Communities Via Laplacian Matrices. Degree, Adjacency, and Laplacian Matrices Eigenvectors of Laplacian Matrices

Size: px
Start display at page:

Download "Communities Via Laplacian Matrices. Degree, Adjacency, and Laplacian Matrices Eigenvectors of Laplacian Matrices"

Transcription

1 Communities Via Laplacian Matrices Degree, Adjacency, and Laplacian Matrices Eigenvectors of Laplacian Matrices

2 The Laplacian Approach As with betweenness approach, we want to divide a social graph into communities with most edges contained within a community. A surprising technique involving the eigenvector with the second-smallest eigenvalue serves as a good heuristic for breaking a graph into two parts that have the smallest number of edges between them. Can iterate to divide into as many parts as we like. 2

3 Three Matrices That Describe Graphs 1. Degree matrix: entry (i, i) is the degree of node i; off-diagonal entries are Adjacency matrix: entry (i, j) is 1 if there is an edge between node i and node j, otherwise Laplacian matrix = adjacency matrix minus degree matrix. 3

4 Example: Matrices A B C D Degree matrix Adjacency matrix Laplacian matrix 4

5 Every Laplacian Has Zero as an Eigenvalue Proof: Each row has a sum of 0, so Laplacian L multiplying an all-1 s vector is all 0 s, which is also 0 times the all-1 s vector. Example: =

6 The Second-Smallest Eigenvalue Let L be a Laplacian matrix, so L = D A, where D and A are the degree matrix and adjacency matrix for some graph. The second eigenvector x can be found by minimizing x T Lx subject to the constraints: 1. The length of x is x is orthogonal to the eigenvector associated with the smallest eigenvalue. The all-1 s vector for Laplacian matrices L. And the minimum of x T Lx is the eigenvalue. 6

7 Meaning of Second Eigenvector Let the i-th component of x be x i. Aside: Constraint that x is orthogonal to all-1 s vector says sum of x i s = 0. Break up x T Lx as x T Lx = x T Dx x T Ax. Since D is diagonal, with degree d i as i-th diagonal entry, Dx = vector with i-th element d i x i. Therefore, x T Dx = sum of d i x i 2. i-th component of Ax = sum of x j s where node j is adjacent to node i. x T Ax = sum of -2x i x j over all adjacent i and j. 7

8 Second Eigenvector (2) Now we know x T Lx = Σ i d i x i 2 Σ i,j adjacent 2x i x j. Distribute d i x i 2 over all nodes adjacent to node i. Gives us x T Lx = Σ i,j adjacent x i 2-2x i x j + x j 2 = Σ i,j adjacent (x i -x j ) 2. Remember: we re minimizing x T Lx. The minimum will tend to make x i and x j close when there is an edge between i and j. Also, constraint that sum of x i s = 0 means there will be roughly the same number of positive and negative x i s. 8

9 Second Eigenvector (3) Put another way: if there is an edge between i and j, then there is a good chance that both x i and x j will be positive or both negative. So partition the graph according to the sign of x i. Likely to minimize the number of edges with one end in either side. 9

10 Example: Second Eigenvector. A B C D Laplacian matrix Eigenvalues: 0, =, 2, = Puts A and B in the positive group, C and D in the negative group. 10

11 Analysis of Large Graphs: Trawling

12 Trawling [Kumar et al. 99] Searching for small communities in the Web graph What is the signature of a community / discussion in a Web graph? Use this to define topics : What the same people on the left talk about on the right Remember HITS! Dense 2-layer graph Intuition: Many people all talking about the same things

13 Searching for Small Communities A more well-defined problem: Enumerate complete bipartite subgraphs K s,t Where K s,t : s nodes on the left where each links to the same t other nodes on the right X K 3,4 Y X = s = 3 Y = t = 4 Fully connected

14 [Agrawal-Srikant 99] Frequent Itemset Enumeration Market basket analysis. Setting: Market: Universe U of n items Baskets: m subsets of U: S 1, S 2,, S m U (S i is a set of items one person bought) Support: Frequency threshold f Goal: Find all subsets T s.t. T S i of at least f sets S i (items in T were bought together at least f times) What s the connection between the itemsets and complete bipartite graphs?

15 [Kumar et al. 99] From Itemsets to Bipartite K s,t Frequent itemsets = complete bipartite graphs! How? View each node i as a set S i of nodes i points to K s,t = a set Y of size t that occurs in s sets S i Looking for K s,t! set of frequency threshold to s and look at layer t all frequent sets of size t i X j i k a b c d S i ={a,b,c,d} a b c d Y s minimum support ( X =s) t itemset size ( Y =t)

16 From Itemsets to Bipartite K s,t [Kumar et al. 99] View each node i as a set S i of nodes i points to i a b c d S i ={a,b,c,d} Find frequent itemsets: s minimum support t itemset size We found K s,t! K s,t = a set Y of size t that occurs in s sets S i x Say we find a frequent itemset Y={a,b,c} of supp s So, there are s nodes that link to a all of {a,b,c}: a b b z c y c X x y z a b c Y a b c

17 Example (1) a c d e f Itemsets: a = {b,c,d} b = {d} c = {b,d,e,f} d = {e,f} e = {b,d} f = {} b Support threshold s=2 {b,d}: support 3 {e,f}: support 2 And we just found 2 bipartite subgraphs: a c e d b c e f d

18 Dense Communities Have Big Bi-Cliques Suppose we have a community with 2n nodes, divided into left and right sides of size n. Suppose the average degree of a node within the community is 2d, so the average node has d edges connecting to the other side. Then a basket (right-side node) with d i items generates about d ( i itemsets of size t. t ) Minimum number of itemsets of size t is generated when all d i s are the same and therefore = d. That number is n d. ( t )

19 Bi-Cliques Exist (2) Total number of itemsets of size n ( t ) is. Average number of baskets per itemset is d at least ( t ) n ( n t) /. Assume n > d >> t, and we can approximate the average by n(d/n) t. At least one itemset of size t must appear in an average number of baskets, so there will be an itemset of size t with support s as long as n(d/n) t > s. Uses approximation x choose y is about x y /y! when x >> y.

