The Bayesian Choice. Christian P. Robert. From Decision-Theoretic Foundations to Computational Implementation. Second Edition.

Size: px
Start display at page:

Download "The Bayesian Choice. Christian P. Robert. From Decision-Theoretic Foundations to Computational Implementation. Second Edition."

Transcription

1 Christian P. Robert The Bayesian Choice From Decision-Theoretic Foundations to Computational Implementation Second Edition With 23 Illustrations ^Springer"

2 Contents Preface to the Second Edition Preface to the First Edition List of Tables List of Figures vii xi xxi xxiii 1 Introduction Statistical problems and statistical models The Bayesian paradigm as a duality principle Likelihood Principle and Sufficiency Principle Sufficiency The Likelihood Principle Derivation of the Likelihood Principle Implementation of the Likelihood Principle Maximum likelihood estimation Prior and posterior distributions Improper prior distributions The Bayesian choice Exercises Notes 45 2 Decision-Theoretic Foundations Evaluating estimators Existence of a utility function Utility and loss Two optimalities: minimaxity and admissibility Randomized estimators Minimaxity Existence of minimax rules and maximin strategy Admissibility Usual loss functions The quadratic loss The absolute error loss The 0-1 loss Intrinsic losses 81

3 Criticisms Exercises Notes and Contents alternatives From Prior Information to Prior Distributions The difficulty in selecting a prior distribution Subjective determination and approximations Existence Approximations to the prior distribution Maximum entropy priors Parametric approximations Other techniques Conjugate priors Introduction Justifications Exponential families Conjugate distributions for exponential families Criticisms and extensions Noninformative prior distributions Laplace's prior Invariant priors The Jeffreys prior Reference priors Matching priors Other approaches Posterior validation and robustness Exercises Notes 158 Bayesian Point Estimation Bayesian inference Introduction MAP estimator Likelihood Principle Restricted parameter space Precision of the Bayes estimators Prediction Back to Decision Theory Bayesian Decision Theory Bayes estimators Conjugate priors Loss estimation Sampling models Laplace succession rule The tramcar problem Capture-recapture models 182

4 Contents xvii 4.4 The particular case of the normal model Introduction Estimation of variance Linear models and G-priors Dynamic models Introduction The AR model The MA model The ARMA model Exercises Notes 216 Tests and Confidence Regions Introduction A first approach to testing theory Decision-theoretic testing The Bayes factor Modification of the prior Point-null hypotheses Improper priors Pseudo-Bayes factors Comparisons with the classical approach UMP and UMPU tests Least favorable prior distributions Criticisms The p-values Least favorable Bayesian answers The one-sided case A second decision-theoretic approach Confidence regions Credible intervals Classical confidence intervals Decision-theoretic evaluation of confidence sets Exercises Notes 279 Bayesian Calculations Implementation difficulties Classical approximation methods Numerical integration Monte Carlo methods Laplace analytic approximation Markov chain Monte Carlo methods MCMC in practice Metropolis-Hastings algorithms The Gibbs sampler 307

5 ii Contents Rao-Blackwellization The general Gibbs sampler The slice sampler The impact on Bayesian Statistics An application to mixture estimation Exercises Notes 334 Model Choice Introduction Choice between models Model choice: motives and uses Standard framework " Prior modeling for model choice Bayes factors Schwartz's criterion Bayesian deviance Monte Carlo and MCMC computations Importance sampling Bridge sampling MCMC methods Reversible jump MCMC, Model averaging Model projections Goodness-of-fit Exercises Notes 386 Admissibility and Complete Classes Introduction Admissibility of Bayes estimators General characterizations Boundary conditions Inadmissible generalized Bayes estimators Differential representations Recurrence conditions Necessary and sufficient admissibility conditions Continuous risks Blyth's sufficient condition Stein's necessary and sufficient condition Another limit theorem Complete classes Necessary admissibility conditions Exercises Notes 425

6 Contents xix 9 Invariance, Haar Measures, and Equivariant Estimators Invariance principles The particular case of location parameters Invariant decision problems Best equivariant noninformative distributions The Hunt-Stein theorem The role of invariance in Bayesian Statistics Exercises Notes Hierarchical and Empirical Bayes Extensions Incompletely Specified Priors Hierarchical Bayes analysis Hierarchical models Justifications Conditional decompositions Computational issues Hierarchical extensions for the normal model Optimality of hierarchical Bayes estimators The empirical Bayes alternative Nonparametric empirical Bayes Parametric empirical Bayes Empirical Bayes justifications of the Stein effect Point estimation Variance evaluation Confidence regions Comments Exercises Notes A Defense of the Bayesian Choice 507 A Probability Distributions 519 A.I Normal distribution, Af p (8, E) 519 A.2 Gamma distribution, Q(a, (3) 519 A.3 Beta distribution, Be(a, /3) 519 A.4 Student's t-distribution, T p {y, 9, E) 520 A.5 Fisher's F-distribution, T{v, g) 520 A.6 Inverse gamma distribution, IQ(a,/3) 520 A. 7 Noncentral chi-squared distribution, xtw 520 A.8 Dirichlet distribution, T>k{a\,, a/t) 521 A.9 Pareto distribution,-l?a(a,xo) 521 A.10 Binomial distribution, B(n,p). 521 A.ll Multinomial distribution, Mk(n;pi,..,Pk) 521 A. 12 Poisson distribution, V{\) 521 A.13 Negative Binomial distribution, Afeg(n,p) 522

