in the Stiefel manifold V k,m = {U R m k : U U = I k }, θ R m, U θ = 0. Σ = UΣ 1 U + σ 2 (I UU ), Σ 1 M + (k), σ > 0. Parameters Θ = (k, U, θ, Σ 1, σ, P) Express θ = µ 0 U k+1, with µ 0 = θ and the parameter (U, U k+1 ) V k+1,m Fit some full support prior such as Dirichlet Process (DP) on P, full support parametric distribution on the Stiefel manifold for (U, U k+1 ).

8 Density Model Model Interpretation There is a affine subspace S = {UU y + θ : y R m } of dimension k << m s.t. orthogonal projection UU X + θ of X on to S which can be given isometric coordinates U X follows U X N k (.; µ, Σ 1 )P(dµ) R k while the residuls have mean zero and their coordinates follow V X N m k (.; (µ 0, 0,..., 0), σ 2 I m k ) with V U = 0, V V = I m k, V 1 = U k+1.

9 Density Model The first k principal coordinates of X live on S if σ 2 eigen values of Σ 1 but can be true even more generally. σ 2 small also means that the data is concentrated around S. Any density on R m in support of f (., Θ) if the prior on k includes m in its support & a full support prior such as DP used for P.

10 Regression and Classification The feature Y is low dimensional, say in R l or discrete. Want to explain Y flexibly through k many important coordinates of X which are linear transformations of all m X coordinates. When Y continuous in R l, model is (U X, Y ) N k (; µ, Σ 1 )N l (; ν, Σ Y )P(dµdν) R k R l independent of V X N m k (µ 1, σ 2 I m k )

11 Regression and Classification Regression Model Hence (X, Y ) f (x, y; Θ) = R k R l N m (x; φ(µ), Σ X ) N l (y; ν, Σ Y ) P(dµdν). φ(µ) = Uµ + θ, µ R k lives on S - an affine subspace of dim. k, Σ X = UΣ 1 U + σ 2 (I m UU ). Parameters Θ = (k, U, θ, Σ 1, σ, Σ Y, P). Then V µ 1 = θ which means θ R m satisfies U θ = 0.

12 Regression and Classification Conditional Then conditional of Y given X depends on its projection on to L = {UU x : x R m } and is f (y x, Θ) = R Nk (U x;µ,σ 1 )N l (y;ν,σ Y )P(dµdν) R Nk (U x;µ,σ 1 )P(dµdν) θ, σ are like nuisance parameters - used in explaining X-marginal. θ 0 implies that the projection on to L is not centered at 0 - thereby adding more flexibility.

13 Regression and Classification Classification Model When Y {1,..., c} (X, Y ) f (x, y; Θ) = R k S c 1 N m (x; Uµ + θ, Σ X ) ν y P(dµdν) with S c 1 = {ν [0, 1] c : ν j = 1}, Σ X = UΣ 1 U + σ 2 (I m UU ). Then conditional of Y given X depends on its projection on to the linear subspace L = {UU x : x R m }. The term θ which can be chosen wlog to be perpendicular to U implies that the projection on to L is not centered at 0 - thereby adding more flexibility.

14 Further Work Our next target will be to extend this method of inference from Euclidean spaces (R m ) to more general manifolds such as sphere or spaces of shapes. Often very high dimensional data arises when analysising shapes of images with lot of coordinates. Also in case of R m, we will like to prove theoretically that our method does better than existing ones, such as faster rates of convergence to the true model. We also focus on using projections on more general sub-manifolds instead of just affine subspaces. To do so, one simple approach will be to mix across U instead of just µ resulting in assuming that the cluster locations are drawn from a union of subspaces, i.e. on some k-dimensional polygon. We can also fix a np prior on φ(.) such as GP.

15 Numerical Examples Computation We employ the following priors (these choices were motivated to keep things simple initially) P DP(α = 1, P 0 = N(mn, s 2 I)) (U, U k+1 ) = U FB(A, B, C) etr(a U + CU BU ) (FB denotes the Fisher-Bingham distribution on the Stiefel manifold) µ 0 TN(m 0, s 2 0, 0, ) p(k) = p k for k = 1,..., m Σ 1 1 Wish(df, Q) σ 2 Gam(a, b)

16 Numerical Examples Sampling from [U ] [U ] FB(A, B, C ) with A = [( B = C = 1 2 n i=1 n i=1 x i µ S i )Σ 1 1 σ 2 µ 0 ( (x i x i ) [ (σ 2 I k Σ 1 1 ) n x i )] Sampling from [U ] requires one to obtain random draws from the Stiefel manifold. ]. i=1