20 Example: Bi-Cliques Exist Suppose there is a community of 200 nodes, which we divide into the two sides with n = 100 each. Suppose that within the community, half of all possible edges exist, so d = 50. Then there is a bi-clique with t nodes on the left and s nodes on the right as long as 100(1/2) t > s. For instance, (t, s) could be (2, 25), (3,13), or (4, 6).

21 Example (2) Example of a community from a web graph Nodes on the right Nodes on the left [Kumar, Raghavan, Rajagopalan, Tomkins: Trawling the Web for emerging cyber-communities 1999]

22 Analysis of Large Graphs: Overlapping Communities

23 Identifying Communities Can we identify node groups? (communities, modules, clusters) Nodes: Football Teams Edges: Games played

24 NCAA Football Network NCAA conferences Nodes: Football Teams Edges: Games played

25 Protein-Protein Interactions Can we identify functional modules? Nodes: Proteins Edges: Physical interactions

26 Protein-Protein Interactions Functional modules Nodes: Proteins Edges: Physical interactions

27 Facebook Network Can we identify social communities? Nodes: Facebook Users Edges: Friendships

28 Facebook Network Social communities High school Summer internship Stanford (Squash) Stanford (Basketball) Nodes: Facebook Users Edges: Friendships

29 Overlapping Communities Non-overlapping vs. overlapping communities

30 Non-overlapping Communities Nodes Nodes Network Adjacency matrix

31 Communities as Tiles! What is the structure of community overlaps: Edge density in the overlaps is higher! Communities as tiles

32 Recap so far Communities in a network This is what we want!

33 Plan of attack 1) Given a model, we generate the network: Generative model for networks A C B D E F G H 2) Given a network, find the best model B A C D E H F G Generative model for networks

34 Model of networks Goal: Define a model that can generate networks The model will have a set of parameters that we will later want to estimate (and detect communities) Generative model for networks A C B D E F G H Q: Given a set of nodes, how do communities generate edges of the network?

35 Community-Affiliation Graph Communities, C Memberships, M p A p B Mode l Nodes, V Model Network Generative model B(V, C, M, {p c }) for graphs: Nodes V, Communities C, Memberships M Each community c has a single probability p c Later we fit the model to networks to detect communities

36 AGM: Generative Process Communities, C Memberships, M p A p B Mode l Nodes, V Community Affiliations Network P ( u, v) = 1 (1 ) c M u M v p c Think of this as an OR function: If at least 1 community says YES we create an edge

37 Recap: AGM networks Model Network

38 AGM: Flexibility AGM can express a variety of community structures: Non-overlapping, Overlapping, Nested

39 How do we detect communities with AGM?

40 Detecting Communities Detecting communities with AGM: A C B D E F G H 1) Affiliation graph M 2) Number of communities C 3) Parameters p c

41 Maximum Likelihood Estimation

42 Example: MLE

43 MLE for Graphs Flip biased coins P( G Θ) = Π ( u, v) E P( u, v) Π ( u, v) E (1 P( u, v))

44 Graphs: Likelihood P(G Θ) Given graph G(V,E) and Θ, we calculate likelihood that Θ generated G: P(G Θ) G A B =B(V, C, M, {p c }) P(G Θ) G P( G Θ) = Π ( u, v) E P( u, v) Π ( u, v) E (1 P( u, v))

45 MLE for Graphs arg max Θ P( ) AGM Θ

46 MLE for AGM

47 From AGM to BigCLAM u v

48 j Nodes Communities

49 From AGM to BigCLAM Node community membership strengths

50 BigCLAM: How to find F

51 BigCLAM: V1.0

52 BigCLAM: V2.0

53 BigClam: Scalability BigCLAM takes 5 minutes for 300k node nets Other methods take 10 days Can process networks with 100M edges!

54 CPM: Clique-based community detection

55 Complete Mutuality: Cliques Clique: a maximum complete subgraph in which all nodes are adjacent to each other Nodes 5, 6, 7 and 8 form a clique NP-hard to find the maximum clique in a network Straightforward implementation to find cliques is very expensive in time complexity 55

56 Finding the Maximum Clique In a clique of size k, each node maintains degree >= k-1 Nodes with degree < k-1 will not be included in the maximum clique Recursively apply the following pruning procedure Sample a sub-network from the given network, and find a clique in the sub-network, say, by a greedy approach Suppose the clique above is size k, in order to find out a larger clique, all nodes with degree <= k-1 should be removed. Repeat until the network is small enough Many nodes will be pruned as social media networks follow a power law distribution for node degrees 56

57 Maximum Clique Example Suppose we sample a sub-network with nodes {1-9} and find a clique {1, 2, 3} of size 3 In order to find a clique >3, remove all nodes with degree <=3-1=2 Remove nodes 2 and 9 Remove nodes 1 and 3 Remove node 4 57

58 Clique Percolation Method (CPM) Clique is a very strict definition, unstable Normally use cliques as a core or a seed to find larger communities CPM is such a method to find overlapping communities Input A parameter k, and a network Procedure Find out all cliques of size k in a given network Construct a clique graph. Two cliques are adjacent if they share k-1 nodes Each connected components in the clique graph form a community 58

59 CPM Example Cliques of size 3: {1, 2, 3}, {1, 3, 4}, {4, 5, 6}, {5, 6, 7}, {5, 6, 8}, {5, 7, 8}, {6, 7, 8} Communities: {1, 2, 3, 4} {4, 5, 6, 7, 8} 59

60 Counting Triangles Bounds on Numbers of Triangles Heavy Hitters An Optimal Algorithm

61 Counting Triangles Why Care? 1. Density of triangles measures maturity of a community. As communities age, their members tend to connect. 2. The algorithm is actually an example of a recent and powerful theory of optimal join computation.

62 Data Structures Needed We need to represent a graph by data structures that let us do two things efficiently: 1. Given nodes u and v, determine whether there exists an edge between them in O(1) time. 2. Find the edges out of a node in time proportional to the number of those edges. Question for thought: What data structures would you recommend?