7 xx Contents A. 14Hypergeometric distribution, "Hyp(N;n;p) 522 B Usual Pseudo-random Generators 523 B.I Normal distribution, W(0,1) 523 B.2 Exponential distribution, xp(x) 523 B.3 Student's t-distribution, T{v, 0,1) 524 B.4 Gamma distribution, Q(a, 1) 524 B.5 Binomial distribution, B(n,p) 525 B.6 Poisson distribution, V(X) 525 C Notations 527 C.I Mathematical 527 C.2 Probabilistic. 528 C.3 Distributional 528 C.4 Decisional 529 C.5 Statistical 529 C.6 Markov chains 530 D References 531 Author Index 581 Subject Index 589

Testing Statistical Hypotheses

Testing Statistical Hypotheses E.L. Lehmann Joseph P. Romano Testing Statistical Hypotheses Third Edition 4y Springer Preface vii I Small-Sample Theory 1 1 The General Decision Problem 3 1.1 Statistical Inference and Statistical Decisions

More information

Testing Statistical Hypotheses

Testing Statistical Hypotheses E.L. Lehmann Joseph P. Romano, 02LEu1 ttd ~Lt~S Testing Statistical Hypotheses Third Edition With 6 Illustrations ~Springer 2 The Probability Background 28 2.1 Probability and Measure 28 2.2 Integration.........

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Contents. Part I: Fundamentals of Bayesian Inference 1

Contents. Part I: Fundamentals of Bayesian Inference 1 Contents Preface xiii Part I: Fundamentals of Bayesian Inference 1 1 Probability and inference 3 1.1 The three steps of Bayesian data analysis 3 1.2 General notation for statistical inference 4 1.3 Bayesian

More information

Numerical Analysis for Statisticians

Numerical Analysis for Statisticians Kenneth Lange Numerical Analysis for Statisticians Springer Contents Preface v 1 Recurrence Relations 1 1.1 Introduction 1 1.2 Binomial CoefRcients 1 1.3 Number of Partitions of a Set 2 1.4 Horner's Method

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

PART I INTRODUCTION The meaning of probability Basic definitions for frequentist statistics and Bayesian inference Bayesian inference Combinatorics

PART I INTRODUCTION The meaning of probability Basic definitions for frequentist statistics and Bayesian inference Bayesian inference Combinatorics Table of Preface page xi PART I INTRODUCTION 1 1 The meaning of probability 3 1.1 Classical definition of probability 3 1.2 Statistical definition of probability 9 1.3 Bayesian understanding of probability

More information

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition Preface Preface to the First Edition xi xiii 1 Basic Probability Theory 1 1.1 Introduction 1 1.2 Sample Spaces and Events 3 1.3 The Axioms of Probability 7 1.4 Finite Sample Spaces and Combinatorics 15

More information

Modelling Operational Risk Using Bayesian Inference

Modelling Operational Risk Using Bayesian Inference Pavel V. Shevchenko Modelling Operational Risk Using Bayesian Inference 4y Springer 1 Operational Risk and Basel II 1 1.1 Introduction to Operational Risk 1 1.2 Defining Operational Risk 4 1.3 Basel II

More information

Subjective and Objective Bayesian Statistics

Subjective and Objective Bayesian Statistics Subjective and Objective Bayesian Statistics Principles, Models, and Applications Second Edition S. JAMES PRESS with contributions by SIDDHARTHA CHIB MERLISE CLYDE GEORGE WOODWORTH ALAN ZASLAVSKY \WILEY-

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Theory and Methods of Statistical Inference

Theory and Methods of Statistical Inference PhD School in Statistics cycle XXIX, 2014 Theory and Methods of Statistical Inference Instructors: B. Liseo, L. Pace, A. Salvan (course coordinator), N. Sartori, A. Tancredi, L. Ventura Syllabus Some prerequisites:

More information

Irr. Statistical Methods in Experimental Physics. 2nd Edition. Frederick James. World Scientific. CERN, Switzerland

Irr. Statistical Methods in Experimental Physics. 2nd Edition. Frederick James. World Scientific. CERN, Switzerland Frederick James CERN, Switzerland Statistical Methods in Experimental Physics 2nd Edition r i Irr 1- r ri Ibn World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI CHENNAI CONTENTS