17 Numerical Examples Sampling from [U ] We use the ideas from Hoff (2009) and provide brief details of what we did for the case when k is unknown. In the unknown k case we work under the condition that Σ 1 = σ 2 I k. Under this condition [U ] etr(a U ) R = exp(a [,r] U [,r] ) r=1 A Gibbs sampler can be employed to sample the columns of U. [U [,r] U [, r] ] exp(a [,r] U [,r] )I [U [,r] U [, r] =0]

18 Numerical Examples Sampling from [U ] Let H r be an orthonormal basis for the null space of U [, r]. Then for z V 1,m k+1 s.t. U [,r] = H r z and H r U [,r] = z and then [U [,r] U [, r] ] exp((a [,r]h r ) z)i [z z=1] Which is a von Mises-Fisher. Thus one can sample U by sampling columns conditioned on others by first sampling z from vmf(a [,r] H r ) and then setting U [,r] = H r z

19 Numerical Examples Sampling from [k ] [k ] pr(k) exp{ 1 2σ 2 ( µ Si(k) µ Si(k) 2 tr(u (k) µ Si(k) x i ) 2µ 0U k+1 xi )} for k = 1,..., m This could get prohibitively expensive if m is large Two approaches to address this are Truncate the distribution of k Introduce a slice sampling type variable u UN(0, 1) and replace pr(k) with I [u<pr(k)]. This means that k will be drawn from the set {k : pr(k) > u}

20 Numerical Examples Synthetic Data Example We desire to see how the methodology performs in density estimation. We Generate 51 observations from x 3 N m (µ k, σ 2 I m ) k=1 50 observations used to fit model. Evaluate the value of the likelilhood with the other observation set σ 2 = 0.1 set µ k to a vector of 0 s save for a 1 in the kth location

21 Numerical Examples Synthetic Data Example For these data we have the following µ 0 = 1/ 3 U k+1 = ( 3/3, 3/3, 3/3, 0, 0,... 0) ( 1/ 2 1/ U = 2/ 6 2/ 6 3/ )

22 Numerical Examples Posterior estimate of U and S Compute Ū (the usual mean) using the T MCMC iterates of U Set Û = Ū(Ū Ū) 1/2 V m,m. The estimate for S would then be S = {y R k : Û (ˆk) y + ˆµ 0Û k+1 } µ 0 σ 2 µ 0 U k (0.54, 0.32, 0.46)

23 Numerical Examples Competitors? We also fit the generated data and evaluated the likelihood for the observation held out for the following Our model with k = 2 Finite mixture model with fixed k = 3 Infinite mixture model Gaussian Varying k fixed k = 2 FinM k = 3 InfM Normal

24 Numerical Examples What is left to do? Lots!! Perform a full blown simulation study generating multiple data sets Consider different competitors (more sophisticated methods) Haven t really touched regression/classification (which is much more interesting than density estimation in my opinion) Improve on algorithms to make them more efficient (we want to make sure the methodology scales up well).

Classification via Bayesian Nonparametric Learning of Affine Subspaces

Classification via Bayesian Nonparametric Learning of Affine Subspaces Classification via Bayesian Nonparametric Learning of Affine Subspaces Garritt Page Departamento de Estadística Pontificia Universidad Católica de Chile page@mat.puc.cl David Dunson Department of Statistical

More information

NONPARAMETRIC BAYESIAN INFERENCE ON PLANAR SHAPES

NONPARAMETRIC BAYESIAN INFERENCE ON PLANAR SHAPES NONPARAMETRIC BAYESIAN INFERENCE ON PLANAR SHAPES Author: Abhishek Bhattacharya Coauthor: David Dunson Department of Statistical Science, Duke University 7 th Workshop on Bayesian Nonparametrics Collegio

More information

Nonparametric Bayes Inference on Manifolds with Applications

Nonparametric Bayes Inference on Manifolds with Applications Nonparametric Bayes Inference on Manifolds with Applications Abhishek Bhattacharya Indian Statistical Institute Based on the book Nonparametric Statistics On Manifolds With Applications To Shape Spaces

More information

Fast Approximate MAP Inference for Bayesian Nonparametrics

Fast Approximate MAP Inference for Bayesian Nonparametrics Fast Approximate MAP Inference for Bayesian Nonparametrics Y. Raykov A. Boukouvalas M.A. Little Department of Mathematics Aston University 10th Conference on Bayesian Nonparametrics, 2015 1 Iterated Conditional

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Bayesian nonparametrics

Bayesian nonparametrics Bayesian nonparametrics 1 Some preliminaries 1.1 de Finetti s theorem We will start our discussion with this foundational theorem. We will assume throughout all variables are defined on the probability

More information

Supervised Dimension Reduction:

Supervised Dimension Reduction: Supervised Dimension Reduction: A Tale of Two Manifolds S. Mukherjee, K. Mao, F. Liang, Q. Wu, M. Maggioni, D-X. Zhou Department of Statistical Science Institute for Genome Sciences & Policy Department

More information

Computer Emulation With Density Estimation

Computer Emulation With Density Estimation Computer Emulation With Density Estimation Jake Coleman, Robert Wolpert May 8, 2017 Jake Coleman, Robert Wolpert Emulation and Density Estimation May 8, 2017 1 / 17 Computer Emulation Motivation Expensive

More information

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions Pattern Recognition and Machine Learning Chapter 2: Probability Distributions Cécile Amblard Alex Kläser Jakob Verbeek October 11, 27 Probability Distributions: General Density Estimation: given a finite

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS Parametric Distributions Basic building blocks: Need to determine given Representation: or? Recall Curve Fitting Binary Variables

More information

Bayesian non-parametric model to longitudinally predict churn

Bayesian non-parametric model to longitudinally predict churn Bayesian non-parametric model to longitudinally predict churn Bruno Scarpa Università di Padova Conference of European Statistics Stakeholders Methodologists, Producers and Users of European Statistics

More information

Approximating high-dimensional posteriors with nuisance parameters via integrated rotated Gaussian approximation (IRGA)

Approximating high-dimensional posteriors with nuisance parameters via integrated rotated Gaussian approximation (IRGA) Approximating high-dimensional posteriors with nuisance parameters via integrated rotated Gaussian approximation (IRGA) Willem van den Boom Department of Statistics and Applied Probability National University

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

Bayesian Sparse Linear Regression with Unknown Symmetric Error

Bayesian Sparse Linear Regression with Unknown Symmetric Error Bayesian Sparse Linear Regression with Unknown Symmetric Error Minwoo Chae 1 Joint work with Lizhen Lin 2 David B. Dunson 3 1 Department of Mathematics, The University of Texas at Austin 2 Department of

More information

Nonparametric Bayes tensor factorizations for big data

Nonparametric Bayes tensor factorizations for big data Nonparametric Bayes tensor factorizations for big data David Dunson Department of Statistical Science, Duke University Funded from NIH R01-ES017240, R01-ES017436 & DARPA N66001-09-C-2082 Motivation Conditional

More information

A Fully Nonparametric Modeling Approach to. BNP Binary Regression

A Fully Nonparametric Modeling Approach to. BNP Binary Regression A Fully Nonparametric Modeling Approach to Binary Regression Maria Department of Applied Mathematics and Statistics University of California, Santa Cruz SBIES, April 27-28, 2012 Outline 1 2 3 Simulation

More information

Motivation Scale Mixutres of Normals Finite Gaussian Mixtures Skew-Normal Models. Mixture Models. Econ 690. Purdue University

Motivation Scale Mixutres of Normals Finite Gaussian Mixtures Skew-Normal Models. Mixture Models. Econ 690. Purdue University Econ 690 Purdue University In virtually all of the previous lectures, our models have made use of normality assumptions. From a computational point of view, the reason for this assumption is clear: combined

More information

Scaling up Bayesian Inference

Scaling up Bayesian Inference Scaling up Bayesian Inference David Dunson Departments of Statistical Science, Mathematics & ECE, Duke University May 1, 2017 Outline Motivation & background EP-MCMC amcmc Discussion Motivation & background

More information

STAT Advanced Bayesian Inference

STAT Advanced Bayesian Inference 1 / 32 STAT 625 - Advanced Bayesian Inference Meng Li Department of Statistics Jan 23, 218 The Dirichlet distribution 2 / 32 θ Dirichlet(a 1,...,a k ) with density p(θ 1,θ 2,...,θ k ) = k j=1 Γ(a j) Γ(

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Bayes methods for categorical data. April 25, 2017

Bayes methods for categorical data. April 25, 2017 Bayes methods for categorical data April 25, 2017 Motivation for joint probability models Increasing interest in high-dimensional data in broad applications Focus may be on prediction, variable selection,

More information

Flexible Regression Modeling using Bayesian Nonparametric Mixtures

Flexible Regression Modeling using Bayesian Nonparametric Mixtures Flexible Regression Modeling using Bayesian Nonparametric Mixtures Athanasios Kottas Department of Applied Mathematics and Statistics University of California, Santa Cruz Department of Statistics Brigham

More information

ICML Scalable Bayesian Inference on Point processes. with Gaussian Processes. Yves-Laurent Kom Samo & Stephen Roberts