63 First Observations Let the graph have N nodes and M edges. N < M < N 2. One approach: Consider all N-choose-3 sets of nodes, and see if there are edges connecting all 3. An O(N 3 ) algorithm. Another approach: consider all edges e and all nodes u and see if both ends of e have edges to u. An O(MN) algorithm. Therefore never worse than the first approach.

64 Heavy Hitters To find a better algorithm, we need to use the concept of a heavy hitter a node with degree at least M. Note: there can be no more than 2 M heavy hitters, or the sum of the degrees of all nodes exceeds 2M. Impossible because each edge contributes exactly 2 to the sum of degrees. A heavy-hitter triangle is one whose three nodes are all heavy hitters.

65 Finding Heavy-Hitter Triangles First, find the heavy hitters. Determine the degrees of all nodes. Takes time O(M), assuming you can find the incident edges for a node in time proportional to the number of such edges. Consider all triples of heavy hitters and see if there are edges between each pair of the three. Takes time O(M 1.5 ), since there is a limit of 2 M on the number of heavy hitters.

66 Finding Other Triangles At least one node is not a heavy hitter. Consider each edge e. If both ends are heavy hitters, ignore. Otherwise, let end node u not be a heavy hitter. For each of the at most M nodes v connected to u, see whether v is connected to the other end of e. Takes time O(M 1.5 ). M edges, and at most M work with each.

67 Optimality of This Algorithm Both parts take O(M 1.5 ) time and together find any triangle in the graph. For any N and M, you can find a graph with N nodes, M edges, and Ω(M 1.5 ) triangles, so no algorithm can do significantly better. Hint: consider a complete graph with M nodes, plus other isolated nodes. Note that M 1.5 can never be greater than the running times of the two obvious algorithms with which we began: N 3 and MN.

68 SimRank

69 Basic Graph Model Directed Graph G = (V,E) V = set of objects E = set of unweighted edges Edge (u,v) exists if there is an relation u! v I(v) = set of in-neighbors of vertex v O(v) = set of out-neighbors of vertex v U Pa Pb Sa Sb U Pa Pb Sa Sb & 0 $ $ 0 $ 0 $ $ 1 $ % #! 0! 1!! 0! 0! "

70 SimRank Similarity Recursive Model Two objects are similar if they are referenced by similar objects That is, a ~ b if c! a and d! b, and c ~ d An object is equivalent to itself (score = 1) Example 1. ProfA ~ ProfB because both are referenced by Univ. 2. StudentA ~ StudentB because they are referenced by similar nodes {ProfA,ProfB}

71 Basic SimRank Equation s(a,b) = similarity between a and b = average similarity between in-neighbors of a and in-neighbors of b s(a,b) is in the range [0, 1] If a=b, then s(a,b) = 1 If a b, C is a constant, 0 < C < 1 if I(a) or I(b) =, then s(a,b) = 0 D. Fogaras and B. Rácz, Scaling link-based similarity search, presented at the Proceedings of the 14th international conference, 2005.

72 Random Surfer-Pair Model s(u, v) = Pr[W(u) and W(v) meets at the same step] W(u): reverse sqrt(c)-walk that starts at u Monte Carlo algorithm Sample t pairs of W i (u), W i (v), i=1,,t X(u, v) = X(u, v)+1 if W i (u) and W i (v) meet at the same step s (u,v) = X(u, v)/t as an estimation of s(u, v) If t > 2/ε 2 log 1/δ, Pr{ s -s <ε}>1- δ B. Tian and X. Xiao, SLING: A Near-Optimal Index Structure for SimRank, presented at the SIGMOD '16: Proceedings of the 2016 International Conference on Management of Data, New York, New York, USA, 2016, pp

73 Homework

Overlapping Communities

Overlapping Communities Overlapping Communities Davide Mottin HassoPlattner Institute Graph Mining course Winter Semester 2017 Acknowledgements Most of this lecture is taken from: http://web.stanford.edu/class/cs224w/slides GRAPH

More information

Mining of Massive Datasets Jure Leskovec, AnandRajaraman, Jeff Ullman Stanford University

Mining of Massive Datasets Jure Leskovec, AnandRajaraman, Jeff Ullman Stanford University Note to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec Stanford University Jure Leskovec, Stanford University http://cs224w.stanford.edu Task: Find coalitions in signed networks Incentives: European

More information

1 Matrix notation and preliminaries from spectral graph theory

1 Matrix notation and preliminaries from spectral graph theory Graph clustering (or community detection or graph partitioning) is one of the most studied problems in network analysis. One reason for this is that there are a variety of ways to define a cluster or community.

More information

Overlapping Community Detection at Scale: A Nonnegative Matrix Factorization Approach

Overlapping Community Detection at Scale: A Nonnegative Matrix Factorization Approach Overlapping Community Detection at Scale: A Nonnegative Matrix Factorization Approach Author: Jaewon Yang, Jure Leskovec 1 1 Venue: WSDM 2013 Presenter: Yupeng Gu 1 Stanford University 1 Background Community

More information

1 T 1 = where 1 is the all-ones vector. For the upper bound, let v 1 be the eigenvector corresponding. u:(u,v) E v 1(u)

1 T 1 = where 1 is the all-ones vector. For the upper bound, let v 1 be the eigenvector corresponding. u:(u,v) E v 1(u) CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh (rezab@stanford.edu) Final Review Session 03/20/17 1. Let G = (V, E) be an unweighted, undirected graph. Let λ 1 be the maximum eigenvalue

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu Non-overlapping vs. overlapping communities 11/10/2010 Jure Leskovec, Stanford CS224W: Social

More information

Web Structure Mining Nodes, Links and Influence

Web Structure Mining Nodes, Links and Influence Web Structure Mining Nodes, Links and Influence 1 Outline 1. Importance of nodes 1. Centrality 2. Prestige 3. Page Rank 4. Hubs and Authority 5. Metrics comparison 2. Link analysis 3. Influence model 1.

