Doug Cochran. 3 October 2011

Size: px
Start display at page:

Download "Doug Cochran. 3 October 2011"

Transcription

1 ) ) School Electrical, Computer, & Energy Arizona State University (Joint work with Stephen Howard and Bill Moran) 3 October 2011

2 Tenets ) The purpose sensor networks is to sense; i.e., to enable detection, estimation, classification, and tracking To exploit network structure, data at the nodes must be registered Intrinsic data; e.g., clocks, platform orientation Extrinsic data: collected by sensors ω 2 ω 4 ω 3 ω 7 ω 1 ω 5 ω 8 ω 6

3 Registration on a Graph ) Vertex labels: An element a Lie group G is associated with each node a graph modeling a network Edge labels: An element G representing a noisy measurement the difference the values on the vertices at either end Goal: Make the best estimate the connection the true relative fsets between the vertex values v 2 r (1,2) r (4,1) r (4,2) v 4 r (4,3) v 1 v 3

4 ) Denote by f(x θ) a family probability density functions parameterized by elements θ on a manifold M For given data x, f(x θ) defines the likelihood function on M A maximum-likelihood (ML) estimate for θ is defined by ˆθ = arg max θ M f(x θ) The log-likelihood function l(x θ) : M R is defined by l(x θ) = log f(x θ) A natural measure discrimination on M is the Kullback-Leibler (KL) divergence D(f θ f θ ) = f(x θ) log f(x θ) f(x θ ) dx

5 ) Although the KL divergence is not symmetric, locally it gives a metric on M called the Fisher information metric F = E[dl dl] F can also be computed as F = E[ 2 l], for any connection The corresponding volume form is the Jeffreys prior vol F = det F dθ 1 dθ m

6 ) The state the network is a G-valued function x on V (Γ) but it is never directly observed If the network were aligned, the function would be constant (flat connection) What is observed is the connection ω Ω = G m In the absence noise, for an aligned network this is the identity connection If the network is not aligned, a gauge transformation can be found that takes ω to the identity x v g v x v ω e g t(e) ω e g 1 s(e)

7 ) Gauge transformations that fix the identity connection form a normal subgroup that can be quotiented out The noise on the measurements should be a random variable taking values ε Ω and whose density p(ε) is defined with respect to the normalized Haar measure on Ω

8 Example ) v1 e1 e5 v2 e3 v4 e4 e2 v3 Incidence matrix Boundary operator (n m) D =

9 Example ) Coboundary operator (m n) D T = Graph Laplacian Kirchf Matrix (n n) L = DD T = = A det L = 0, but det L = 8 = t(γ) for any (n 1) (n 1) cactor L L.

10 Homological set-up ) Directed graph Γ with vertex set V (Γ) and edge set E(Γ) V (Γ) = n E(Γ) = m Vertex space C 0 (Γ) functions from V (Γ) to R; a real vector space: f = n f j v j j=1 v j (v l ) = δ jl Edge space C 1 (Γ) functions from E(Γ) to R m ω = ω j e j j=1 e j (e l ) = δ jl

11 Homological set-up ) Source and target maps s, t : C 1 (Γ) C 0 (Γ); if e = (v i, v j ), s(e) = v i t(e) = v j Vertex space C 0 (Γ) functions from V (Γ) to R; a real vector space: f = n f j v j j=1 v j (v l ) = δ jl

12 Homological set-up ) Boundary map (incidence matrix) D : C 1 (Γ) C 0 (Γ) by D(e) = t(e) s(e) Coboundary map D T : C 0 (Γ) C 1 (Γ) by D T (v) = t(e j )=v e j s(e j )=v e j C 1 (Γ) D D T C 0 (Γ)

13 Homological set-up ) Cycle space Z(Γ): A cycle is a closed path in Γ; i.e., a sequence vertices L = v 1 v 2... v q where v i is adjacent to v i+1 for i = 1,..., q and v q is adjacent to v 1 1 if e j L and e j is oriented as L z L (e j ) = 1 if e j L and e j is oriented opposite to L 0 otherwise Z(Γ) is the linear subspace C 1 (Γ) spanned by the z L Kirchf s current law (KCL): Z(Γ) = ker D; i.e., Dz = 0 for all z Z(Γ) e j e j = 0 v V (Γ) t(e j )=v s(e j )=v

14 Homological set-up ) Cocycle space B(Γ): The orthogonal complement Z(Γ) in C 1 (Γ) For any z Z(Γ) and ω B(Γ), z, ω C1 = 0 B(Γ) is the image C 0 (Γ) under the coboundary operator; i.e., every ω B(Γ) can be written as ω = D T x for some x C 0 (Γ) This gives Kirchhf s voltage law (KVL) ω1 ω2 ω0 + ω1 ω2 = 0 ω0

15 ) The data has the form r C 1 (Γ) r = ω + ε The true fsets satisfy ω B(Γ) (KVL) The noise ε C 1 (Γ) has probability density 1 f(ε) = ( (2π) m det R exp 1 ) 2 ε, ε R where ε, ε R = ε T R 1 ε