ICML Scalable Bayesian Inference on Point processes. with Gaussian Processes. Yves-Laurent Kom Samo & Stephen Roberts ICML 2015 Scalable Nonparametric Bayesian Inference on Point Processes with Gaussian Processes Machine Learning Research Group and Oxford-Man Institute University of Oxford July 8, 2015 Point Processes

More information

Contents. Part I: Fundamentals of Bayesian Inference 1

Contents. Part I: Fundamentals of Bayesian Inference 1 Contents Preface xiii Part I: Fundamentals of Bayesian Inference 1 1 Probability and inference 3 1.1 The three steps of Bayesian data analysis 3 1.2 General notation for statistical inference 4 1.3 Bayesian

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Spatial Normalized Gamma Process

Spatial Normalized Gamma Process Spatial Normalized Gamma Process Vinayak Rao Yee Whye Teh Presented at NIPS 2009 Discussion and Slides by Eric Wang June 23, 2010 Outline Introduction Motivation The Gamma Process Spatial Normalized Gamma

More information

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution Outline A short review on Bayesian analysis. Binomial, Multinomial, Normal, Beta, Dirichlet Posterior mean, MAP, credible interval, posterior distribution Gibbs sampling Revisit the Gaussian mixture model

More information

Partial factor modeling: predictor-dependent shrinkage for linear regression

Partial factor modeling: predictor-dependent shrinkage for linear regression modeling: predictor-dependent shrinkage for linear Richard Hahn, Carlos Carvalho and Sayan Mukherjee JASA 2013 Review by Esther Salazar Duke University December, 2013 Factor framework The factor framework

More information

Small-variance Asymptotics for Dirichlet Process Mixtures of SVMs

Small-variance Asymptotics for Dirichlet Process Mixtures of SVMs Small-variance Asymptotics for Dirichlet Process Mixtures of SVMs Yining Wang Jun Zhu Tsinghua University July, 2014 Y. Wang and J. Zhu (Tsinghua University) Max-Margin DP-means July, 2014 1 / 25 Outline

More information

Foundations of Nonparametric Bayesian Methods

Foundations of Nonparametric Bayesian Methods 1 / 27 Foundations of Nonparametric Bayesian Methods Part II: Models on the Simplex Peter Orbanz http://mlg.eng.cam.ac.uk/porbanz/npb-tutorial.html 2 / 27 Tutorial Overview Part I: Basics Part II: Models

More information

19 : Bayesian Nonparametrics: The Indian Buffet Process. 1 Latent Variable Models and the Indian Buffet Process

19 : Bayesian Nonparametrics: The Indian Buffet Process. 1 Latent Variable Models and the Indian Buffet Process 10-708: Probabilistic Graphical Models, Spring 2015 19 : Bayesian Nonparametrics: The Indian Buffet Process Lecturer: Avinava Dubey Scribes: Rishav Das, Adam Brodie, and Hemank Lamba 1 Latent Variable

More information

Bayesian Nonparametrics: Dirichlet Process

Bayesian Nonparametrics: Dirichlet Process Bayesian Nonparametrics: Dirichlet Process Yee Whye Teh Gatsby Computational Neuroscience Unit, UCL http://www.gatsby.ucl.ac.uk/~ywteh/teaching/npbayes2012 Dirichlet Process Cornerstone of modern Bayesian

More information

Likelihood-free MCMC

Likelihood-free MCMC Bayesian inference for stable distributions with applications in finance Department of Mathematics University of Leicester September 2, 2011 MSc project final presentation Outline 1 2 3 4 Classical Monte

More information

Default Priors and Effcient Posterior Computation in Bayesian

Default Priors and Effcient Posterior Computation in Bayesian Default Priors and Effcient Posterior Computation in Bayesian Factor Analysis January 16, 2010 Presented by Eric Wang, Duke University Background and Motivation A Brief Review of Parameter Expansion Literature

More information

Introduction. Chapter 1

Introduction. Chapter 1 Chapter 1 Introduction In this book we will be concerned with supervised learning, which is the problem of learning input-output mappings from empirical data (the training dataset). Depending on the characteristics

More information

A Process over all Stationary Covariance Kernels

A Process over all Stationary Covariance Kernels A Process over all Stationary Covariance Kernels Andrew Gordon Wilson June 9, 0 Abstract I define a process over all stationary covariance kernels. I show how one might be able to perform inference that

More information

Bayesian Nonparametric Regression through Mixture Models

Bayesian Nonparametric Regression through Mixture Models Bayesian Nonparametric Regression through Mixture Models Sara Wade Bocconi University Advisor: Sonia Petrone October 7, 2013 Outline 1 Introduction 2 Enriched Dirichlet Process 3 EDP Mixtures for Regression