More information

Contents. Preface to Second Edition Preface to First Edition Abbreviations PART I PRINCIPLES OF STATISTICAL THINKING AND ANALYSIS 1

Contents. Preface to Second Edition Preface to First Edition Abbreviations PART I PRINCIPLES OF STATISTICAL THINKING AND ANALYSIS 1 Contents Preface to Second Edition Preface to First Edition Abbreviations xv xvii xix PART I PRINCIPLES OF STATISTICAL THINKING AND ANALYSIS 1 1 The Role of Statistical Methods in Modern Industry and Services

More information

Ronald Christensen. University of New Mexico. Albuquerque, New Mexico. Wesley Johnson. University of California, Irvine. Irvine, California

Ronald Christensen. University of New Mexico. Albuquerque, New Mexico. Wesley Johnson. University of California, Irvine. Irvine, California Texts in Statistical Science Bayesian Ideas and Data Analysis An Introduction for Scientists and Statisticians Ronald Christensen University of New Mexico Albuquerque, New Mexico Wesley Johnson University

More information

PRINCIPLES OF STATISTICAL INFERENCE

PRINCIPLES OF STATISTICAL INFERENCE Advanced Series on Statistical Science & Applied Probability PRINCIPLES OF STATISTICAL INFERENCE from a Neo-Fisherian Perspective Luigi Pace Department of Statistics University ofudine, Italy Alessandra

More information

Monte Carlo Methods. Handbook of. University ofqueensland. Thomas Taimre. Zdravko I. Botev. Dirk P. Kroese. Universite de Montreal

Monte Carlo Methods. Handbook of. University ofqueensland. Thomas Taimre. Zdravko I. Botev. Dirk P. Kroese. Universite de Montreal Handbook of Monte Carlo Methods Dirk P. Kroese University ofqueensland Thomas Taimre University ofqueensland Zdravko I. Botev Universite de Montreal A JOHN WILEY & SONS, INC., PUBLICATION Preface Acknowledgments

More information

3 Joint Distributions 71

3 Joint Distributions 71 2.2.3 The Normal Distribution 54 2.2.4 The Beta Density 58 2.3 Functions of a Random Variable 58 2.4 Concluding Remarks 64 2.5 Problems 64 3 Joint Distributions 71 3.1 Introduction 71 3.2 Discrete Random

More information

Probability for Statistics and Machine Learning

Probability for Statistics and Machine Learning ~Springer Anirban DasGupta Probability for Statistics and Machine Learning Fundamentals and Advanced Topics Contents Suggested Courses with Diffe~ent Themes........................... xix 1 Review of Univariate

More information

HANDBOOK OF APPLICABLE MATHEMATICS

HANDBOOK OF APPLICABLE MATHEMATICS HANDBOOK OF APPLICABLE MATHEMATICS Chief Editor: Walter Ledermann Volume VI: Statistics PART A Edited by Emlyn Lloyd University of Lancaster A Wiley-Interscience Publication JOHN WILEY & SONS Chichester

More information

Preface Introduction to Statistics and Data Analysis Overview: Statistical Inference, Samples, Populations, and Experimental Design The Role of

Preface Introduction to Statistics and Data Analysis Overview: Statistical Inference, Samples, Populations, and Experimental Design The Role of Preface Introduction to Statistics and Data Analysis Overview: Statistical Inference, Samples, Populations, and Experimental Design The Role of Probability Sampling Procedures Collection of Data Measures

More information

Theory and Methods of Statistical Inference. PART I Frequentist theory and methods

Theory and Methods of Statistical Inference. PART I Frequentist theory and methods PhD School in Statistics cycle XXVI, 2011 Theory and Methods of Statistical Inference PART I Frequentist theory and methods (A. Salvan, N. Sartori, L. Pace) Syllabus Some prerequisites: Empirical distribution

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS Parametric Distributions Basic building blocks: Need to determine given Representation: or? Recall Curve Fitting Binary Variables

More information

Theory and Methods of Statistical Inference. PART I Frequentist likelihood methods

Theory and Methods of Statistical Inference. PART I Frequentist likelihood methods PhD School in Statistics XXV cycle, 2010 Theory and Methods of Statistical Inference PART I Frequentist likelihood methods (A. Salvan, N. Sartori, L. Pace) Syllabus Some prerequisites: Empirical distribution

More information

TABLE OF CONTENTS CHAPTER 1 COMBINATORIAL PROBABILITY 1

TABLE OF CONTENTS CHAPTER 1 COMBINATORIAL PROBABILITY 1 TABLE OF CONTENTS CHAPTER 1 COMBINATORIAL PROBABILITY 1 1.1 The Probability Model...1 1.2 Finite Discrete Models with Equally Likely Outcomes...5 1.2.1 Tree Diagrams...6 1.2.2 The Multiplication Principle...8