16 ) The conditional density for r given ω is 1 f(ε ω) = ( (2π) m det R exp 1 ) 2 r ω, r ω R The maximum-likelihood estimate ω is ˆω = arg min r ω, r ω R ω B(Γ)

17 ML ) The data may be written as r = ˆω + ˆε with ˆω B(Γ) (KVL) and ˆω, ˆε R = 0 i.e., the residual ˆε satisfies R 1 (ˆε) Z(Γ) (KCL) ˆω 1 ˆω 2 ˆε 0/σ ˆε 1/σ ˆε 2/σ 2 2 = 0 σ 2 2 ˆε 2 ˆω 0 + ˆω 1 ˆω 2 = 0 σ 2 1 ˆε 1 ˆω 0 ˆε 0 σ 2 0

18 ML ) Weighted graph Laplacian L : C 0 (Γ) C 0 (Γ) L = DR 1 D T Not invertible since ker L contains constant functions in C 0 (Γ) Choosing a reference vertex, the fset estimator ˆx W is ˆx = L 1 W D W R 1 r where L W and D W are defined with respect to the reduced vertex set The connection estimate is ˆω = D T W ˆx ˆω = D T W L 1 W D W R 1 r D T W L 1 W D W R 1 is the R-orthogonal projection into B(Γ)

19 d Performance the ML with R = σ 2 I ) For R = σ 2 I, the Fisher information is Its determinant is 1 σ 2 L W det F = t(γ)/σ 2(n 1) t(γ) is the number spanning trees in Γ g 0 g 1 g 2 g 3 g 0 g 1 g 2 g 3 g 0 g 1 g 2 g 3 g 0 g 1 g 2 g 3

20 Performance the ML with R = σ 2 I ) The ML estimator ˆx is unbiased Its covariance is Its determinant is Cˆx = E[(x ˆx)(x ˆx) T ] = σ 2 L 1 W Cˆx = σ 2(n 1) /t(γ)

21 d Performance the ML independent noise unequal variance ) For R = diag(σ 2 1,..., σ2 m), the Fisher information determinant is det F = S 1 σ 2 e j S j where the sum is over all spanning trees S in Γ The estimator ˆx is unbiased and det Cˆx = S g 0 g 1 g 2 g 3 g 0 g 1 σ 2 e j S j g 2 g 3 g 0 1 g 1 1 g 2 g 3 g 0 g 1 g 2 g 3

22 Noise on R If one link can be added to... ) Which these is the best choice?

23 Local One-dimensional noise case ) For R = diag(σ 2 1,..., σ2 m), the ML estimator residual satisfies KCL; i.e., DR 1 (r ˆω) = 0 Thus ˆω = D T x for some x C 0 (Γ) (KVL) So Lx = DR 1 r where L = DR 1 D T is the weighted graph Laplacian Any solution to this equation will serve for the local estimation algorithm

24 Local One-dimensional noise case ) Jacobi s Method gives a locally implementable solution The Laplacian can be written as L = N A where N is the degree map and A is the adjacency map for Γ Jacobi s method entails the iteration x n+1 = N 1 (DR 1 r + Ax n ) i.e., be the average what your neighbors think you are Jacobi s method is guaranteed to converge if L is diagonally dominant; i.e., L ii > i j L ij Unfortunately L ii = i j L ij, so convergence is not guaranteed

25 Other Results Summary ) Extension to G = R d solutions have a tensor structure Von Mises noise on T oscillator phase alignment Includes localizable fast algorithms that converge to near-ml estimates in all cases tested Algorithm: Be the weighted circular mean what your neighbors think you are where the weights come from how well the neighbors are aligned with their neighbors Compact connected abelian Lie groups follow the form R and T, but suitable noise models are a problem Making progress in the non-abelian Lie group setting, including the important special case G = SO(3) New work focusing more on estimation parameters from extrinsic data on a sensor network

26 Other Results Performance Fast s on T ) Mean Circular Error Local Q Eigenvector Local Hybrid ML Global Q Eigenvector Global A Eigenvector TrF κ

27 Other Results Performance Fast s on T ) Mean Circular Error Local Q Eigenvector Local Hybrid ML Global Q Eigenvector Global A Eigenvector TrF κ

Thrust #3 Active Information Exploitation for Resource Management. Value of Information Sharing In Networked Systems. Doug Cochran

Thrust #3 Active Information Exploitation for Resource Management. Value of Information Sharing In Networked Systems. Doug Cochran ARO MURI on Value-centered Theory for Adaptive Learning, Inference, Tracking, and Exploitation Thrust #3 Active Exploitation for Resource Management Value Sharing In Networked Systems Doug Cochran Synopsis

More information

Applications of Information Geometry to Hypothesis Testing and Signal Detection

Applications of Information Geometry to Hypothesis Testing and Signal Detection CMCAA 2016 Applications of Information Geometry to Hypothesis Testing and Signal Detection Yongqiang Cheng National University of Defense Technology July 2016 Outline 1. Principles of Information Geometry

More information

GAUSSIAN PROCESS REGRESSION

GAUSSIAN PROCESS REGRESSION GAUSSIAN PROCESS REGRESSION CSE 515T Spring 2015 1. BACKGROUND The kernel trick again... The Kernel Trick Consider again the linear regression model: y(x) = φ(x) w + ε, with prior p(w) = N (w; 0, Σ). The

More information

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations.

