Adapted Feature Extraction and Its Applications

Size: px
Start display at page:

Download "Adapted Feature Extraction and Its Applications"

Transcription

1 1 Adapted Feature Extraction and Its Applications Naoki Saito Department of Mathematics University of California Davis, CA saito@math.ucdavis.edu URL: saito/

2 2 Acknowledgment Ronald R. Coifman (Yale/FMAH) Fred Warner (Yale/FMAH) Frank Geshwind (Yale/FMAH)

3 3 Outline Problem Formulation A Dictionary/Library of Orthonormal Bases Local Discriminant Basis (LDB) Improved LDB with Empirical Probability Density Estimation Example 1: Synthetic Waveform Classification Example 2: Geophysical Acoustic Waveform Classification Conclusion Future Directions

4 4 A Strategy for Pattern Recognition Normalization of input patterns scaling, translation, rotation Feature extraction and selection Classification LDA, CART, k-nn, Neural Networks,... X F Y x f f(x) g 1. y. C

5 5 Problem Formulation Learning (or Training): Given a set of data, T = {(x i, y i )} N i=1 X Y, where X R n and Y = {1,..., K} (class labels), find a map d : X Y such that R(d) = 1 N N I(d(x i ) y i ) small. i=1 Prediction: Apply the map d obtained during the training to a new dataset. Then interpret the result and evaluate d.

6 6 Problem Formulation... Let (X, Y ) (X, Y) be a random sample from P (X A, Y = y) = P (X A Y = y) P (Y = y), where P (Y = y) = π y = N y /N in practice. Let us assume the density p(x y) exists. The Bayes classifier (or rule) d B is: d B (x) = ki(x A k ), where A k = {x X : p(x k)π k = max y Y p(x y)π y }. In other words, assign x to class k if x A k. Note y Y A y = X.

7 7 Problem Formulation... Difficulties of the Bayes classifier: Don t know p(x k) or Too difficult to estimate p(x k) computationally because of the high dimensionality of the problem (curse of dimensionality). = Need dimensionality reduction without loosing important information for classification.

8 8 Problem Formulation... Therefore, we restrict our attention to the map d : X Y of the following form: d = g f = g Θ m Ψ T, f : X F R m is called a feature extractor consisting of: Ψ: an n-dimensional orthogonal matrix selected from a dictionary or library of orthonormal bases. Θ m : a selection rule: it selects the most important m ( n) coordinates from n-dimensional coordinates. g : F Y is a conventional classifier, e.g., LDA, CART, ANN etc.

9 9 A Library of Orthonormal Bases consists of dictionaries of orthonormal bases: each dictionary is a binary tree whose nodes are subspaces of Ω 0,0 = R n with different time-frequency localization characteristics. Ω 3,7 Ω 2,3 Ω 3,6 Ω 1,1 Ω 3,5 Ω 2,2 Ω 3,4 Ω 0,0 Ω 3,3 Ω 2,1 Ω 3,2 Ω 1,0 Ω 3,1 Ω 2,0 Ω 3,0

10 10 A Library of Orthonormal Bases... Examples of dictionaries include wavelet packet bases, local trigonometric bases, and local Fourier bases. It costs O(n[log n] p ) to generate a dictionary for a signal of length n (p = 1 for wavelet packets, p = 2 for LTB/LFB). Each dictionary may contain up to n(1 + log 2 n) basis vectors and more than 2 n possible orthonormal bases. How to select the best possible basis for the problem at hand is a key issue.

11 11 Example of Local Basis Functions Standard Basis Haar Basis Walsh Basis C12 Wavelet Packet Basis Local Sine Basis Discrete Sine Basis

12 12 Time-Frequency Characteristics Time Frequency Standard Basis Time Frequency Haar Basis Time Frequency Walsh Basis Time Frequency C12 Wavelet Packet Basis Time Frequency Local Sine Basis Time Frequency Discrete Sine Basis

13 13 Local Discriminant Basis Let D = {w i } N w i=1 be a time-frequency dictionary D = {B j } N B j=1 as a list of all possible orthonormal bases where B j = (w j1,..., w jn ) Let M + (B j ) be a measure of efficacy of B j for discriminantion Then the local discriminant basis (LDB) can be written as Ψ = arg max B j D M+ (B j ). Proposition: There exists a fast algorithm (divide-and-conquer, O(n)) to find Ψ from each dictionary D if M + is additive. M + (0) = 0, M + ({w j1,..., w jn }) = n M + (w ji ). i=1