More information

Introduction to Bayesian Methods

Introduction to Bayesian Methods Introduction to Bayesian Methods Jessi Cisewski Department of Statistics Yale University Sagan Summer Workshop 2016 Our goal: introduction to Bayesian methods Likelihoods Priors: conjugate priors, non-informative

More information

Stat 451 Lecture Notes Markov Chain Monte Carlo. Ryan Martin UIC

Stat 451 Lecture Notes Markov Chain Monte Carlo. Ryan Martin UIC Stat 451 Lecture Notes 07 12 Markov Chain Monte Carlo Ryan Martin UIC www.math.uic.edu/~rgmartin 1 Based on Chapters 8 9 in Givens & Hoeting, Chapters 25 27 in Lange 2 Updated: April 4, 2016 1 / 42 Outline

More information

Karl-Rudolf Koch Introduction to Bayesian Statistics Second Edition

Karl-Rudolf Koch Introduction to Bayesian Statistics Second Edition Karl-Rudolf Koch Introduction to Bayesian Statistics Second Edition Karl-Rudolf Koch Introduction to Bayesian Statistics Second, updated and enlarged Edition With 17 Figures Professor Dr.-Ing., Dr.-Ing.

More information

Bayesian inference. Fredrik Ronquist and Peter Beerli. October 3, 2007

Bayesian inference. Fredrik Ronquist and Peter Beerli. October 3, 2007 Bayesian inference Fredrik Ronquist and Peter Beerli October 3, 2007 1 Introduction The last few decades has seen a growing interest in Bayesian inference, an alternative approach to statistical inference.

More information

Markov Chain Monte Carlo in Practice

Markov Chain Monte Carlo in Practice Markov Chain Monte Carlo in Practice Edited by W.R. Gilks Medical Research Council Biostatistics Unit Cambridge UK S. Richardson French National Institute for Health and Medical Research Vilejuif France

More information

7. Estimation and hypothesis testing. Objective. Recommended reading

7. Estimation and hypothesis testing. Objective. Recommended reading 7. Estimation and hypothesis testing Objective In this chapter, we show how the election of estimators can be represented as a decision problem. Secondly, we consider the problem of hypothesis testing

More information

Subject CS1 Actuarial Statistics 1 Core Principles

Subject CS1 Actuarial Statistics 1 Core Principles Institute of Actuaries of India Subject CS1 Actuarial Statistics 1 Core Principles For 2019 Examinations Aim The aim of the Actuarial Statistics 1 subject is to provide a grounding in mathematical and

More information

Bayesian Statistical Methods. Jeff Gill. Department of Political Science, University of Florida

Bayesian Statistical Methods. Jeff Gill. Department of Political Science, University of Florida Bayesian Statistical Methods Jeff Gill Department of Political Science, University of Florida 234 Anderson Hall, PO Box 117325, Gainesville, FL 32611-7325 Voice: 352-392-0262x272, Fax: 352-392-8127, Email:

More information

Index. Pagenumbersfollowedbyf indicate figures; pagenumbersfollowedbyt indicate tables.

Index. Pagenumbersfollowedbyf indicate figures; pagenumbersfollowedbyt indicate tables. Index Pagenumbersfollowedbyf indicate figures; pagenumbersfollowedbyt indicate tables. Adaptive rejection metropolis sampling (ARMS), 98 Adaptive shrinkage, 132 Advanced Photo System (APS), 255 Aggregation

More information

Stat 516, Homework 1

Stat 516, Homework 1 Stat 516, Homework 1 Due date: October 7 1. Consider an urn with n distinct balls numbered 1,..., n. We sample balls from the urn with replacement. Let N be the number of draws until we encounter a ball

More information

Index. 0 1 loss function, 467

Index. 0 1 loss function, 467 Index 0 1 loss function, 467 a priori,374 abs command, 685 absolutely continuous jointly, 85 absolutely continuous random variable, 52 acceptance probability, 644 action space, 464 additive, 5 additive

More information

Statistical Methods in HYDROLOGY CHARLES T. HAAN. The Iowa State University Press / Ames

Statistical Methods in HYDROLOGY CHARLES T. HAAN. The Iowa State University Press / Ames Statistical Methods in HYDROLOGY CHARLES T. HAAN The Iowa State University Press / Ames Univariate BASIC Table of Contents PREFACE xiii ACKNOWLEDGEMENTS xv 1 INTRODUCTION 1 2 PROBABILITY AND PROBABILITY

More information

Comparison of Three Calculation Methods for a Bayesian Inference of Two Poisson Parameters

Comparison of Three Calculation Methods for a Bayesian Inference of Two Poisson Parameters Journal of Modern Applied Statistical Methods Volume 13 Issue 1 Article 26 5-1-2014 Comparison of Three Calculation Methods for a Bayesian Inference of Two Poisson Parameters Yohei Kawasaki Tokyo University