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations. Previously Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations y = Ax Or A simply represents data Notion of eigenvectors,

More information

Information geometry for bivariate distribution control

Information geometry for bivariate distribution control Information geometry for bivariate distribution control C.T.J.Dodson + Hong Wang Mathematics + Control Systems Centre, University of Manchester Institute of Science and Technology Optimal control of stochastic

More information

Scalable robust hypothesis tests using graphical models

Scalable robust hypothesis tests using graphical models Scalable robust hypothesis tests using graphical models Umamahesh Srinivas ipal Group Meeting October 22, 2010 Binary hypothesis testing problem Random vector x = (x 1,...,x n ) R n generated from either

More information

Lecture 12: Introduction to Spectral Graph Theory, Cheeger s inequality

Lecture 12: Introduction to Spectral Graph Theory, Cheeger s inequality CSE 521: Design and Analysis of Algorithms I Spring 2016 Lecture 12: Introduction to Spectral Graph Theory, Cheeger s inequality Lecturer: Shayan Oveis Gharan May 4th Scribe: Gabriel Cadamuro Disclaimer:

More information

Dimensionality Reduction. CS57300 Data Mining Fall Instructor: Bruno Ribeiro

Dimensionality Reduction. CS57300 Data Mining Fall Instructor: Bruno Ribeiro Dimensionality Reduction CS57300 Data Mining Fall 2016 Instructor: Bruno Ribeiro Goal } Visualize high dimensional data (and understand its Geometry) } Project the data into lower dimensional spaces }

More information

Ph.D. Qualifying Exam: Algebra I

Ph.D. Qualifying Exam: Algebra I Ph.D. Qualifying Exam: Algebra I 1. Let F q be the finite field of order q. Let G = GL n (F q ), which is the group of n n invertible matrices with the entries in F q. Compute the order of the group G

More information

Gossip algorithms for solving Laplacian systems

Gossip algorithms for solving Laplacian systems Gossip algorithms for solving Laplacian systems Anastasios Zouzias University of Toronto joint work with Nikolaos Freris (EPFL) Based on : 1.Fast Distributed Smoothing for Clock Synchronization (CDC 1).Randomized

More information

MATH 829: Introduction to Data Mining and Analysis Clustering II

MATH 829: Introduction to Data Mining and Analysis Clustering II his lecture is based on U. von Luxburg, A Tutorial on Spectral Clustering, Statistics and Computing, 17 (4), 2007. MATH 829: Introduction to Data Mining and Analysis Clustering II Dominique Guillot Departments

More information

Machine learning - HT Maximum Likelihood

Machine learning - HT Maximum Likelihood Machine learning - HT 2016 3. Maximum Likelihood Varun Kanade University of Oxford January 27, 2016 Outline Probabilistic Framework Formulate linear regression in the language of probability Introduce

More information

MAP Examples. Sargur Srihari

MAP Examples. Sargur Srihari MAP Examples Sargur srihari@cedar.buffalo.edu 1 Potts Model CRF for OCR Topics Image segmentation based on energy minimization 2 Examples of MAP Many interesting examples of MAP inference are instances

More information

Factor Analysis and Kalman Filtering (11/2/04)

Factor Analysis and Kalman Filtering (11/2/04) CS281A/Stat241A: Statistical Learning Theory Factor Analysis and Kalman Filtering (11/2/04) Lecturer: Michael I. Jordan Scribes: Byung-Gon Chun and Sunghoon Kim 1 Factor Analysis Factor analysis is used

More information

No. of dimensions 1. No. of centers

No. of dimensions 1. No. of centers Contents 8.6 Course of dimensionality............................ 15 8.7 Computational aspects of linear estimators.................. 15 8.7.1 Diagonalization of circulant andblock-circulant matrices......

More information

p(d θ ) l(θ ) 1.2 x x x

p(d θ ) l(θ ) 1.2 x x x p(d θ ).2 x 0-7 0.8 x 0-7 0.4 x 0-7 l(θ ) -20-40 -60-80 -00 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ θ x FIGURE 3.. The top graph shows several training points in one dimension, known or assumed to

More information

EEL 5544 Noise in Linear Systems Lecture 30. X (s) = E [ e sx] f X (x)e sx dx. Moments can be found from the Laplace transform as

EEL 5544 Noise in Linear Systems Lecture 30. X (s) = E [ e sx] f X (x)e sx dx. Moments can be found from the Laplace transform as L30-1 EEL 5544 Noise in Linear Systems Lecture 30 OTHER TRANSFORMS For a continuous, nonnegative RV X, the Laplace transform of X is X (s) = E [ e sx] = 0 f X (x)e sx dx. For a nonnegative RV, the Laplace