14 14 Discriminant Measures For w i D, consider the projection Z i = wi X of an input random signal X X Let δ i be the efficacy for discrimination (or discriminant power) of w i Some possibilities of measuring the efficacy of the basis B j : M + (B j ) = n i=1 δ j i M + (B j ) = k i=1 δ (j i ), where {δ (ji )} is the decreasing rearrangement of {δ ji } and k < n. M + (B j ) = n i=1 ε j i δ ji, where ε ji = 1 if E[Z 2 i ] > θ, = 0 otherwise.

15 15 Discriminant Measures... What are the basic quantities to use for 1D efficacy? Differences in normalized energies of Z i among classes: V (y) i = E[Z 2 i Y = y] n i=1 E[Z2 i Y = y] ˆV (y) i = Ny k=1 w i x (y) k 2 Ny k=1 x(y) k 2 Differences in probability density functions (pdfs) of Z i : q (y) i (z) = p(x y) dx ˆq (y) i (z) via e.g., ASH w i x=z

16 16 Discriminant Measures... Some possibilites of discrepancy measures between two pdfs p(x), q(x): Relative entropy [Kullback-Leibler divergence]: Hellinger distance: D KL (p, q) = p(x) log 2 p(x) q(x) dx D H (p, q) = ( p(x) q(x) ) 2 dx L 2 distance: D 2 (p, q) = (p(x) q(x)) 2 dx

17 17 Discriminant Measures... Using normalized energy: δ i = ˆV (1) (1) ( ˆV i i log 2, ˆV (2) i Using empirical pdfs: ˆV (1) i ) 2 ( ) 2 ˆV (2) i, or ˆV (1) i ˆV (2) i δ i = D KL (ˆq (1) i, ˆq (2) i ), D H (ˆq (1) i, ˆq (2) i ), ord 2 (ˆq (1) i, ˆq (2) i )

18 18 Discriminant Measures... Important to consider two-dimensional projection x x 1 Applicable to the complex coefficients of local Fourier bases

19 19 Example 1: Signal Shape Classification Objective: Classify synthetic signals of length 128 to three possible classes, c(i) = (6 + η) χ [a,b] (i) + ɛ(i) for cylinder, b(i) = (6 + η) χ [a,b] (i) (i a)/(b a) + ɛ(i) for bell, f(i) = (6 + η) χ [a,b] (i) (b i)/(b a) + ɛ(i) for funnel. where a = unif[16, 32], b a = unif[32, 96], η N(0, 1), ɛ(i) i.i.d. N(0, 1).

20 20 Example Waveforms "Cylinder" signals "Bell" signals "Funnel" signals

21 21 Example 1: Signal Shape Classification... Top 10 LDFs Top 10 LDBs Selected Nodes by LDB

22 22 Example 1: Signal Shape Classification... Table of Misclassifications (average over 10 simulations) Method (Coordinates) Training Data Test Data LDA on STD 0.83 % % CT on STD 2.83 % % LDA on Top 10 LDB 7.00 % 8.37 % CT on Top 10 LDB 2.67 % 5.54 % 100 training signals and 1000 test signals were generated for each class per simulation 12-tap Coiflet filter was used for LDB

23 Example 1: Signal Shape Classification... Full Classification Tree on Top 10 LDB Coordinates cylinder 200/300 ldc.1< ldc.1> bell 1/99 ldc.5< ldc.5> bell 1/5 bell 0/94 21/120 ldc.7< /103 ldc.1< ldc.1> funnel 3/7 funnel 0/18 funnel funnel cylinder 101/201 ldc.5< ldc.5> funnel 5/96 ldc.5< ldc.5> funnel 2/91 ldc.9< ldc.9> funnel funnel 2/5 funnel 2/23 0/68 ldc.9< ldc.9> cylinder 2/5 ldc.7> /17 ldc.3< ldc.3> cylinder 0/12 cylinder 0/81 cylinder funnel 1/5 23