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

Unobservable Parameter. Observed Random Sample. Calculate Posterior. Choosing Prior. Conjugate prior. population proportion, p prior:

Unobservable Parameter. Observed Random Sample. Calculate Posterior. Choosing Prior. Conjugate prior. population proportion, p prior: Pi Priors Unobservable Parameter population proportion, p prior: π ( p) Conjugate prior π ( p) ~ Beta( a, b) same PDF family exponential family only Posterior π ( p y) ~ Beta( a + y, b + n y) Observed

More information

Bayesian Models in Machine Learning

Bayesian Models in Machine Learning Bayesian Models in Machine Learning Lukáš Burget Escuela de Ciencias Informáticas 2017 Buenos Aires, July 24-29 2017 Frequentist vs. Bayesian Frequentist point of view: Probability is the frequency of

More information

Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methods Markov Chain Monte Carlo methods Tomas McKelvey and Lennart Svensson Signal Processing Group Department of Signals and Systems Chalmers University of Technology, Sweden November 26, 2012 Today s learning

More information

Multilevel Statistical Models: 3 rd edition, 2003 Contents

Multilevel Statistical Models: 3 rd edition, 2003 Contents Multilevel Statistical Models: 3 rd edition, 2003 Contents Preface Acknowledgements Notation Two and three level models. A general classification notation and diagram Glossary Chapter 1 An introduction

More information

Introduction to Bayesian Statistics with WinBUGS Part 4 Priors and Hierarchical Models

Introduction to Bayesian Statistics with WinBUGS Part 4 Priors and Hierarchical Models Introduction to Bayesian Statistics with WinBUGS Part 4 Priors and Hierarchical Models Matthew S. Johnson New York ASA Chapter Workshop CUNY Graduate Center New York, NY hspace1in December 17, 2009 December

More information

Invariant HPD credible sets and MAP estimators

Invariant HPD credible sets and MAP estimators Bayesian Analysis (007), Number 4, pp. 681 69 Invariant HPD credible sets and MAP estimators Pierre Druilhet and Jean-Michel Marin Abstract. MAP estimators and HPD credible sets are often criticized in

More information

Overall Objective Priors

Overall Objective Priors Overall Objective Priors Jim Berger, Jose Bernardo and Dongchu Sun Duke University, University of Valencia and University of Missouri Recent advances in statistical inference: theory and case studies University

More information

Multinomial Data. f(y θ) θ y i. where θ i is the probability that a given trial results in category i, i = 1,..., k. The parameter space is

Multinomial Data. f(y θ) θ y i. where θ i is the probability that a given trial results in category i, i = 1,..., k. The parameter space is Multinomial Data The multinomial distribution is a generalization of the binomial for the situation in which each trial results in one and only one of several categories, as opposed to just two, as in

More information

Bayesian Inference and MCMC

Bayesian Inference and MCMC Bayesian Inference and MCMC Aryan Arbabi Partly based on MCMC slides from CSC412 Fall 2018 1 / 18 Bayesian Inference - Motivation Consider we have a data set D = {x 1,..., x n }. E.g each x i can be the

More information

Exploring Monte Carlo Methods

Exploring Monte Carlo Methods Exploring Monte Carlo Methods William L Dunn J. Kenneth Shultis AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO ELSEVIER Academic Press Is an imprint

More information

Parametric Inference Maximum Likelihood Inference Exponential Families Expectation Maximization (EM) Bayesian Inference Statistical Decison Theory

Parametric Inference Maximum Likelihood Inference Exponential Families Expectation Maximization (EM) Bayesian Inference Statistical Decison Theory Statistical Inference Parametric Inference Maximum Likelihood Inference Exponential Families Expectation Maximization (EM) Bayesian Inference Statistical Decison Theory IP, José Bioucas Dias, IST, 2007

More information

Generalized, Linear, and Mixed Models

Generalized, Linear, and Mixed Models Generalized, Linear, and Mixed Models CHARLES E. McCULLOCH SHAYLER.SEARLE Departments of Statistical Science and Biometrics Cornell University A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. New

More information

The Jackknife-Like Method for Assessing Uncertainty of Point Estimates for Bayesian Estimation in a Finite Gaussian Mixture Model

The Jackknife-Like Method for Assessing Uncertainty of Point Estimates for Bayesian Estimation in a Finite Gaussian Mixture Model Thai Journal of Mathematics : 45 58 Special Issue: Annual Meeting in Mathematics 207 http://thaijmath.in.cmu.ac.th ISSN 686-0209 The Jackknife-Like Method for Assessing Uncertainty of Point Estimates for

More information

Parameter Estimation. William H. Jefferys University of Texas at Austin Parameter Estimation 7/26/05 1