More information

Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings

Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline

More information

Laplacians of Graphs, Spectra and Laplacian polynomials

Laplacians of Graphs, Spectra and Laplacian polynomials Mednykh A. D. (Sobolev Institute of Math) Laplacian for Graphs 27 June - 03 July 2015 1 / 30 Laplacians of Graphs, Spectra and Laplacian polynomials Alexander Mednykh Sobolev Institute of Mathematics Novosibirsk

More information

Lecture 7. Econ August 18

Lecture 7. Econ August 18 Lecture 7 Econ 2001 2015 August 18 Lecture 7 Outline First, the theorem of the maximum, an amazing result about continuity in optimization problems. Then, we start linear algebra, mostly looking at familiar

More information

13 : Variational Inference: Loopy Belief Propagation and Mean Field

13 : Variational Inference: Loopy Belief Propagation and Mean Field 10-708: Probabilistic Graphical Models 10-708, Spring 2012 13 : Variational Inference: Loopy Belief Propagation and Mean Field Lecturer: Eric P. Xing Scribes: Peter Schulam and William Wang 1 Introduction

More information

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang.

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang. Machine Learning CUNY Graduate Center, Spring 2013 Lectures 11-12: Unsupervised Learning 1 (Clustering: k-means, EM, mixture models) Professor Liang Huang huang@cs.qc.cuny.edu http://acl.cs.qc.edu/~lhuang/teaching/machine-learning

More information

Probabilistic & Unsupervised Learning

Probabilistic & Unsupervised Learning Probabilistic & Unsupervised Learning Week 2: Latent Variable Models Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc ML/CSML, Dept Computer Science University College

More information

ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015

ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 http://intelligentoptimization.org/lionbook Roberto Battiti

More information

Multi-Robotic Systems

Multi-Robotic Systems CHAPTER 9 Multi-Robotic Systems The topic of multi-robotic systems is quite popular now. It is believed that such systems can have the following benefits: Improved performance ( winning by numbers ) Distributed

More information

Minimum Message Length Analysis of the Behrens Fisher Problem

Minimum Message Length Analysis of the Behrens Fisher Problem Analysis of the Behrens Fisher Problem Enes Makalic and Daniel F Schmidt Centre for MEGA Epidemiology The University of Melbourne Solomonoff 85th Memorial Conference, 2011 Outline Introduction 1 Introduction

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen PCA. Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen PCA. Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen PCA Tobias Scheffer Overview Principal Component Analysis (PCA) Kernel-PCA Fisher Linear Discriminant Analysis t-sne 2 PCA: Motivation

More information

STATS306B STATS306B. Discriminant Analysis. Jonathan Taylor Department of Statistics Stanford University. June 3, 2010

STATS306B STATS306B. Discriminant Analysis. Jonathan Taylor Department of Statistics Stanford University. June 3, 2010 STATS306B Discriminant Analysis Jonathan Taylor Department of Statistics Stanford University June 3, 2010 Spring 2010 Classification Given K classes in R p, represented as densities f i (x), 1 i K classify

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Chapter 1. Introduction Shuai Huang April 21, 2014 Outline 1 What is Machine Learning? 2 Curve Fitting 3 Probability Theory 4 Model Selection 5 The curse of dimensionality

More information

Linear algebra and applications to graphs Part 1

Linear algebra and applications to graphs Part 1 Linear algebra and applications to graphs Part 1 Written up by Mikhail Belkin and Moon Duchin Instructor: Laszlo Babai June 17, 2001 1 Basic Linear Algebra Exercise 1.1 Let V and W be linear subspaces

More information

Lecture 10: October 27, 2016

Lecture 10: October 27, 2016 Mathematical Toolkit Autumn 206 Lecturer: Madhur Tulsiani Lecture 0: October 27, 206 The conjugate gradient method In the last lecture we saw the steepest descent or gradient descent method for finding

More information

Unsupervised Learning

Unsupervised Learning 2018 EE448, Big Data Mining, Lecture 7 Unsupervised Learning Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net http://wnzhang.net/teaching/ee448/index.html ML Problem Setting First build and

More information

Vector spaces. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis.

Vector spaces. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis. Vector spaces DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Vector space Consists of: A set V A scalar

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Feature Extraction Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi, Payam Siyari Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Agenda Dimensionality Reduction

More information

Handout to Wu Characteristic Harvard math table talk Oliver Knill, 3/8/2016

Handout to Wu Characteristic Harvard math table talk Oliver Knill, 3/8/2016 Handout to Wu Characteristic Harvard math table talk Oliver Knill, 3/8/2016 Definitions Let G = (V, E) be a finite simple graph with vertex set V and edge set E. The f-vector v(g) = (v 0 (G), v 1 (G),...,

More information

Lecture 1: Systems of linear equations and their solutions

Lecture 1: Systems of linear equations and their solutions Lecture 1: Systems of linear equations and their solutions Course overview Topics to be covered this semester: Systems of linear equations and Gaussian elimination: Solving linear equations and applications

More information

Pattern Recognition 2

Pattern Recognition 2 Pattern Recognition 2 KNN,, Dr. Terence Sim School of Computing National University of Singapore Outline 1 2 3 4 5 Outline 1 2 3 4 5 The Bayes Classifier is theoretically optimum. That is, prob. of error

More information

Dimension Reduction Techniques. Presented by Jie (Jerry) Yu

Dimension Reduction Techniques. Presented by Jie (Jerry) Yu Dimension Reduction Techniques Presented by Jie (Jerry) Yu Outline Problem Modeling Review of PCA and MDS Isomap Local Linear Embedding (LLE) Charting Background Advances in data collection and storage

More information

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M =

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = CALCULUS ON MANIFOLDS 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = a M T am, called the tangent bundle, is itself a smooth manifold, dim T M = 2n. Example 1.