24 24 Example 2: Classification of Geophysical Acoustic Waveforms 402 acoustic waveforms (256 time samples) were recorded at a gas producing well. Region consists of sand or shale layers. Sand layers contain either water or gas Time (sec)

25 25 Sonic Waveform Measurement Borehole Layer #1 R Layer #2 T

26 26 Objectives Can we classify acoustic waveforms in terms of mineral contents of layers? Can we automate the classification process? If so, what features (or wave components) are important? Pressure (Pa) P S Stoneley Time (sec)

27 27 Classification Procedure Adopt 10-fold cross validation; split waveforms randomly into training and test datasets, and repeat the experiments. Decompose training waveforms into the local sine dictionary. Choose the LDB using various discrepancy measures. Choose 25, 50, 75, 100 most discriminant coordinates. Construct classifiers (LDA and Classification Tree) using these. Decompose test waveforms into the LDB and classify them. Compute the average misclassification rates.

28 28 Misclassification Rates for Test Data Misclassification Rate (%) HJ Solid Lines: LDA Dotted Lines: CT I W S WS S S I W W HJ I HJ HI HJ J I S S S HS J I I HJ I WH J W W Number of LDB Features

29 29 The Best LDB Vectors Time (sec)

30 30 The Best LDB Pattern Time (sec)

31 31 The Best LDB Vectors... Top 10 most influential LDB vectors in LDA Time (sec)

32 32 Observations LDA on LDB gave better results than CT on LDB = features are oblique. Top 25 LDB features were clearly not sufficient. Supplying too many features degraded the performance. Most important LDB vectors are clustered around P wave components.

33 33 Improved LDB with Empirical PD Estimation This can be viewed as a specific yet fast version of the Projection Pursuit algorithm (Friedman-Tukey, Huber). Compared to top-down strategy of PP, LDB is not greedy, i.e., bottom-up approach. This approach also works for complex-valued expansion coefficients (e.g., local Fourier bases). How to estimate the empirical pdf? histograms, ASH (averaged shifted histograms), nearest neighbor, kernel-based methods...

34 34 Conclusion LDB functions can capture relevant local features in data Interpretation of the results becomes easier and more intuitive Computational cost is at most O(n[log n] 2 ) These methods enhance both traditional and modern statistical methods

35 35 Conclusion... Our algorithms are being applied and tested to: Geophysical signal/image classification at Schlumberger Noise reduction in hearing aids at Northwestern University Diagnostics of mammography at University of Chicago Hospital Radar target discrimination at Lockeed-Martin

36 36 Future Directions How about the good basis for clustering? Parameterization of low dimensional structures in high dimensional space Explore the relationship with the David-Jones-Semmes geometric analysis Develop two dimensional version for the complex coefficients provided by the local Fourier bases or brushlets

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Chapter 1. Introduction Shuai Huang April 21, 2014 Outline 1 What is Machine Learning? 2 Curve Fitting 3 Probability Theory 4 Model Selection 5 The curse of dimensionality

More information

IMPROVED LOCAL DISCRIMINANT BASES USING EMPIRICAL PROBABILITY DENSITY ESTIMATION

IMPROVED LOCAL DISCRIMINANT BASES USING EMPIRICAL PROBABILITY DENSITY ESTIMATION IMPRVED LCAL DISCRIMINANT BASES USING EMPIRICAL PRBABILIT DENSIT ESTIMATIN Naoki Saito, Schlumberger-Doll Research, Ronald R. Coifman, ale University Naoki Saito, Schlumberger-Doll Research, ld Quarry

More information

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION 1 Outline Basic terminology Features Training and validation Model selection Error and loss measures Statistical comparison Evaluation measures 2 Terminology

More information

Curve learning. p.1/35

Curve learning. p.1/35 Curve learning Gérard Biau UNIVERSITÉ MONTPELLIER II p.1/35 Summary The problem The mathematical model Functional classification 1. Fourier filtering 2. Wavelet filtering Applications p.2/35 The problem

More information

Lecture 3: Statistical Decision Theory (Part II)

Lecture 3: Statistical Decision Theory (Part II) Lecture 3: Statistical Decision Theory (Part II) Hao Helen Zhang Hao Helen Zhang Lecture 3: Statistical Decision Theory (Part II) 1 / 27 Outline of This Note Part I: Statistics Decision Theory (Classical

More information

Is cross-validation valid for small-sample microarray classification?