More information

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu Lecture: Gaussian Process Regression STAT 6474 Instructor: Hongxiao Zhu Motivation Reference: Marc Deisenroth s tutorial on Robot Learning. 2 Fast Learning for Autonomous Robots with Gaussian Processes

More information

Linear Methods for Prediction

Linear Methods for Prediction Chapter 5 Linear Methods for Prediction 5.1 Introduction We now revisit the classification problem and focus on linear methods. Since our prediction Ĝ(x) will always take values in the discrete set G we

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 2: Bayesian Basics https://people.orie.cornell.edu/andrew/orie6741 Cornell University August 25, 2016 1 / 17 Canonical Machine Learning

More information

arxiv: v1 [stat.me] 6 Nov 2013

arxiv: v1 [stat.me] 6 Nov 2013 Electronic Journal of Statistics Vol. 0 (0000) ISSN: 1935-7524 DOI: 10.1214/154957804100000000 A Generalized Savage-Dickey Ratio Ewan Cameron e-mail: dr.ewan.cameron@gmail.com url: astrostatistics.wordpress.com

More information

On the Fisher Bingham Distribution

On the Fisher Bingham Distribution On the Fisher Bingham Distribution BY A. Kume and S.G Walker Institute of Mathematics, Statistics and Actuarial Science, University of Kent Canterbury, CT2 7NF,UK A.Kume@kent.ac.uk and S.G.Walker@kent.ac.uk

More information

Image segmentation combining Markov Random Fields and Dirichlet Processes

Image segmentation combining Markov Random Fields and Dirichlet Processes Image segmentation combining Markov Random Fields and Dirichlet Processes Jessica SODJO IMS, Groupe Signal Image, Talence Encadrants : A. Giremus, J.-F. Giovannelli, F. Caron, N. Dobigeon Jessica SODJO

More information

Part IV: Monte Carlo and nonparametric Bayes

Part IV: Monte Carlo and nonparametric Bayes Part IV: Monte Carlo and nonparametric Bayes Outline Monte Carlo methods Nonparametric Bayesian models Outline Monte Carlo methods Nonparametric Bayesian models The Monte Carlo principle The expectation

More information

Bayesian Econometrics

Bayesian Econometrics Bayesian Econometrics Christopher A. Sims Princeton University sims@princeton.edu September 20, 2016 Outline I. The difference between Bayesian and non-bayesian inference. II. Confidence sets and confidence

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

Bayesian nonparametric estimation of finite population quantities in absence of design information on nonsampled units

Bayesian nonparametric estimation of finite population quantities in absence of design information on nonsampled units Bayesian nonparametric estimation of finite population quantities in absence of design information on nonsampled units Sahar Z Zangeneh Robert W. Keener Roderick J.A. Little Abstract In Probability proportional

More information

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling 10-708: Probabilistic Graphical Models 10-708, Spring 2014 27 : Distributed Monte Carlo Markov Chain Lecturer: Eric P. Xing Scribes: Pengtao Xie, Khoa Luu In this scribe, we are going to review the Parallel

More information

Inference with few assumptions: Wasserman s example

Inference with few assumptions: Wasserman s example Inference with few assumptions: Wasserman s example Christopher A. Sims Princeton University sims@princeton.edu October 27, 2007 Types of assumption-free inference A simple procedure or set of statistics

More information

Probabilistic Time Series Classification

Probabilistic Time Series Classification Probabilistic Time Series Classification Y. Cem Sübakan Boğaziçi University 25.06.2013 Y. Cem Sübakan (Boğaziçi University) M.Sc. Thesis Defense 25.06.2013 1 / 54 Problem Statement The goal is to assign

More information

Gibbs Sampling in Linear Models #2

Gibbs Sampling in Linear Models #2 Gibbs Sampling in Linear Models #2 Econ 690 Purdue University Outline 1 Linear Regression Model with a Changepoint Example with Temperature Data 2 The Seemingly Unrelated Regressions Model 3 Gibbs sampling

More information

Monte Carlo in Bayesian Statistics

Monte Carlo in Bayesian Statistics Monte Carlo in Bayesian Statistics Matthew Thomas SAMBa - University of Bath m.l.thomas@bath.ac.uk December 4, 2014 Matthew Thomas (SAMBa) Monte Carlo in Bayesian Statistics December 4, 2014 1 / 16 Overview

More information

Advanced Introduction to Machine Learning

Advanced Introduction to Machine Learning 10-715 Advanced Introduction to Machine Learning Homework 3 Due Nov 12, 10.30 am Rules 1. Homework is due on the due date at 10.30 am. Please hand over your homework at the beginning of class. Please see