More information

Math 225B: Differential Geometry, Final

Math 225B: Differential Geometry, Final Math 225B: Differential Geometry, Final Ian Coley March 5, 204 Problem Spring 20,. Show that if X is a smooth vector field on a (smooth) manifold of dimension n and if X p is nonzero for some point of

More information

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1 Assistant: Saskia Voss Sheet 1 1. Conformal change of Riemannian metrics [3 points] Let (M, g) be a Riemannian manifold. A conformal change is a nonnegative function λ : M (0, ). Such a function defines

More information

PCA, Kernel PCA, ICA

PCA, Kernel PCA, ICA PCA, Kernel PCA, ICA Learning Representations. Dimensionality Reduction. Maria-Florina Balcan 04/08/2015 Big & High-Dimensional Data High-Dimensions = Lot of Features Document classification Features per

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Regression based methods, 1st part: Introduction (Sec.

More information

x 3y 2z = 6 1.2) 2x 4y 3z = 8 3x + 6y + 8z = 5 x + 3y 2z + 5t = 4 1.5) 2x + 8y z + 9t = 9 3x + 5y 12z + 17t = 7

x 3y 2z = 6 1.2) 2x 4y 3z = 8 3x + 6y + 8z = 5 x + 3y 2z + 5t = 4 1.5) 2x + 8y z + 9t = 9 3x + 5y 12z + 17t = 7 Linear Algebra and its Applications-Lab 1 1) Use Gaussian elimination to solve the following systems x 1 + x 2 2x 3 + 4x 4 = 5 1.1) 2x 1 + 2x 2 3x 3 + x 4 = 3 3x 1 + 3x 2 4x 3 2x 4 = 1 x + y + 2z = 4 1.4)

More information

Variational Inference (11/04/13)

Variational Inference (11/04/13) STA561: Probabilistic machine learning Variational Inference (11/04/13) Lecturer: Barbara Engelhardt Scribes: Matt Dickenson, Alireza Samany, Tracy Schifeling 1 Introduction In this lecture we will further

More information

LECTURE NOTE #11 PROF. ALAN YUILLE

LECTURE NOTE #11 PROF. ALAN YUILLE LECTURE NOTE #11 PROF. ALAN YUILLE 1. NonLinear Dimension Reduction Spectral Methods. The basic idea is to assume that the data lies on a manifold/surface in D-dimensional space, see figure (1) Perform

More information

(a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? Solution: dim N(A) 1, since rank(a) 3. Ax =

(a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? Solution: dim N(A) 1, since rank(a) 3. Ax = . (5 points) (a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? dim N(A), since rank(a) 3. (b) If we also know that Ax = has no solution, what do we know about the rank of A? C(A)

More information

CSC2541 Lecture 5 Natural Gradient

CSC2541 Lecture 5 Natural Gradient CSC2541 Lecture 5 Natural Gradient Roger Grosse Roger Grosse CSC2541 Lecture 5 Natural Gradient 1 / 12 Motivation Two classes of optimization procedures used throughout ML (stochastic) gradient descent,

More information

Lecture 20: Linear model, the LSE, and UMVUE

Lecture 20: Linear model, the LSE, and UMVUE Lecture 20: Linear model, the LSE, and UMVUE Linear Models One of the most useful statistical models is X i = β τ Z i + ε i, i = 1,...,n, where X i is the ith observation and is often called the ith response;

More information

MLCC Clustering. Lorenzo Rosasco UNIGE-MIT-IIT

MLCC Clustering. Lorenzo Rosasco UNIGE-MIT-IIT MLCC 2018 - Clustering Lorenzo Rosasco UNIGE-MIT-IIT About this class We will consider an unsupervised setting, and in particular the problem of clustering unlabeled data into coherent groups. MLCC 2018

More information

Differential Geometry: Discrete Exterior Calculus

Differential Geometry: Discrete Exterior Calculus Differential Geometry: Discrete Exterior Calculus [Discrete Exterior Calculus (Thesis). Hirani, 23] [Discrete Differential Forms for Computational Modeling. Desbrun et al., 25] [Build Your Own DEC at Home.