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms : Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA 2 Department of Computer

More information

Lecture 13: Spectral Graph Theory

Lecture 13: Spectral Graph Theory CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 13: Spectral Graph Theory Lecturer: Shayan Oveis Gharan 11/14/18 Disclaimer: These notes have not been subjected to the usual scrutiny reserved

More information

1 Matrix notation and preliminaries from spectral graph theory

1 Matrix notation and preliminaries from spectral graph theory Graph clustering (or community detection or graph partitioning) is one of the most studied problems in network analysis. One reason for this is that there are a variety of ways to define a cluster or community.

More information

Data Mining and Matrices

Data Mining and Matrices Data Mining and Matrices 08 Boolean Matrix Factorization Rainer Gemulla, Pauli Miettinen June 13, 2013 Outline 1 Warm-Up 2 What is BMF 3 BMF vs. other three-letter abbreviations 4 Binary matrices, tiles,

More information

Introduction to Data Mining

Introduction to Data Mining Introduction to Data Mining Lecture #12: Frequent Itemsets Seoul National University 1 In This Lecture Motivation of association rule mining Important concepts of association rules Naïve approaches for

More information

ORIE 4741: Learning with Big Messy Data. Spectral Graph Theory

ORIE 4741: Learning with Big Messy Data. Spectral Graph Theory ORIE 4741: Learning with Big Messy Data Spectral Graph Theory Mika Sumida Operations Research and Information Engineering Cornell September 15, 2017 1 / 32 Outline Graph Theory Spectral Graph Theory Laplacian

More information

CS246 Final Exam. March 16, :30AM - 11:30AM

CS246 Final Exam. March 16, :30AM - 11:30AM CS246 Final Exam March 16, 2016 8:30AM - 11:30AM Name : SUID : I acknowledge and accept the Stanford Honor Code. I have neither given nor received unpermitted help on this examination. (signed) Directions

More information

DATA MINING LECTURE 13. Link Analysis Ranking PageRank -- Random walks HITS

DATA MINING LECTURE 13. Link Analysis Ranking PageRank -- Random walks HITS DATA MINING LECTURE 3 Link Analysis Ranking PageRank -- Random walks HITS How to organize the web First try: Manually curated Web Directories How to organize the web Second try: Web Search Information

More information

Jure Leskovec Joint work with Jaewon Yang, Julian McAuley

Jure Leskovec Joint work with Jaewon Yang, Julian McAuley Jure Leskovec (@jure) Joint work with Jaewon Yang, Julian McAuley Given a network, find communities! Sets of nodes with common function, role or property 2 3 Q: How and why do communities form? A: Strength

More information

CS168: The Modern Algorithmic Toolbox Lectures #11 and #12: Spectral Graph Theory

CS168: The Modern Algorithmic Toolbox Lectures #11 and #12: Spectral Graph Theory CS168: The Modern Algorithmic Toolbox Lectures #11 and #12: Spectral Graph Theory Tim Roughgarden & Gregory Valiant May 2, 2016 Spectral graph theory is the powerful and beautiful theory that arises from

More information

Algebraic Methods in Combinatorics

Algebraic Methods in Combinatorics Algebraic Methods in Combinatorics Po-Shen Loh 27 June 2008 1 Warm-up 1. (A result of Bourbaki on finite geometries, from Răzvan) Let X be a finite set, and let F be a family of distinct proper subsets

More information

Online Social Networks and Media. Link Analysis and Web Search

Online Social Networks and Media. Link Analysis and Web Search Online Social Networks and Media Link Analysis and Web Search How to Organize the Web First try: Human curated Web directories Yahoo, DMOZ, LookSmart How to organize the web Second try: Web Search Information

More information

Markov Chains and Spectral Clustering

Markov Chains and Spectral Clustering Markov Chains and Spectral Clustering Ning Liu 1,2 and William J. Stewart 1,3 1 Department of Computer Science North Carolina State University, Raleigh, NC 27695-8206, USA. 2 nliu@ncsu.edu, 3 billy@ncsu.edu

More information

Link Analysis Ranking

Link Analysis Ranking Link Analysis Ranking How do search engines decide how to rank your query results? Guess why Google ranks the query results the way it does How would you do it? Naïve ranking of query results Given query

More information

Spectral Graph Theory and You: Matrix Tree Theorem and Centrality Metrics

Spectral Graph Theory and You: Matrix Tree Theorem and Centrality Metrics Spectral Graph Theory and You: and Centrality Metrics Jonathan Gootenberg March 11, 2013 1 / 19 Outline of Topics 1 Motivation Basics of Spectral Graph Theory Understanding the characteristic polynomial

More information

DATA MINING LECTURE 3. Frequent Itemsets Association Rules

DATA MINING LECTURE 3. Frequent Itemsets Association Rules DATA MINING LECTURE 3 Frequent Itemsets Association Rules This is how it all started Rakesh Agrawal, Tomasz Imielinski, Arun N. Swami: Mining Association Rules between Sets of Items in Large Databases.

More information

Walks, Springs, and Resistor Networks

Walks, Springs, and Resistor Networks Spectral Graph Theory Lecture 12 Walks, Springs, and Resistor Networks Daniel A. Spielman October 8, 2018 12.1 Overview In this lecture we will see how the analysis of random walks, spring networks, and

More information

Lecture 12 : Graph Laplacians and Cheeger s Inequality

Lecture 12 : Graph Laplacians and Cheeger s Inequality CPS290: Algorithmic Foundations of Data Science March 7, 2017 Lecture 12 : Graph Laplacians and Cheeger s Inequality Lecturer: Kamesh Munagala Scribe: Kamesh Munagala Graph Laplacian Maybe the most beautiful

More information

The minimum G c cut problem

The minimum G c cut problem The minimum G c cut problem Abstract In this paper we define and study the G c -cut problem. Given a complete undirected graph G = (V ; E) with V = n, edge weighted by w(v i, v j ) 0 and an undirected