More information

Extreme Value Analysis and Spatial Extremes

Extreme Value Analysis and Spatial Extremes Extreme Value Analysis and Department of Statistics Purdue University 11/07/2013 Outline Motivation 1 Motivation 2 Extreme Value Theorem and 3 Bayesian Hierarchical Models Copula Models Max-stable Models

More information

Unsupervised Learning Techniques Class 07, 1 March 2006 Andrea Caponnetto

Unsupervised Learning Techniques Class 07, 1 March 2006 Andrea Caponnetto Unsupervised Learning Techniques 9.520 Class 07, 1 March 2006 Andrea Caponnetto About this class Goal To introduce some methods for unsupervised learning: Gaussian Mixtures, K-Means, ISOMAP, HLLE, Laplacian

More information

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent Latent Variable Models for Binary Data Suppose that for a given vector of explanatory variables x, the latent variable, U, has a continuous cumulative distribution function F (u; x) and that the binary

More information

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Some slides are due to Christopher Bishop Limitations of K-means Hard assignments of data points to clusters small shift of a

More information

CSC321 Lecture 18: Learning Probabilistic Models

CSC321 Lecture 18: Learning Probabilistic Models CSC321 Lecture 18: Learning Probabilistic Models Roger Grosse Roger Grosse CSC321 Lecture 18: Learning Probabilistic Models 1 / 25 Overview So far in this course: mainly supervised learning Language modeling

More information

Introduction to Graphical Models

Introduction to Graphical Models Introduction to Graphical Models The 15 th Winter School of Statistical Physics POSCO International Center & POSTECH, Pohang 2018. 1. 9 (Tue.) Yung-Kyun Noh GENERALIZATION FOR PREDICTION 2 Probabilistic

More information

MAD-Bayes: MAP-based Asymptotic Derivations from Bayes

MAD-Bayes: MAP-based Asymptotic Derivations from Bayes MAD-Bayes: MAP-based Asymptotic Derivations from Bayes Tamara Broderick Brian Kulis Michael I. Jordan Cat Clusters Mouse clusters Dog 1 Cat Clusters Dog Mouse Lizard Sheep Picture 1 Picture 2 Picture 3

More information

Bayesian Nonparametrics

Bayesian Nonparametrics Bayesian Nonparametrics Peter Orbanz Columbia University PARAMETERS AND PATTERNS Parameters P(X θ) = Probability[data pattern] 3 2 1 0 1 2 3 5 0 5 Inference idea data = underlying pattern + independent

More information

Lecture 16-17: Bayesian Nonparametrics I. STAT 6474 Instructor: Hongxiao Zhu

Lecture 16-17: Bayesian Nonparametrics I. STAT 6474 Instructor: Hongxiao Zhu Lecture 16-17: Bayesian Nonparametrics I STAT 6474 Instructor: Hongxiao Zhu Plan for today Why Bayesian Nonparametrics? Dirichlet Distribution and Dirichlet Processes. 2 Parameter and Patterns Reference:

More information

Bayesian Nonparametric Inference Methods for Mean Residual Life Functions

Bayesian Nonparametric Inference Methods for Mean Residual Life Functions Bayesian Nonparametric Inference Methods for Mean Residual Life Functions Valerie Poynor Department of Applied Mathematics and Statistics, University of California, Santa Cruz April 28, 212 1/3 Outline

More information

Lecture 3a: Dirichlet processes

Lecture 3a: Dirichlet processes Lecture 3a: Dirichlet processes Cédric Archambeau Centre for Computational Statistics and Machine Learning Department of Computer Science University College London c.archambeau@cs.ucl.ac.uk Advanced Topics

More information

Log Gaussian Cox Processes. Chi Group Meeting February 23, 2016

Log Gaussian Cox Processes. Chi Group Meeting February 23, 2016 Log Gaussian Cox Processes Chi Group Meeting February 23, 2016 Outline Typical motivating application Introduction to LGCP model Brief overview of inference Applications in my work just getting started

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

Stat 451 Lecture Notes Markov Chain Monte Carlo. Ryan Martin UIC

Stat 451 Lecture Notes Markov Chain Monte Carlo. Ryan Martin UIC Stat 451 Lecture Notes 07 12 Markov Chain Monte Carlo Ryan Martin UIC www.math.uic.edu/~rgmartin 1 Based on Chapters 8 9 in Givens & Hoeting, Chapters 25 27 in Lange 2 Updated: April 4, 2016 1 / 42 Outline

More information

Nonparametric Bayes Uncertainty Quantification

Nonparametric Bayes Uncertainty Quantification Nonparametric Bayes Uncertainty Quantification David Dunson Department of Statistical Science, Duke University Funded from NIH R01-ES017240, R01-ES017436 & ONR Review of Bayes Intro to Nonparametric Bayes

More information

Directional Statistics

Directional Statistics Directional Statistics Kanti V. Mardia University of Leeds, UK Peter E. Jupp University of St Andrews, UK I JOHN WILEY & SONS, LTD Chichester New York Weinheim Brisbane Singapore Toronto Contents Preface

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

The Bayesian Choice. Christian P. Robert. From Decision-Theoretic Foundations to Computational Implementation. Second Edition.