More information

Physics 403. Segev BenZvi. Parameter Estimation, Correlations, and Error Bars. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Parameter Estimation, Correlations, and Error Bars. Department of Physics and Astronomy University of Rochester Physics 403 Parameter Estimation, Correlations, and Error Bars Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Review of Last Class Best Estimates and Reliability

More information

Review of Maximum Likelihood Estimators

Review of Maximum Likelihood Estimators Libby MacKinnon CSE 527 notes Lecture 7, October 7, 2007 MLE and EM Review of Maximum Likelihood Estimators MLE is one of many approaches to parameter estimation. The likelihood of independent observations

More information

Class Averaging in Cryo-Electron Microscopy

Class Averaging in Cryo-Electron Microscopy Class Averaging in Cryo-Electron Microscopy Zhizhen Jane Zhao Courant Institute of Mathematical Sciences, NYU Mathematics in Data Sciences ICERM, Brown University July 30 2015 Single Particle Reconstruction

More information

Ma/CS 6b Class 23: Eigenvalues in Regular Graphs

Ma/CS 6b Class 23: Eigenvalues in Regular Graphs Ma/CS 6b Class 3: Eigenvalues in Regular Graphs By Adam Sheffer Recall: The Spectrum of a Graph Consider a graph G = V, E and let A be the adjacency matrix of G. The eigenvalues of G are the eigenvalues

More information

Symmetries, Groups, and Conservation Laws

Symmetries, Groups, and Conservation Laws Chapter Symmetries, Groups, and Conservation Laws The dynamical properties and interactions of a system of particles and fields are derived from the principle of least action, where the action is a 4-dimensional

More information

1 Matrix notation and preliminaries from spectral graph theory

1 Matrix notation and preliminaries from spectral graph theory Graph clustering (or community detection or graph partitioning) is one of the most studied problems in network analysis. One reason for this is that there are a variety of ways to define a cluster or community.

More information

Quantum Field Theory III

Quantum Field Theory III Quantum Field Theory III Prof. Erick Weinberg January 19, 2011 1 Lecture 1 1.1 Structure We will start with a bit of group theory, and we will talk about spontaneous symmetry broken. Then we will talk

More information

DIFFERENTIAL GEOMETRY HW 12

DIFFERENTIAL GEOMETRY HW 12 DIFFERENTIAL GEOMETRY HW 1 CLAY SHONKWILER 3 Find the Lie algebra so(n) of the special orthogonal group SO(n), and the explicit formula for the Lie bracket there. Proof. Since SO(n) is a subgroup of GL(n),

More information

ECE534, Spring 2018: Solutions for Problem Set #3

ECE534, Spring 2018: Solutions for Problem Set #3 ECE534, Spring 08: Solutions for Problem Set #3 Jointly Gaussian Random Variables and MMSE Estimation Suppose that X, Y are jointly Gaussian random variables with µ X = µ Y = 0 and σ X = σ Y = Let their

More information

a b = a T b = a i b i (1) i=1 (Geometric definition) The dot product of two Euclidean vectors a and b is defined by a b = a b cos(θ a,b ) (2)

a b = a T b = a i b i (1) i=1 (Geometric definition) The dot product of two Euclidean vectors a and b is defined by a b = a b cos(θ a,b ) (2) This is my preperation notes for teaching in sections during the winter 2018 quarter for course CSE 446. Useful for myself to review the concepts as well. More Linear Algebra Definition 1.1 (Dot Product).

More information

Math 118, Fall 2014 Final Exam

Math 118, Fall 2014 Final Exam Math 8, Fall 4 Final Exam True or false Please circle your choice; no explanation is necessary True There is a linear transformation T such that T e ) = e and T e ) = e Solution Since T is linear, if T

More information

18.06 Professor Johnson Quiz 1 October 3, 2007

18.06 Professor Johnson Quiz 1 October 3, 2007 18.6 Professor Johnson Quiz 1 October 3, 7 SOLUTIONS 1 3 pts.) A given circuit network directed graph) which has an m n incidence matrix A rows = edges, columns = nodes) and a conductance matrix C [diagonal

More information

Lecture Notes 1: Vector spaces

Lecture Notes 1: Vector spaces Optimization-based data analysis Fall 2017 Lecture Notes 1: Vector spaces In this chapter we review certain basic concepts of linear algebra, highlighting their application to signal processing. 1 Vector

More information

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception LINEAR MODELS FOR CLASSIFICATION Classification: Problem Statement 2 In regression, we are modeling the relationship between a continuous input variable x and a continuous target variable t. In classification,

More information

Adapted Feature Extraction and Its Applications

Adapted Feature Extraction and Its Applications saito@math.ucdavis.edu 1 Adapted Feature Extraction and Its Applications Naoki Saito Department of Mathematics University of California Davis, CA 95616 email: saito@math.ucdavis.edu URL: http://www.math.ucdavis.edu/

More information

The Multivariate Gaussian Distribution

The Multivariate Gaussian Distribution The Multivariate Gaussian Distribution Chuong B. Do October, 8 A vector-valued random variable X = T X X n is said to have a multivariate normal or Gaussian) distribution with mean µ R n and covariance