Is cross-validation valid for small-sample microarray classification? Is cross-validation valid for small-sample microarray classification? Braga-Neto et al. Bioinformatics 2004 Topics in Bioinformatics Presented by Lei Xu October 26, 2004 1 Review 1) Statistical framework

More information

Scalable robust hypothesis tests using graphical models

Scalable robust hypothesis tests using graphical models Scalable robust hypothesis tests using graphical models Umamahesh Srinivas ipal Group Meeting October 22, 2010 Binary hypothesis testing problem Random vector x = (x 1,...,x n ) R n generated from either

More information

Generative MaxEnt Learning for Multiclass Classification

Generative MaxEnt Learning for Multiclass Classification Generative Maximum Entropy Learning for Multiclass Classification A. Dukkipati, G. Pandey, D. Ghoshdastidar, P. Koley, D. M. V. S. Sriram Dept. of Computer Science and Automation Indian Institute of Science,

More information

The Generalized Haar-Walsh Transform (GHWT) for Data Analysis on Graphs and Networks

The Generalized Haar-Walsh Transform (GHWT) for Data Analysis on Graphs and Networks The Generalized Haar-Walsh Transform (GHWT) for Data Analysis on Graphs and Networks Jeff Irion & Naoki Saito Department of Mathematics University of California, Davis SIAM Annual Meeting 2014 Chicago,

More information

Holdout and Cross-Validation Methods Overfitting Avoidance

Holdout and Cross-Validation Methods Overfitting Avoidance Holdout and Cross-Validation Methods Overfitting Avoidance Decision Trees Reduce error pruning Cost-complexity pruning Neural Networks Early stopping Adjusting Regularizers via Cross-Validation Nearest

More information

CSCI-567: Machine Learning (Spring 2019)

CSCI-567: Machine Learning (Spring 2019) CSCI-567: Machine Learning (Spring 2019) Prof. Victor Adamchik U of Southern California Mar. 19, 2019 March 19, 2019 1 / 43 Administration March 19, 2019 2 / 43 Administration TA3 is due this week March

More information

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 BASEL. Logistic Regression. Pattern Recognition 2016 Sandro Schönborn University of Basel

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 BASEL. Logistic Regression. Pattern Recognition 2016 Sandro Schönborn University of Basel Logistic Regression Pattern Recognition 2016 Sandro Schönborn University of Basel Two Worlds: Probabilistic & Algorithmic We have seen two conceptual approaches to classification: data class density estimation

More information

ECE521 Lectures 9 Fully Connected Neural Networks

ECE521 Lectures 9 Fully Connected Neural Networks ECE521 Lectures 9 Fully Connected Neural Networks Outline Multi-class classification Learning multi-layer neural networks 2 Measuring distance in probability space We learnt that the squared L2 distance

More information

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING DATE AND TIME: June 9, 2018, 09.00 14.00 RESPONSIBLE TEACHER: Andreas Svensson NUMBER OF PROBLEMS: 5 AIDING MATERIAL: Calculator, mathematical

More information

Pattern Recognition 2

Pattern Recognition 2 Pattern Recognition 2 KNN,, Dr. Terence Sim School of Computing National University of Singapore Outline 1 2 3 4 5 Outline 1 2 3 4 5 The Bayes Classifier is theoretically optimum. That is, prob. of error

More information

L11: Pattern recognition principles

L11: Pattern recognition principles L11: Pattern recognition principles Bayesian decision theory Statistical classifiers Dimensionality reduction Clustering This lecture is partly based on [Huang, Acero and Hon, 2001, ch. 4] Introduction

More information

Algorithm-Independent Learning Issues

Algorithm-Independent Learning Issues Algorithm-Independent Learning Issues Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2007 c 2007, Selim Aksoy Introduction We have seen many learning

More information

Applied Machine Learning for Biomedical Engineering. Enrico Grisan

Applied Machine Learning for Biomedical Engineering. Enrico Grisan Applied Machine Learning for Biomedical Engineering Enrico Grisan enrico.grisan@dei.unipd.it Data representation To find a representation that approximates elements of a signal class with a linear combination