The Bayesian Choice. Christian P. Robert. From Decision-Theoretic Foundations to Computational Implementation. Second Edition. Christian P. Robert The Bayesian Choice From Decision-Theoretic Foundations to Computational Implementation Second Edition With 23 Illustrations ^Springer" Contents Preface to the Second Edition Preface

More information

Latent Variable Models and EM Algorithm

Latent Variable Models and EM Algorithm SC4/SM8 Advanced Topics in Statistical Machine Learning Latent Variable Models and EM Algorithm Dino Sejdinovic Department of Statistics Oxford Slides and other materials available at: http://www.stats.ox.ac.uk/~sejdinov/atsml/

More information

Bayesian inference for sample surveys. Roderick Little Module 2: Bayesian models for simple random samples

Bayesian inference for sample surveys. Roderick Little Module 2: Bayesian models for simple random samples Bayesian inference for sample surveys Roderick Little Module : Bayesian models for simple random samples Superpopulation Modeling: Estimating parameters Various principles: least squares, method of moments,

More information

Bayes Model Selection with Path Sampling: Factor Models

Bayes Model Selection with Path Sampling: Factor Models with Path Sampling: Factor Models Ritabrata Dutta and Jayanta K Ghosh Purdue University 07/02/11 Factor Models in Applications Factor Models in Applications Factor Models Factor Models and Factor analysis

More information

A Search and Jump Algorithm for Markov Chain Monte Carlo Sampling. Christopher Jennison. Adriana Ibrahim. Seminar at University of Kuwait

A Search and Jump Algorithm for Markov Chain Monte Carlo Sampling. Christopher Jennison. Adriana Ibrahim. Seminar at University of Kuwait A Search and Jump Algorithm for Markov Chain Monte Carlo Sampling Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj Adriana Ibrahim Institute

More information

Construction of Dependent Dirichlet Processes based on Poisson Processes

Construction of Dependent Dirichlet Processes based on Poisson Processes 1 / 31 Construction of Dependent Dirichlet Processes based on Poisson Processes Dahua Lin Eric Grimson John Fisher CSAIL MIT NIPS 2010 Outstanding Student Paper Award Presented by Shouyuan Chen Outline

More information

Bagging During Markov Chain Monte Carlo for Smoother Predictions

Bagging During Markov Chain Monte Carlo for Smoother Predictions Bagging During Markov Chain Monte Carlo for Smoother Predictions Herbert K. H. Lee University of California, Santa Cruz Abstract: Making good predictions from noisy data is a challenging problem. Methods

More information

A Sequential Bayesian Approach with Applications to Circadian Rhythm Microarray Gene Expression Data

A Sequential Bayesian Approach with Applications to Circadian Rhythm Microarray Gene Expression Data A Sequential Bayesian Approach with Applications to Circadian Rhythm Microarray Gene Expression Data Faming Liang, Chuanhai Liu, and Naisyin Wang Texas A&M University Multiple Hypothesis Testing Introduction

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information

Statistical and Learning Techniques in Computer Vision Lecture 2: Maximum Likelihood and Bayesian Estimation Jens Rittscher and Chuck Stewart

Statistical and Learning Techniques in Computer Vision Lecture 2: Maximum Likelihood and Bayesian Estimation Jens Rittscher and Chuck Stewart Statistical and Learning Techniques in Computer Vision Lecture 2: Maximum Likelihood and Bayesian Estimation Jens Rittscher and Chuck Stewart 1 Motivation and Problem In Lecture 1 we briefly saw how histograms

More information

Bayesian Nonparametrics: Models Based on the Dirichlet Process

Bayesian Nonparametrics: Models Based on the Dirichlet Process Bayesian Nonparametrics: Models Based on the Dirichlet Process Alessandro Panella Department of Computer Science University of Illinois at Chicago Machine Learning Seminar Series February 18, 2013 Alessandro

More information

Ages of stellar populations from color-magnitude diagrams. Paul Baines. September 30, 2008

Ages of stellar populations from color-magnitude diagrams. Paul Baines. September 30, 2008 Ages of stellar populations from color-magnitude diagrams Paul Baines Department of Statistics Harvard University September 30, 2008 Context & Example Welcome! Today we will look at using hierarchical