More information

Spectral Clustering. Guokun Lai 2016/10

Spectral Clustering. Guokun Lai 2016/10 Spectral Clustering Guokun Lai 2016/10 1 / 37 Organization Graph Cut Fundamental Limitations of Spectral Clustering Ng 2002 paper (if we have time) 2 / 37 Notation We define a undirected weighted graph

More information

Laplacians of Graphs, Spectra and Laplacian polynomials

Laplacians of Graphs, Spectra and Laplacian polynomials Laplacians of Graphs, Spectra and Laplacian polynomials Lector: Alexander Mednykh Sobolev Institute of Mathematics Novosibirsk State University Winter School in Harmonic Functions on Graphs and Combinatorial

More information

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Maximilian Kasy Department of Economics, Harvard University 1 / 37 Agenda 6 equivalent representations of the

More information

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout :. The Multivariate Gaussian & Decision Boundaries..15.1.5 1 8 6 6 8 1 Mark Gales mjfg@eng.cam.ac.uk Lent

More information

Lecture 25: Review. Statistics 104. April 23, Colin Rundel

Lecture 25: Review. Statistics 104. April 23, Colin Rundel Lecture 25: Review Statistics 104 Colin Rundel April 23, 2012 Joint CDF F (x, y) = P [X x, Y y] = P [(X, Y ) lies south-west of the point (x, y)] Y (x,y) X Statistics 104 (Colin Rundel) Lecture 25 April

More information

University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 2: Multivariate Gaussians

University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 2: Multivariate Gaussians Engineering Part IIB: Module F Statistical Pattern Processing University of Cambridge Engineering Part IIB Module F: Statistical Pattern Processing Handout : Multivariate Gaussians. Generative Model Decision

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Lecture 10: Dimension Reduction Techniques

Lecture 10: Dimension Reduction Techniques Lecture 10: Dimension Reduction Techniques Radu Balan Department of Mathematics, AMSC, CSCAMM and NWC University of Maryland, College Park, MD April 17, 2018 Input Data It is assumed that there is a set

More information

18.312: Algebraic Combinatorics Lionel Levine. Lecture 19

18.312: Algebraic Combinatorics Lionel Levine. Lecture 19 832: Algebraic Combinatorics Lionel Levine Lecture date: April 2, 20 Lecture 9 Notes by: David Witmer Matrix-Tree Theorem Undirected Graphs Let G = (V, E) be a connected, undirected graph with n vertices,

More information

Communities Via Laplacian Matrices. Degree, Adjacency, and Laplacian Matrices Eigenvectors of Laplacian Matrices

Communities Via Laplacian Matrices. Degree, Adjacency, and Laplacian Matrices Eigenvectors of Laplacian Matrices Communities Via Laplacian Matrices Degree, Adjacency, and Laplacian Matrices Eigenvectors of Laplacian Matrices The Laplacian Approach As with betweenness approach, we want to divide a social graph into

More information

Least squares: introduction to the network adjustment

Least squares: introduction to the network adjustment Least squares: introduction to the network adjustment Experimental evidence and consequences Observations of the same quantity that have been performed at the highest possible accuracy provide different

More information

Differential Geometry qualifying exam 562 January 2019 Show all your work for full credit

Differential Geometry qualifying exam 562 January 2019 Show all your work for full credit Differential Geometry qualifying exam 562 January 2019 Show all your work for full credit 1. (a) Show that the set M R 3 defined by the equation (1 z 2 )(x 2 + y 2 ) = 1 is a smooth submanifold of R 3.

More information

Concepts in Global Sensitivity Analysis IMA UQ Short Course, June 23, 2015

Concepts in Global Sensitivity Analysis IMA UQ Short Course, June 23, 2015 Concepts in Global Sensitivity Analysis IMA UQ Short Course, June 23, 2015 A good reference is Global Sensitivity Analysis: The Primer. Saltelli, et al. (2008) Paul Constantine Colorado School of Mines

More information

FFTs in Graphics and Vision. The Laplace Operator

FFTs in Graphics and Vision. The Laplace Operator FFTs in Graphics and Vision The Laplace Operator 1 Outline Math Stuff Symmetric/Hermitian Matrices Lagrange Multipliers Diagonalizing Symmetric Matrices The Laplacian Operator 2 Linear Operators Definition:

More information

MA 265 FINAL EXAM Fall 2012

MA 265 FINAL EXAM Fall 2012 MA 265 FINAL EXAM Fall 22 NAME: INSTRUCTOR S NAME:. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron. 2. No books, notes, or calculators

More information

Multivariate Random Variable

Multivariate Random Variable Multivariate Random Variable Author: Author: Andrés Hincapié and Linyi Cao This Version: August 7, 2016 Multivariate Random Variable 3 Now we consider models with more than one r.v. These are called multivariate

More information

Unsupervised Learning Techniques Class 07, 1 March 2006 Andrea Caponnetto

Unsupervised Learning Techniques Class 07, 1 March 2006 Andrea Caponnetto Unsupervised Learning Techniques 9.520 Class 07, 1 March 2006 Andrea Caponnetto About this class Goal To introduce some methods for unsupervised learning: Gaussian Mixtures, K-Means, ISOMAP, HLLE, Laplacian

More information

Chris Bishop s PRML Ch. 8: Graphical Models

Chris Bishop s PRML Ch. 8: Graphical Models Chris Bishop s PRML Ch. 8: Graphical Models January 24, 2008 Introduction Visualize the structure of a probabilistic model Design and motivate new models Insights into the model s properties, in particular

More information

Lecture: Some Practical Considerations (3 of 4)

Lecture: Some Practical Considerations (3 of 4) Stat260/CS294: Spectral Graph Methods Lecture 14-03/10/2015 Lecture: Some Practical Considerations (3 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough.