Parameter Estimation. William H. Jefferys University of Texas at Austin Parameter Estimation 7/26/05 1 Parameter Estimation William H. Jefferys University of Texas at Austin bill@bayesrules.net Parameter Estimation 7/26/05 1 Elements of Inference Inference problems contain two indispensable elements: Data

More information

Part III. A Decision-Theoretic Approach and Bayesian testing

Part III. A Decision-Theoretic Approach and Bayesian testing Part III A Decision-Theoretic Approach and Bayesian testing 1 Chapter 10 Bayesian Inference as a Decision Problem The decision-theoretic framework starts with the following situation. We would like to

More information

STATISTICS; An Introductory Analysis. 2nd hidition TARO YAMANE NEW YORK UNIVERSITY A HARPER INTERNATIONAL EDITION

STATISTICS; An Introductory Analysis. 2nd hidition TARO YAMANE NEW YORK UNIVERSITY A HARPER INTERNATIONAL EDITION 2nd hidition TARO YAMANE NEW YORK UNIVERSITY STATISTICS; An Introductory Analysis A HARPER INTERNATIONAL EDITION jointly published by HARPER & ROW, NEW YORK, EVANSTON & LONDON AND JOHN WEATHERHILL, INC.,

More information

Control Variates for Markov Chain Monte Carlo

Control Variates for Markov Chain Monte Carlo Control Variates for Markov Chain Monte Carlo Dellaportas, P., Kontoyiannis, I., and Tsourti, Z. Dept of Statistics, AUEB Dept of Informatics, AUEB 1st Greek Stochastics Meeting Monte Carlo: Probability

More information

POSTERIOR PROPRIETY IN SOME HIERARCHICAL EXPONENTIAL FAMILY MODELS

POSTERIOR PROPRIETY IN SOME HIERARCHICAL EXPONENTIAL FAMILY MODELS POSTERIOR PROPRIETY IN SOME HIERARCHICAL EXPONENTIAL FAMILY MODELS EDWARD I. GEORGE and ZUOSHUN ZHANG The University of Texas at Austin and Quintiles Inc. June 2 SUMMARY For Bayesian analysis of hierarchical

More information

AN INTRODUCTION TO PROBABILITY AND STATISTICS

AN INTRODUCTION TO PROBABILITY AND STATISTICS AN INTRODUCTION TO PROBABILITY AND STATISTICS WILEY SERIES IN PROBABILITY AND STATISTICS Established by WALTER A. SHEWHART and SAMUEL S. WILKS Editors: David J. Balding, Noel A. C. Cressie, Garrett M.

More information

PIER HLM Course July 30, 2011 Howard Seltman. Discussion Guide for Bayes and BUGS

PIER HLM Course July 30, 2011 Howard Seltman. Discussion Guide for Bayes and BUGS PIER HLM Course July 30, 2011 Howard Seltman Discussion Guide for Bayes and BUGS 1. Classical Statistics is based on parameters as fixed unknown values. a. The standard approach is to try to discover,

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 2 In our

More information

Statistical Theory MT 2007 Problems 4: Solution sketches

Statistical Theory MT 2007 Problems 4: Solution sketches Statistical Theory MT 007 Problems 4: Solution sketches 1. Consider a 1-parameter exponential family model with density f(x θ) = f(x)g(θ)exp{cφ(θ)h(x)}, x X. Suppose that the prior distribution has the

More information

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn Parameter estimation and forecasting Cristiano Porciani AIfA, Uni-Bonn Questions? C. Porciani Estimation & forecasting 2 Temperature fluctuations Variance at multipole l (angle ~180o/l) C. Porciani Estimation

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

36-463/663: Hierarchical Linear Models

36-463/663: Hierarchical Linear Models 36-463/663: Hierarchical Linear Models Taste of MCMC / Bayes for 3 or more levels Brian Junker 132E Baker Hall brian@stat.cmu.edu 1 Outline Practical Bayes Mastery Learning Example A brief taste of JAGS

More information

Appendix F. Computational Statistics Toolbox. The Computational Statistics Toolbox can be downloaded from:

Appendix F. Computational Statistics Toolbox. The Computational Statistics Toolbox can be downloaded from: Appendix F Computational Statistics Toolbox The Computational Statistics Toolbox can be downloaded from: http://www.infinityassociates.com http://lib.stat.cmu.edu. Please review the readme file for installation

More information

MCMC for Cut Models or Chasing a Moving Target with MCMC

MCMC for Cut Models or Chasing a Moving Target with MCMC MCMC for Cut Models or Chasing a Moving Target with MCMC Martyn Plummer International Agency for Research on Cancer MCMSki Chamonix, 6 Jan 2014 Cut models What do we want to do? 1. Generate some random

More information

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution Outline A short review on Bayesian analysis. Binomial, Multinomial, Normal, Beta, Dirichlet Posterior mean, MAP, credible interval, posterior distribution Gibbs sampling Revisit the Gaussian mixture model