More information

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1 EEL 851: Biometrics An Overview of Statistical Pattern Recognition EEL 851 1 Outline Introduction Pattern Feature Noise Example Problem Analysis Segmentation Feature Extraction Classification Design Cycle

More information

Julesz s Quest for texture perception

Julesz s Quest for texture perception A Mathematical Theory for Texture, Texton, Primal Sketch and Gestalt Fields Departments of Statistics and Computer Science University of California, Los Angeles Joint work with Y.Wu, C.Guo and D. Mumford,

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

Single Channel Signal Separation Using MAP-based Subspace Decomposition

Single Channel Signal Separation Using MAP-based Subspace Decomposition Single Channel Signal Separation Using MAP-based Subspace Decomposition Gil-Jin Jang, Te-Won Lee, and Yung-Hwan Oh 1 Spoken Language Laboratory, Department of Computer Science, KAIST 373-1 Gusong-dong,

More information

Machine Learning Basics Lecture 7: Multiclass Classification. Princeton University COS 495 Instructor: Yingyu Liang

Machine Learning Basics Lecture 7: Multiclass Classification. Princeton University COS 495 Instructor: Yingyu Liang Machine Learning Basics Lecture 7: Multiclass Classification Princeton University COS 495 Instructor: Yingyu Liang Example: image classification indoor Indoor outdoor Example: image classification (multiclass)

More information

ECE662: Pattern Recognition and Decision Making Processes: HW TWO

ECE662: Pattern Recognition and Decision Making Processes: HW TWO ECE662: Pattern Recognition and Decision Making Processes: HW TWO Purdue University Department of Electrical and Computer Engineering West Lafayette, INDIANA, USA Abstract. In this report experiments are

More information

Vector spaces. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis.

Vector spaces. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis. Vector spaces DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Vector space Consists of: A set V A scalar

More information

Intro. ANN & Fuzzy Systems. Lecture 15. Pattern Classification (I): Statistical Formulation

Intro. ANN & Fuzzy Systems. Lecture 15. Pattern Classification (I): Statistical Formulation Lecture 15. Pattern Classification (I): Statistical Formulation Outline Statistical Pattern Recognition Maximum Posterior Probability (MAP) Classifier Maximum Likelihood (ML) Classifier K-Nearest Neighbor

More information

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING DATE AND TIME: August 30, 2018, 14.00 19.00 RESPONSIBLE TEACHER: Niklas Wahlström NUMBER OF PROBLEMS: 5 AIDING MATERIAL: Calculator, mathematical

More information

Understanding Generalization Error: Bounds and Decompositions

Understanding Generalization Error: Bounds and Decompositions CIS 520: Machine Learning Spring 2018: Lecture 11 Understanding Generalization Error: Bounds and Decompositions Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the

More information

Statistical Rock Physics

Statistical Rock Physics Statistical - Introduction Book review 3.1-3.3 Min Sun March. 13, 2009 Outline. What is Statistical. Why we need Statistical. How Statistical works Statistical Rock physics Information theory Statistics

More information

Decision trees COMS 4771

Decision trees COMS 4771 Decision trees COMS 4771 1. Prediction functions (again) Learning prediction functions IID model for supervised learning: (X 1, Y 1),..., (X n, Y n), (X, Y ) are iid random pairs (i.e., labeled examples).

More information

Sparse linear models

Sparse linear models Sparse linear models Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 2/22/2016 Introduction Linear transforms Frequency representation Short-time

More information

Mining Classification Knowledge

Mining Classification Knowledge Mining Classification Knowledge Remarks on NonSymbolic Methods JERZY STEFANOWSKI Institute of Computing Sciences, Poznań University of Technology SE lecture revision 2013 Outline 1. Bayesian classification

More information

Feature selection. c Victor Kitov August Summer school on Machine Learning in High Energy Physics in partnership with

Feature selection. c Victor Kitov August Summer school on Machine Learning in High Energy Physics in partnership with Feature selection c Victor Kitov v.v.kitov@yandex.ru Summer school on Machine Learning in High Energy Physics in partnership with August 2015 1/38 Feature selection Feature selection is a process of selecting