More information

Machine Learning for Data Science (CS4786) Lecture 11

Machine Learning for Data Science (CS4786) Lecture 11 Machine Learning for Data Science (CS4786) Lecture 11 Spectral clustering Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ ANNOUNCEMENT 1 Assignment P1 the Diagnostic assignment 1 will

More information

Class President: A Network Approach to Popularity. Due July 18, 2014

Class President: A Network Approach to Popularity. Due July 18, 2014 Class President: A Network Approach to Popularity Due July 8, 24 Instructions. Due Fri, July 8 at :59 PM 2. Work in groups of up to 3 3. Type up the report, and submit as a pdf on D2L 4. Attach the code

More information

Slides based on those in:

Slides based on those in: Spyros Kontogiannis & Christos Zaroliagis Slides based on those in: http://www.mmds.org High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering

More information

Lecture 14: Random Walks, Local Graph Clustering, Linear Programming

Lecture 14: Random Walks, Local Graph Clustering, Linear Programming CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 14: Random Walks, Local Graph Clustering, Linear Programming Lecturer: Shayan Oveis Gharan 3/01/17 Scribe: Laura Vonessen Disclaimer: These

More information

12. LOCAL SEARCH. gradient descent Metropolis algorithm Hopfield neural networks maximum cut Nash equilibria

12. LOCAL SEARCH. gradient descent Metropolis algorithm Hopfield neural networks maximum cut Nash equilibria 12. LOCAL SEARCH gradient descent Metropolis algorithm Hopfield neural networks maximum cut Nash equilibria Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley h ttp://www.cs.princeton.edu/~wayne/kleinberg-tardos

More information

Project in Computational Game Theory: Communities in Social Networks

Project in Computational Game Theory: Communities in Social Networks Project in Computational Game Theory: Communities in Social Networks Eldad Rubinstein November 11, 2012 1 Presentation of the Original Paper 1.1 Introduction In this section I present the article [1].

More information

Slide source: Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University.

Slide source: Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University. Slide source: Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University http://www.mmds.org #1: C4.5 Decision Tree - Classification (61 votes) #2: K-Means - Clustering

More information

COMPSCI 514: Algorithms for Data Science

COMPSCI 514: Algorithms for Data Science COMPSCI 514: Algorithms for Data Science Arya Mazumdar University of Massachusetts at Amherst Fall 2018 Lecture 8 Spectral Clustering Spectral clustering Curse of dimensionality Dimensionality Reduction

More information

Online Social Networks and Media. Link Analysis and Web Search

Online Social Networks and Media. Link Analysis and Web Search Online Social Networks and Media Link Analysis and Web Search How to Organize the Web First try: Human curated Web directories Yahoo, DMOZ, LookSmart How to organize the web Second try: Web Search Information

More information

Networks and Their Spectra

Networks and Their Spectra Networks and Their Spectra Victor Amelkin University of California, Santa Barbara Department of Computer Science victor@cs.ucsb.edu December 4, 2017 1 / 18 Introduction Networks (= graphs) are everywhere.

More information

Problem Set 4. General Instructions

Problem Set 4. General Instructions CS224W: Analysis of Networks Fall 2017 Problem Set 4 General Instructions Due 11:59pm PDT November 30, 2017 These questions require thought, but do not require long answers. Please be as concise as possible.

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 2 Web pages are not equally important www.joe-schmoe.com

More information

Quantum walk algorithms

Quantum walk algorithms Quantum walk algorithms Andrew Childs Institute for Quantum Computing University of Waterloo 28 September 2011 Randomized algorithms Randomness is an important tool in computer science Black-box problems

More information

Admin NP-COMPLETE PROBLEMS. Run-time analysis. Tractable vs. intractable problems 5/2/13. What is a tractable problem?

Admin NP-COMPLETE PROBLEMS. Run-time analysis. Tractable vs. intractable problems 5/2/13. What is a tractable problem? Admin Two more assignments No office hours on tomorrow NP-COMPLETE PROBLEMS Run-time analysis Tractable vs. intractable problems We ve spent a lot of time in this class putting algorithms into specific

More information

Dominating Configurations of Kings

Dominating Configurations of Kings Dominating Configurations of Kings Jolie Baumann July 11, 2006 Abstract In this paper, we are counting natural subsets of graphs subject to local restrictions, such as counting independent sets of vertices,

More information

Classification and Regression Trees

Classification and Regression Trees Classification and Regression Trees Ryan P Adams So far, we have primarily examined linear classifiers and regressors, and considered several different ways to train them When we ve found the linearity

More information

Communities, Spectral Clustering, and Random Walks

Communities, Spectral Clustering, and Random Walks Communities, Spectral Clustering, and Random Walks David Bindel Department of Computer Science Cornell University 26 Sep 2011 20 21 19 16 22 28 17 18 29 26 27 30 23 1 25 5 8 24 2 4 14 3 9 13 15 11 10 12

More information

Algebraic Methods in Combinatorics

Algebraic Methods in Combinatorics Algebraic Methods in Combinatorics Po-Shen Loh June 2009 1 Linear independence These problems both appeared in a course of Benny Sudakov at Princeton, but the links to Olympiad problems are due to Yufei

More information

Lecture: Local Spectral Methods (2 of 4) 19 Computing spectral ranking with the push procedure

Lecture: Local Spectral Methods (2 of 4) 19 Computing spectral ranking with the push procedure Stat260/CS294: Spectral Graph Methods Lecture 19-04/02/2015 Lecture: Local Spectral Methods (2 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough. They provide

More information

Spectral Graph Theory Lecture 2. The Laplacian. Daniel A. Spielman September 4, x T M x. ψ i = arg min

Spectral Graph Theory Lecture 2. The Laplacian. Daniel A. Spielman September 4, x T M x. ψ i = arg min Spectral Graph Theory Lecture 2 The Laplacian Daniel A. Spielman September 4, 2015 Disclaimer These notes are not necessarily an accurate representation of what happened in class. The notes written before

More information

A New Space for Comparing Graphs

A New Space for Comparing Graphs A New Space for Comparing Graphs Anshumali Shrivastava and Ping Li Cornell University and Rutgers University August 18th 2014 Anshumali Shrivastava and Ping Li ASONAM 2014 August 18th 2014 1 / 38 Main

More information

12 Count-Min Sketch and Apriori Algorithm (and Bloom Filters)

12 Count-Min Sketch and Apriori Algorithm (and Bloom Filters) 12 Count-Min Sketch and Apriori Algorithm (and Bloom Filters) Many streaming algorithms use random hashing functions to compress data. They basically randomly map some data items on top of each other.