More information

Chapter 4 HOMEWORK ASSIGNMENTS. 4.1 Homework #1

Chapter 4 HOMEWORK ASSIGNMENTS. 4.1 Homework #1 Chapter 4 HOMEWORK ASSIGNMENTS These homeworks may be modified as the semester progresses. It is your responsibility to keep up to date with the correctly assigned homeworks. There may be some errors in

More information

Deciding, Estimating, Computing, Checking

Deciding, Estimating, Computing, Checking Deciding, Estimating, Computing, Checking How are Bayesian posteriors used, computed and validated? Fundamentalist Bayes: The posterior is ALL knowledge you have about the state Use in decision making:

More information

Deciding, Estimating, Computing, Checking. How are Bayesian posteriors used, computed and validated?

Deciding, Estimating, Computing, Checking. How are Bayesian posteriors used, computed and validated? Deciding, Estimating, Computing, Checking How are Bayesian posteriors used, computed and validated? Fundamentalist Bayes: The posterior is ALL knowledge you have about the state Use in decision making:

More information

A Bayesian Nonparametric Model for Predicting Disease Status Using Longitudinal Profiles

A Bayesian Nonparametric Model for Predicting Disease Status Using Longitudinal Profiles A Bayesian Nonparametric Model for Predicting Disease Status Using Longitudinal Profiles Jeremy Gaskins Department of Bioinformatics & Biostatistics University of Louisville Joint work with Claudio Fuentes

More information

Bayesian Prediction of Code Output. ASA Albuquerque Chapter Short Course October 2014

Bayesian Prediction of Code Output. ASA Albuquerque Chapter Short Course October 2014 Bayesian Prediction of Code Output ASA Albuquerque Chapter Short Course October 2014 Abstract This presentation summarizes Bayesian prediction methodology for the Gaussian process (GP) surrogate representation

More information

NPFL108 Bayesian inference. Introduction. Filip Jurčíček. Institute of Formal and Applied Linguistics Charles University in Prague Czech Republic

NPFL108 Bayesian inference. Introduction. Filip Jurčíček. Institute of Formal and Applied Linguistics Charles University in Prague Czech Republic NPFL108 Bayesian inference Introduction Filip Jurčíček Institute of Formal and Applied Linguistics Charles University in Prague Czech Republic Home page: http://ufal.mff.cuni.cz/~jurcicek Version: 21/02/2014

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo 1 Motivation 1.1 Bayesian Learning Markov Chain Monte Carlo Yale Chang In Bayesian learning, given data X, we make assumptions on the generative process of X by introducing hidden variables Z: p(z): prior

More information

Adventures in Stochastic Processes

Adventures in Stochastic Processes Sidney Resnick Adventures in Stochastic Processes with Illustrations Birkhäuser Boston Basel Berlin Table of Contents Preface ix CHAPTER 1. PRELIMINARIES: DISCRETE INDEX SETS AND/OR DISCRETE STATE SPACES

More information

Probability and Statistics

Probability and Statistics Kristel Van Steen, PhD 2 Montefiore Institute - Systems and Modeling GIGA - Bioinformatics ULg kristel.vansteen@ulg.ac.be Chapter 3: Parametric families of univariate distributions CHAPTER 3: PARAMETRIC

More information

F denotes cumulative density. denotes probability density function; (.)

F denotes cumulative density. denotes probability density function; (.) BAYESIAN ANALYSIS: FOREWORDS Notation. System means the real thing and a model is an assumed mathematical form for the system.. he probability model class M contains the set of the all admissible models

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee University of Minnesota July 20th, 2008 1 Bayesian Principles Classical statistics: model parameters are fixed and unknown. A Bayesian thinks of parameters

More information

A Very Brief Summary of Bayesian Inference, and Examples

A Very Brief Summary of Bayesian Inference, and Examples A Very Brief Summary of Bayesian Inference, and Examples Trinity Term 009 Prof Gesine Reinert Our starting point are data x = x 1, x,, x n, which we view as realisations of random variables X 1, X,, X

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Jonathan Marchini Department of Statistics University of Oxford MT 2013 Jonathan Marchini (University of Oxford) BS2a MT 2013 1 / 27 Course arrangements Lectures M.2

More information

STATISTICS SYLLABUS UNIT I

STATISTICS SYLLABUS UNIT I STATISTICS SYLLABUS UNIT I (Probability Theory) Definition Classical and axiomatic approaches.laws of total and compound probability, conditional probability, Bayes Theorem. Random variable and its distribution

More information

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) Markov Chain Monte Carlo (MCMC Dependent Sampling Suppose we wish to sample from a density π, and we can evaluate π as a function but have no means to directly generate a sample. Rejection sampling can

More information

Econometrics I, Estimation

Econometrics I, Estimation Econometrics I, Estimation Department of Economics Stanford University September, 2008 Part I Parameter, Estimator, Estimate A parametric is a feature of the population. An estimator is a function of the

More information

Bayesian model selection for computer model validation via mixture model estimation

Bayesian model selection for computer model validation via mixture model estimation Bayesian model selection for computer model validation via mixture model estimation Kaniav Kamary ATER, CNAM Joint work with É. Parent, P. Barbillon, M. Keller and N. Bousquet Outline Computer model validation

More information

Two examples of the use of fuzzy set theory in statistics. Glen Meeden University of Minnesota.