More information

Final Overview. Introduction to ML. Marek Petrik 4/25/2017

Final Overview. Introduction to ML. Marek Petrik 4/25/2017 Final Overview Introduction to ML Marek Petrik 4/25/2017 This Course: Introduction to Machine Learning Build a foundation for practice and research in ML Basic machine learning concepts: max likelihood,

More information

CMU-Q Lecture 24:

CMU-Q Lecture 24: CMU-Q 15-381 Lecture 24: Supervised Learning 2 Teacher: Gianni A. Di Caro SUPERVISED LEARNING Hypotheses space Hypothesis function Labeled Given Errors Performance criteria Given a collection of input

More information

A Bias Correction for the Minimum Error Rate in Cross-validation

A Bias Correction for the Minimum Error Rate in Cross-validation A Bias Correction for the Minimum Error Rate in Cross-validation Ryan J. Tibshirani Robert Tibshirani Abstract Tuning parameters in supervised learning problems are often estimated by cross-validation.

More information

Machine Learning for Signal Processing Bayes Classification and Regression

Machine Learning for Signal Processing Bayes Classification and Regression Machine Learning for Signal Processing Bayes Classification and Regression Instructor: Bhiksha Raj 11755/18797 1 Recap: KNN A very effective and simple way of performing classification Simple model: For

More information

Mixture of Gaussians Models

Mixture of Gaussians Models Mixture of Gaussians Models Outline Inference, Learning, and Maximum Likelihood Why Mixtures? Why Gaussians? Building up to the Mixture of Gaussians Single Gaussians Fully-Observed Mixtures Hidden Mixtures

More information

Machine Learning. Lecture 9: Learning Theory. Feng Li.

Machine Learning. Lecture 9: Learning Theory. Feng Li. Machine Learning Lecture 9: Learning Theory Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 2018 Why Learning Theory How can we tell

More information

Contents Lecture 4. Lecture 4 Linear Discriminant Analysis. Summary of Lecture 3 (II/II) Summary of Lecture 3 (I/II)

Contents Lecture 4. Lecture 4 Linear Discriminant Analysis. Summary of Lecture 3 (II/II) Summary of Lecture 3 (I/II) Contents Lecture Lecture Linear Discriminant Analysis Fredrik Lindsten Division of Systems and Control Department of Information Technology Uppsala University Email: fredriklindsten@ituuse Summary of lecture

More information

Lecture 4 Discriminant Analysis, k-nearest Neighbors

Lecture 4 Discriminant Analysis, k-nearest Neighbors Lecture 4 Discriminant Analysis, k-nearest Neighbors Fredrik Lindsten Division of Systems and Control Department of Information Technology Uppsala University. Email: fredrik.lindsten@it.uu.se fredrik.lindsten@it.uu.se

More information

Kernel Density Estimation

Kernel Density Estimation Kernel Density Estimation If Y {1,..., K} and g k denotes the density for the conditional distribution of X given Y = k the Bayes classifier is f (x) = argmax π k g k (x) k If ĝ k for k = 1,..., K are

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Saniv Kumar, Google Research, NY EECS-6898, Columbia University - Fall, 010 Saniv Kumar 9/13/010 EECS6898 Large Scale Machine Learning 1 Curse of Dimensionality Gaussian Mixture Models

More information

Computational Genomics

Computational Genomics Computational Genomics http://www.cs.cmu.edu/~02710 Introduction to probability, statistics and algorithms (brief) intro to probability Basic notations Random variable - referring to an element / event

More information

STA 414/2104, Spring 2014, Practice Problem Set #1

STA 414/2104, Spring 2014, Practice Problem Set #1 STA 44/4, Spring 4, Practice Problem Set # Note: these problems are not for credit, and not to be handed in Question : Consider a classification problem in which there are two real-valued inputs, and,

More information

Principles of Pattern Recognition. C. A. Murthy Machine Intelligence Unit Indian Statistical Institute Kolkata

Principles of Pattern Recognition. C. A. Murthy Machine Intelligence Unit Indian Statistical Institute Kolkata Principles of Pattern Recognition C. A. Murthy Machine Intelligence Unit Indian Statistical Institute Kolkata e-mail: murthy@isical.ac.in Pattern Recognition Measurement Space > Feature Space >Decision