More information

ECEN 689 Special Topics in Data Science for Communications Networks

ECEN 689 Special Topics in Data Science for Communications Networks ECEN 689 Special Topics in Data Science for Communications Networks Nick Duffield Department of Electrical & Computer Engineering Texas A&M University Lecture 8 Random Walks, Matrices and PageRank Graphs

More information

Data Mining Recitation Notes Week 3

Data Mining Recitation Notes Week 3 Data Mining Recitation Notes Week 3 Jack Rae January 28, 2013 1 Information Retrieval Given a set of documents, pull the (k) most similar document(s) to a given query. 1.1 Setup Say we have D documents

More information

CS 781 Lecture 9 March 10, 2011 Topics: Local Search and Optimization Metropolis Algorithm Greedy Optimization Hopfield Networks Max Cut Problem Nash

CS 781 Lecture 9 March 10, 2011 Topics: Local Search and Optimization Metropolis Algorithm Greedy Optimization Hopfield Networks Max Cut Problem Nash CS 781 Lecture 9 March 10, 2011 Topics: Local Search and Optimization Metropolis Algorithm Greedy Optimization Hopfield Networks Max Cut Problem Nash Equilibrium Price of Stability Coping With NP-Hardness

More information

BOOLEAN MATRIX AND TENSOR DECOMPOSITIONS. Pauli Miettinen TML September 2013

BOOLEAN MATRIX AND TENSOR DECOMPOSITIONS. Pauli Miettinen TML September 2013 BOOLEAN MATRIX AND TENSOR DECOMPOSITIONS Pauli Miettinen TML 2013 27 September 2013 BOOLEAN MATRIX AND TENSOR DECOMPOSITIONS Boolean decompositions are like normal decompositions, except that Input is

More information

This section is an introduction to the basic themes of the course.

This section is an introduction to the basic themes of the course. Chapter 1 Matrices and Graphs 1.1 The Adjacency Matrix This section is an introduction to the basic themes of the course. Definition 1.1.1. A simple undirected graph G = (V, E) consists of a non-empty

More information

Introduction to Data Mining

Introduction to Data Mining Introduction to Data Mining Lecture #9: Link Analysis Seoul National University 1 In This Lecture Motivation for link analysis Pagerank: an important graph ranking algorithm Flow and random walk formulation

More information

Lecture: Local Spectral Methods (1 of 4)

Lecture: Local Spectral Methods (1 of 4) Stat260/CS294: Spectral Graph Methods Lecture 18-03/31/2015 Lecture: Local Spectral Methods (1 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough. They provide

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 622 - Section 2 - Spring 27 Pre-final Review Jan-Willem van de Meent Feedback Feedback https://goo.gl/er7eo8 (also posted on Piazza) Also, please fill out your TRACE evaluations!

More information

Powerful tool for sampling from complicated distributions. Many use Markov chains to model events that arise in nature.

Powerful tool for sampling from complicated distributions. Many use Markov chains to model events that arise in nature. Markov Chains Markov chains: 2SAT: Powerful tool for sampling from complicated distributions rely only on local moves to explore state space. Many use Markov chains to model events that arise in nature.

More information

Learning from Sensor Data: Set II. Behnaam Aazhang J.S. Abercombie Professor Electrical and Computer Engineering Rice University

Learning from Sensor Data: Set II. Behnaam Aazhang J.S. Abercombie Professor Electrical and Computer Engineering Rice University Learning from Sensor Data: Set II Behnaam Aazhang J.S. Abercombie Professor Electrical and Computer Engineering Rice University 1 6. Data Representation The approach for learning from data Probabilistic

More information

Lecture 1 and 2: Random Spanning Trees

Lecture 1 and 2: Random Spanning Trees Recent Advances in Approximation Algorithms Spring 2015 Lecture 1 and 2: Random Spanning Trees Lecturer: Shayan Oveis Gharan March 31st Disclaimer: These notes have not been subjected to the usual scrutiny

More information

Spectra of Adjacency and Laplacian Matrices

Spectra of Adjacency and Laplacian Matrices Spectra of Adjacency and Laplacian Matrices Definition: University of Alicante (Spain) Matrix Computing (subject 3168 Degree in Maths) 30 hours (theory)) + 15 hours (practical assignment) Contents 1. Spectra

More information

Association Rule. Lecturer: Dr. Bo Yuan. LOGO

Association Rule. Lecturer: Dr. Bo Yuan. LOGO Association Rule Lecturer: Dr. Bo Yuan LOGO E-mail: yuanb@sz.tsinghua.edu.cn Overview Frequent Itemsets Association Rules Sequential Patterns 2 A Real Example 3 Market-Based Problems Finding associations

More information

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 6

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 6 Data Mining: Concepts and Techniques (3 rd ed.) Chapter 6 Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign & Simon Fraser University 2013 Han, Kamber & Pei. All rights

More information

Lecture 4: An FPTAS for Knapsack, and K-Center

Lecture 4: An FPTAS for Knapsack, and K-Center Comp 260: Advanced Algorithms Tufts University, Spring 2016 Prof. Lenore Cowen Scribe: Eric Bailey Lecture 4: An FPTAS for Knapsack, and K-Center 1 Introduction Definition 1.0.1. The Knapsack problem (restated)

More information

Justification and Application of Eigenvector Centrality

Justification and Application of Eigenvector Centrality Justification and Application of Eigenvector Centrality Leo Spizzirri With great debt to P. D. Straffin, Jr Algebra in Geography: Eigenvectors of Networks[7] 3/6/2 Introduction Mathematics is only a hobby