Two examples of the use of fuzzy set theory in statistics. Glen Meeden University of Minnesota. Two examples of the use of fuzzy set theory in statistics Glen Meeden University of Minnesota http://www.stat.umn.edu/~glen/talks 1 Fuzzy set theory Fuzzy set theory was introduced by Zadeh in (1965) as

More information

Learning Sequence Motif Models Using Expectation Maximization (EM) and Gibbs Sampling

Learning Sequence Motif Models Using Expectation Maximization (EM) and Gibbs Sampling Learning Sequence Motif Models Using Expectation Maximization (EM) and Gibbs Sampling BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 009 Mark Craven craven@biostat.wisc.edu Sequence Motifs what is a sequence

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 7 Approximate

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2008 Prof. Gesine Reinert 1 Data x = x 1, x 2,..., x n, realisations of random variables X 1, X 2,..., X n with distribution (model)

More information

Patterns of Scalable Bayesian Inference Background (Session 1)

Patterns of Scalable Bayesian Inference Background (Session 1) Patterns of Scalable Bayesian Inference Background (Session 1) Jerónimo Arenas-García Universidad Carlos III de Madrid jeronimo.arenas@gmail.com June 14, 2017 1 / 15 Motivation. Bayesian Learning principles

More information

Bayesian Inference. Chapter 2: Conjugate models

Bayesian Inference. Chapter 2: Conjugate models Bayesian Inference Chapter 2: Conjugate models Conchi Ausín and Mike Wiper Department of Statistics Universidad Carlos III de Madrid Master in Business Administration and Quantitative Methods Master in

More information

Bagging During Markov Chain Monte Carlo for Smoother Predictions

Bagging During Markov Chain Monte Carlo for Smoother Predictions Bagging During Markov Chain Monte Carlo for Smoother Predictions Herbert K. H. Lee University of California, Santa Cruz Abstract: Making good predictions from noisy data is a challenging problem. Methods

More information

Data Analysis and Uncertainty Part 2: Estimation

Data Analysis and Uncertainty Part 2: Estimation Data Analysis and Uncertainty Part 2: Estimation Instructor: Sargur N. University at Buffalo The State University of New York srihari@cedar.buffalo.edu 1 Topics in Estimation 1. Estimation 2. Desirable

More information

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework HT5: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Maximum Likelihood Principle A generative model for

More information

Seminar über Statistik FS2008: Model Selection

Seminar über Statistik FS2008: Model Selection Seminar über Statistik FS2008: Model Selection Alessia Fenaroli, Ghazale Jazayeri Monday, April 2, 2008 Introduction Model Choice deals with the comparison of models and the selection of a model. It can

More information

Outline. Clustering. Capturing Unobserved Heterogeneity in the Austrian Labor Market Using Finite Mixtures of Markov Chain Models

Outline. Clustering. Capturing Unobserved Heterogeneity in the Austrian Labor Market Using Finite Mixtures of Markov Chain Models Capturing Unobserved Heterogeneity in the Austrian Labor Market Using Finite Mixtures of Markov Chain Models Collaboration with Rudolf Winter-Ebmer, Department of Economics, Johannes Kepler University

More information

Practical Bayesian Quantile Regression. Keming Yu University of Plymouth, UK

Practical Bayesian Quantile Regression. Keming Yu University of Plymouth, UK Practical Bayesian Quantile Regression Keming Yu University of Plymouth, UK (kyu@plymouth.ac.uk) A brief summary of some recent work of us (Keming Yu, Rana Moyeed and Julian Stander). Summary We develops

More information

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling 10-708: Probabilistic Graphical Models 10-708, Spring 2014 27 : Distributed Monte Carlo Markov Chain Lecturer: Eric P. Xing Scribes: Pengtao Xie, Khoa Luu In this scribe, we are going to review the Parallel

More information

Contents. Preface to the Third Edition (2007) Preface to the Second Edition (1992) Preface to the First Edition (1985) License and Legal Information

Contents. Preface to the Third Edition (2007) Preface to the Second Edition (1992) Preface to the First Edition (1985) License and Legal Information Contents Preface to the Third Edition (2007) Preface to the Second Edition (1992) Preface to the First Edition (1985) License and Legal Information xi xiv xvii xix 1 Preliminaries 1 1.0 Introduction.............................

More information