More information

Spectra of Digraph Transformations

Spectra of Digraph Transformations Spectra of Digraph Transformations Aiping Deng a,, Alexander Kelmans b,c a Department of Applied Mathematics, Donghua University, 201620 Shanghai, China arxiv:1707.00401v1 [math.co] 3 Jul 2017 b Department

More information

Covariance Matrix Simplification For Efficient Uncertainty Management

Covariance Matrix Simplification For Efficient Uncertainty Management PASEO MaxEnt 2007 Covariance Matrix Simplification For Efficient Uncertainty Management André Jalobeanu, Jorge A. Gutiérrez PASEO Research Group LSIIT (CNRS/ Univ. Strasbourg) - Illkirch, France *part

More information

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30 Problem Set 2 MAS 622J/1.126J: Pattern Recognition and Analysis Due: 5:00 p.m. on September 30 [Note: All instructions to plot data or write a program should be carried out using Matlab. In order to maintain

More information

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING DATE AND TIME: June 9, 2018, 09.00 14.00 RESPONSIBLE TEACHER: Andreas Svensson NUMBER OF PROBLEMS: 5 AIDING MATERIAL: Calculator, mathematical

More information

6.867 Machine Learning

6.867 Machine Learning 6.867 Machine Learning Problem Set 2 Due date: Wednesday October 6 Please address all questions and comments about this problem set to 6867-staff@csail.mit.edu. You will need to use MATLAB for some of

More information

Variational sampling approaches to word confusability

Variational sampling approaches to word confusability Variational sampling approaches to word confusability John R. Hershey, Peder A. Olsen and Ramesh A. Gopinath {jrhershe,pederao,rameshg}@us.ibm.com IBM, T. J. Watson Research Center Information Theory and

More information

L11: Pattern recognition principles

L11: Pattern recognition principles L11: Pattern recognition principles Bayesian decision theory Statistical classifiers Dimensionality reduction Clustering This lecture is partly based on [Huang, Acero and Hon, 2001, ch. 4] Introduction

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables This Version: July 30, 2015 Multiple Random Variables 2 Now we consider models with more than one r.v. These are called multivariate models For instance: height and weight An

More information

Lecture 10. Lecturer: Aleksander Mądry Scribes: Mani Bastani Parizi and Christos Kalaitzis

Lecture 10. Lecturer: Aleksander Mądry Scribes: Mani Bastani Parizi and Christos Kalaitzis CS-621 Theory Gems October 18, 2012 Lecture 10 Lecturer: Aleksander Mądry Scribes: Mani Bastani Parizi and Christos Kalaitzis 1 Introduction In this lecture, we will see how one can use random walks to

More information

Probability Models for Bayesian Recognition

Probability Models for Bayesian Recognition Intelligent Systems: Reasoning and Recognition James L. Crowley ENSIAG / osig Second Semester 06/07 Lesson 9 0 arch 07 Probability odels for Bayesian Recognition Notation... Supervised Learning for Bayesian

More information

Fiedler s Theorems on Nodal Domains

Fiedler s Theorems on Nodal Domains Spectral Graph Theory Lecture 7 Fiedler s Theorems on Nodal Domains Daniel A Spielman September 9, 202 7 About these notes These notes are not necessarily an accurate representation of what happened in

More information

Classification for High Dimensional Problems Using Bayesian Neural Networks and Dirichlet Diffusion Trees

Classification for High Dimensional Problems Using Bayesian Neural Networks and Dirichlet Diffusion Trees Classification for High Dimensional Problems Using Bayesian Neural Networks and Dirichlet Diffusion Trees Rafdord M. Neal and Jianguo Zhang Presented by Jiwen Li Feb 2, 2006 Outline Bayesian view of feature

More information

LECTURE NOTE #10 PROF. ALAN YUILLE

LECTURE NOTE #10 PROF. ALAN YUILLE LECTURE NOTE #10 PROF. ALAN YUILLE 1. Principle Component Analysis (PCA) One way to deal with the curse of dimensionality is to project data down onto a space of low dimensions, see figure (1). Figure

More information

Frequentist-Bayesian Model Comparisons: A Simple Example

Frequentist-Bayesian Model Comparisons: A Simple Example Frequentist-Bayesian Model Comparisons: A Simple Example Consider data that consist of a signal y with additive noise: Data vector (N elements): D = y + n The additive noise n has zero mean and diagonal

More information