More information

Laplacians of Graphs, Spectra and Laplacian polynomials

Laplacians of Graphs, Spectra and Laplacian polynomials Mednykh A. D. (Sobolev Institute of Math) Laplacian for Graphs 27 June - 03 July 2015 1 / 30 Laplacians of Graphs, Spectra and Laplacian polynomials Alexander Mednykh Sobolev Institute of Mathematics Novosibirsk

More information

Graph Theory. Thomas Bloom. February 6, 2015

Graph Theory. Thomas Bloom. February 6, 2015 Graph Theory Thomas Bloom February 6, 2015 1 Lecture 1 Introduction A graph (for the purposes of these lectures) is a finite set of vertices, some of which are connected by a single edge. Most importantly,

More information

Spectral Clustering. Zitao Liu

Spectral Clustering. Zitao Liu Spectral Clustering Zitao Liu Agenda Brief Clustering Review Similarity Graph Graph Laplacian Spectral Clustering Algorithm Graph Cut Point of View Random Walk Point of View Perturbation Theory Point of

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Instructor: Farid Alizadeh Scribe: Anton Riabov 10/08/2001 1 Overview We continue studying the maximum eigenvalue SDP, and generalize

More information

CS 6820 Fall 2014 Lectures, October 3-20, 2014

CS 6820 Fall 2014 Lectures, October 3-20, 2014 Analysis of Algorithms Linear Programming Notes CS 6820 Fall 2014 Lectures, October 3-20, 2014 1 Linear programming The linear programming (LP) problem is the following optimization problem. We are given

More information

Complex Networks, Course 303A, Spring, Prof. Peter Dodds

Complex Networks, Course 303A, Spring, Prof. Peter Dodds Complex Networks, Course 303A, Spring, 2009 Prof. Peter Dodds Department of Mathematics & Statistics University of Vermont Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

More information

Statistical and Computational Phase Transitions in Planted Models

Statistical and Computational Phase Transitions in Planted Models Statistical and Computational Phase Transitions in Planted Models Jiaming Xu Joint work with Yudong Chen (UC Berkeley) Acknowledgement: Prof. Bruce Hajek November 4, 203 Cluster/Community structure in

More information

CS168: The Modern Algorithmic Toolbox Lecture #8: How PCA Works

CS168: The Modern Algorithmic Toolbox Lecture #8: How PCA Works CS68: The Modern Algorithmic Toolbox Lecture #8: How PCA Works Tim Roughgarden & Gregory Valiant April 20, 206 Introduction Last lecture introduced the idea of principal components analysis (PCA). The

More information

U.C. Berkeley Better-than-Worst-Case Analysis Handout 3 Luca Trevisan May 24, 2018

U.C. Berkeley Better-than-Worst-Case Analysis Handout 3 Luca Trevisan May 24, 2018 U.C. Berkeley Better-than-Worst-Case Analysis Handout 3 Luca Trevisan May 24, 2018 Lecture 3 In which we show how to find a planted clique in a random graph. 1 Finding a Planted Clique We will analyze

More information

INFO 4300 / CS4300 Information Retrieval. IR 9: Linear Algebra Review

INFO 4300 / CS4300 Information Retrieval. IR 9: Linear Algebra Review INFO 4300 / CS4300 Information Retrieval IR 9: Linear Algebra Review Paul Ginsparg Cornell University, Ithaca, NY 24 Sep 2009 1/ 23 Overview 1 Recap 2 Matrix basics 3 Matrix Decompositions 4 Discussion

More information

An Algorithmist s Toolkit September 10, Lecture 1

An Algorithmist s Toolkit September 10, Lecture 1 18.409 An Algorithmist s Toolkit September 10, 2009 Lecture 1 Lecturer: Jonathan Kelner Scribe: Jesse Geneson (2009) 1 Overview The class s goals, requirements, and policies were introduced, and topics

More information

Lecture 13 Spectral Graph Algorithms

Lecture 13 Spectral Graph Algorithms COMS 995-3: Advanced Algorithms March 6, 7 Lecture 3 Spectral Graph Algorithms Instructor: Alex Andoni Scribe: Srikar Varadaraj Introduction Today s topics: Finish proof from last lecture Example of random

More information

Physical Metaphors for Graphs

Physical Metaphors for Graphs Graphs and Networks Lecture 3 Physical Metaphors for Graphs Daniel A. Spielman October 9, 203 3. Overview We will examine physical metaphors for graphs. We begin with a spring model and then discuss resistor

More information

New Topic. PHYS 1021: Chap. 10, Pg 2. Page 1

New Topic. PHYS 1021: Chap. 10, Pg 2. Page 1 New Topic PHYS 1021: Chap. 10, Pg 2 Page 1 Statistics must be used to model physics systems that have large numbers of particles. Why is this?? We can only follow one or two or at best 3 particles at a

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 12: Graph Clustering Cho-Jui Hsieh UC Davis May 29, 2018 Graph Clustering Given a graph G = (V, E, W ) V : nodes {v 1,, v n } E: edges

More information

Interesting Patterns. Jilles Vreeken. 15 May 2015

Interesting Patterns. Jilles Vreeken. 15 May 2015 Interesting Patterns Jilles Vreeken 15 May 2015 Questions of the Day What is interestingness? what is a pattern? and how can we mine interesting patterns? What is a pattern? Data Pattern y = x - 1 What

More information

Linear Algebra, Summer 2011, pt. 3

Linear Algebra, Summer 2011, pt. 3 Linear Algebra, Summer 011, pt. 3 September 0, 011 Contents 1 Orthogonality. 1 1.1 The length of a vector....................... 1. Orthogonal vectors......................... 3 1.3 Orthogonal Subspaces.......................