More information

COMS 4721: Machine Learning for Data Science Lecture 16, 3/28/2017

COMS 4721: Machine Learning for Data Science Lecture 16, 3/28/2017 COMS 4721: Machine Learning for Data Science Lecture 16, 3/28/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University SOFT CLUSTERING VS HARD CLUSTERING

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Nonparametric Bayes regression and classification through mixtures of product kernels

Nonparametric Bayes regression and classification through mixtures of product kernels Nonparametric Bayes regression and classification through mixtures of product kernels David B. Dunson & Abhishek Bhattacharya Department of Statistical Science Box 90251, Duke University Durham, NC 27708-0251,

More information

Bayesian estimation of the discrepancy with misspecified parametric models

Bayesian estimation of the discrepancy with misspecified parametric models Bayesian estimation of the discrepancy with misspecified parametric models Pierpaolo De Blasi University of Torino & Collegio Carlo Alberto Bayesian Nonparametrics workshop ICERM, 17-21 September 2012

More information

Discriminant Analysis with High Dimensional. von Mises-Fisher distribution and

Discriminant Analysis with High Dimensional. von Mises-Fisher distribution and Athens Journal of Sciences December 2014 Discriminant Analysis with High Dimensional von Mises - Fisher Distributions By Mario Romanazzi This paper extends previous work in discriminant analysis with von

More information

Overview of Statistical Tools. Statistical Inference. Bayesian Framework. Modeling. Very simple case. Things are usually more complicated

Overview of Statistical Tools. Statistical Inference. Bayesian Framework. Modeling. Very simple case. Things are usually more complicated Fall 3 Computer Vision Overview of Statistical Tools Statistical Inference Haibin Ling Observation inference Decision Prior knowledge http://www.dabi.temple.edu/~hbling/teaching/3f_5543/index.html Bayesian

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

PROBABILITY DISTRIBUTIONS. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

PROBABILITY DISTRIBUTIONS. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception PROBABILITY DISTRIBUTIONS Credits 2 These slides were sourced and/or modified from: Christopher Bishop, Microsoft UK Parametric Distributions 3 Basic building blocks: Need to determine given Representation:

More information

Variational Bayesian Dirichlet-Multinomial Allocation for Exponential Family Mixtures

Variational Bayesian Dirichlet-Multinomial Allocation for Exponential Family Mixtures 17th Europ. Conf. on Machine Learning, Berlin, Germany, 2006. Variational Bayesian Dirichlet-Multinomial Allocation for Exponential Family Mixtures Shipeng Yu 1,2, Kai Yu 2, Volker Tresp 2, and Hans-Peter

More information

Lecture 4: Probabilistic Learning

Lecture 4: Probabilistic Learning DD2431 Autumn, 2015 1 Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods 2 Classification vs Clustering Heuristic Example: K-means Expectation Maximization 3 Maximum Likelihood Methods

More information

Lecture 13 : Variational Inference: Mean Field Approximation

Lecture 13 : Variational Inference: Mean Field Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2017 Lecture 13 : Variational Inference: Mean Field Approximation Lecturer: Willie Neiswanger Scribes: Xupeng Tong, Minxing Liu 1 Problem Setup 1.1

More information

Physics 403. Segev BenZvi. Parameter Estimation, Correlations, and Error Bars. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Parameter Estimation, Correlations, and Error Bars. Department of Physics and Astronomy University of Rochester Physics 403 Parameter Estimation, Correlations, and Error Bars Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Review of Last Class Best Estimates and Reliability

More information

Bayesian inference for multivariate extreme value distributions

Bayesian inference for multivariate extreme value distributions Bayesian inference for multivariate extreme value distributions Sebastian Engelke Clément Dombry, Marco Oesting Toronto, Fields Institute, May 4th, 2016 Main motivation For a parametric model Z F θ of

More information

Bayesian Nonparametrics

Bayesian Nonparametrics Bayesian Nonparametrics Lorenzo Rosasco 9.520 Class 18 April 11, 2011 About this class Goal To give an overview of some of the basic concepts in Bayesian Nonparametrics. In particular, to discuss Dirichelet

More information

Multivariate Bayesian Linear Regression MLAI Lecture 11

Multivariate Bayesian Linear Regression MLAI Lecture 11 Multivariate Bayesian Linear Regression MLAI Lecture 11 Neil D. Lawrence Department of Computer Science Sheffield University 21st October 2012 Outline Univariate Bayesian Linear Regression Multivariate

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Bayes Nets: Sampling Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

Linear Methods for Prediction

Linear Methods for Prediction This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information