More information

Combinatorial Optimization

Combinatorial Optimization Combinatorial Optimization Problem set 8: solutions 1. Fix constants a R and b > 1. For n N, let f(n) = n a and g(n) = b n. Prove that f(n) = o ( g(n) ). Solution. First we observe that g(n) 0 for all

More information

Lecture Introduction. 2 Brief Recap of Lecture 10. CS-621 Theory Gems October 24, 2012

Lecture Introduction. 2 Brief Recap of Lecture 10. CS-621 Theory Gems October 24, 2012 CS-62 Theory Gems October 24, 202 Lecture Lecturer: Aleksander Mądry Scribes: Carsten Moldenhauer and Robin Scheibler Introduction In Lecture 0, we introduced a fundamental object of spectral graph theory:

More information

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides Web Search: How to Organize the Web? Ranking Nodes on Graphs Hubs and Authorities PageRank How to Solve PageRank

More information

P P P NP-Hard: L is NP-hard if for all L NP, L L. Thus, if we could solve L in polynomial. Cook's Theorem and Reductions

P P P NP-Hard: L is NP-hard if for all L NP, L L. Thus, if we could solve L in polynomial. Cook's Theorem and Reductions Summary of the previous lecture Recall that we mentioned the following topics: P: is the set of decision problems (or languages) that are solvable in polynomial time. NP: is the set of decision problems

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Basics A new 4 credit unit course Part of Theoretical Computer Science courses at the Department of Mathematics There will be 4 hours

More information

Peter J. Dukes. 22 August, 2012

Peter J. Dukes. 22 August, 2012 22 August, 22 Graph decomposition Let G and H be graphs on m n vertices. A decompostion of G into copies of H is a collection {H i } of subgraphs of G such that each H i = H, and every edge of G belongs

More information

Di-eigenals. Jennifer Galovich St. John s University/College of St. Benedict JMM 11 January, 2018

Di-eigenals. Jennifer Galovich St. John s University/College of St. Benedict JMM 11 January, 2018 Di-eigenals Jennifer Galovich St. John s University/College of St. Benedict JMM 11 January, 2018 Geometric Interpretation of Eigenvalues in R 2 Suppose M = It is easy to check that the eigenvalues of M

More information

PageRank algorithm Hubs and Authorities. Data mining. Web Data Mining PageRank, Hubs and Authorities. University of Szeged.

PageRank algorithm Hubs and Authorities. Data mining. Web Data Mining PageRank, Hubs and Authorities. University of Szeged. Web Data Mining PageRank, University of Szeged Why ranking web pages is useful? We are starving for knowledge It earns Google a bunch of money. How? How does the Web looks like? Big strongly connected

More information

Chapter 11. Matrix Algorithms and Graph Partitioning. M. E. J. Newman. June 10, M. E. J. Newman Chapter 11 June 10, / 43

Chapter 11. Matrix Algorithms and Graph Partitioning. M. E. J. Newman. June 10, M. E. J. Newman Chapter 11 June 10, / 43 Chapter 11 Matrix Algorithms and Graph Partitioning M. E. J. Newman June 10, 2016 M. E. J. Newman Chapter 11 June 10, 2016 1 / 43 Table of Contents 1 Eigenvalue and Eigenvector Eigenvector Centrality The

More information

Linear Algebra March 16, 2019

Linear Algebra March 16, 2019 Linear Algebra March 16, 2019 2 Contents 0.1 Notation................................ 4 1 Systems of linear equations, and matrices 5 1.1 Systems of linear equations..................... 5 1.2 Augmented

More information

Math 443/543 Graph Theory Notes 5: Graphs as matrices, spectral graph theory, and PageRank

Math 443/543 Graph Theory Notes 5: Graphs as matrices, spectral graph theory, and PageRank Math 443/543 Graph Theory Notes 5: Graphs as matrices, spectral graph theory, and PageRank David Glickenstein November 3, 4 Representing graphs as matrices It will sometimes be useful to represent graphs

More information

CSI 445/660 Part 6 (Centrality Measures for Networks) 6 1 / 68

CSI 445/660 Part 6 (Centrality Measures for Networks) 6 1 / 68 CSI 445/660 Part 6 (Centrality Measures for Networks) 6 1 / 68 References 1 L. Freeman, Centrality in Social Networks: Conceptual Clarification, Social Networks, Vol. 1, 1978/1979, pp. 215 239. 2 S. Wasserman

More information

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit VII Sparse Matrix

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit VII Sparse Matrix Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit VII Sparse Matrix Computations Part 1: Direct Methods Dianne P. O Leary c 2008

More information

The Hypercube Graph and the Inhibitory Hypercube Network

The Hypercube Graph and the Inhibitory Hypercube Network The Hypercube Graph and the Inhibitory Hypercube Network Michael Cook mcook@forstmannleff.com William J. Wolfe Professor of Computer Science California State University Channel Islands william.wolfe@csuci.edu

More information

CS246 Final Exam, Winter 2011

CS246 Final Exam, Winter 2011 CS246 Final Exam, Winter 2011 1. Your name and student ID. Name:... Student ID:... 2. I agree to comply with Stanford Honor Code. Signature:... 3. There should be 17 numbered pages in this exam (including

More information

Google PageRank. Francesco Ricci Faculty of Computer Science Free University of Bozen-Bolzano

Google PageRank. Francesco Ricci Faculty of Computer Science Free University of Bozen-Bolzano Google PageRank Francesco Ricci Faculty of Computer Science Free University of Bozen-Bolzano fricci@unibz.it 1 Content p Linear Algebra p Matrices p Eigenvalues and eigenvectors p Markov chains p Google

More information

Networks as vectors of their motif frequencies and 2-norm distance as a measure of similarity

Networks as vectors of their motif frequencies and 2-norm distance as a measure of similarity Networks as vectors of their motif frequencies and 2-norm distance as a measure of similarity CS322 Project Writeup Semih Salihoglu Stanford University 353 Serra Street Stanford, CA semih@stanford.edu

More information

1 Primals and Duals: Zero Sum Games

1 Primals and Duals: Zero Sum Games CS 124 Section #11 Zero Sum Games; NP Completeness 4/15/17 1 Primals and Duals: Zero Sum Games We can represent various situations of conflict in life in terms of matrix games. For example, the game shown

More information