More information

Variational sampling approaches to word confusability

Variational sampling approaches to word confusability Variational sampling approaches to word confusability John R. Hershey, Peder A. Olsen and Ramesh A. Gopinath {jrhershe,pederao,rameshg}@us.ibm.com IBM, T. J. Watson Research Center Information Theory and

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Feature Extraction Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi, Payam Siyari Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Agenda Dimensionality Reduction

More information

Expectation Propagation for Approximate Bayesian Inference

Expectation Propagation for Approximate Bayesian Inference Expectation Propagation for Approximate Bayesian Inference José Miguel Hernández Lobato Universidad Autónoma de Madrid, Computer Science Department February 5, 2007 1/ 24 Bayesian Inference Inference Given

More information

Lecture Notes 1: Vector spaces

Lecture Notes 1: Vector spaces Optimization-based data analysis Fall 2017 Lecture Notes 1: Vector spaces In this chapter we review certain basic concepts of linear algebra, highlighting their application to signal processing. 1 Vector

More information

Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces Reproducing Kernel Hilbert Spaces Lorenzo Rosasco 9.520 Class 03 February 9, 2011 About this class Goal In this class we continue our journey in the world of RKHS. We discuss the Mercer theorem which gives

More information

Classification: The rest of the story

Classification: The rest of the story U NIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN CS598 Machine Learning for Signal Processing Classification: The rest of the story 3 October 2017 Today s lecture Important things we haven t covered yet Fisher

More information

On Bias, Variance, 0/1-Loss, and the Curse-of-Dimensionality. Weiqiang Dong

On Bias, Variance, 0/1-Loss, and the Curse-of-Dimensionality. Weiqiang Dong On Bias, Variance, 0/1-Loss, and the Curse-of-Dimensionality Weiqiang Dong 1 The goal of the work presented here is to illustrate that classification error responds to error in the target probability estimates

More information

Bayes Classifiers. CAP5610 Machine Learning Instructor: Guo-Jun QI

Bayes Classifiers. CAP5610 Machine Learning Instructor: Guo-Jun QI Bayes Classifiers CAP5610 Machine Learning Instructor: Guo-Jun QI Recap: Joint distributions Joint distribution over Input vector X = (X 1, X 2 ) X 1 =B or B (drinking beer or not) X 2 = H or H (headache

More information

Day 5: Generative models, structured classification

Day 5: Generative models, structured classification Day 5: Generative models, structured classification Introduction to Machine Learning Summer School June 18, 2018 - June 29, 2018, Chicago Instructor: Suriya Gunasekar, TTI Chicago 22 June 2018 Linear regression

More information

Instance-based Learning CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016

Instance-based Learning CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016 Instance-based Learning CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2016 Outline Non-parametric approach Unsupervised: Non-parametric density estimation Parzen Windows Kn-Nearest

More information

Statistical Modeling of Visual Patterns: Part I --- From Statistical Physics to Image Models

Statistical Modeling of Visual Patterns: Part I --- From Statistical Physics to Image Models Statistical Modeling of Visual Patterns: Part I --- From Statistical Physics to Image Models Song-Chun Zhu Departments of Statistics and Computer Science University of California, Los Angeles Natural images

More information

Deep Learning: Approximation of Functions by Composition

Deep Learning: Approximation of Functions by Composition Deep Learning: Approximation of Functions by Composition Zuowei Shen Department of Mathematics National University of Singapore Outline 1 A brief introduction of approximation theory 2 Deep learning: approximation

More information

Learning gradients: prescriptive models

Learning gradients: prescriptive models Department of Statistical Science Institute for Genome Sciences & Policy Department of Computer Science Duke University May 11, 2007 Relevant papers Learning Coordinate Covariances via Gradients. Sayan

More information

Notation. Pattern Recognition II. Michal Haindl. Outline - PR Basic Concepts. Pattern Recognition Notions

Notation. Pattern Recognition II. Michal Haindl. Outline - PR Basic Concepts. Pattern Recognition Notions Notation S pattern space X feature vector X = [x 1,...,x l ] l = dim{x} number of features X feature space K number of classes ω i class indicator Ω = {ω 1,...,ω K } g(x) discriminant function H decision

More information

Recap from previous lecture

Recap from previous lecture Recap from previous lecture Learning is using past experience to improve future performance. Different types of learning: supervised unsupervised reinforcement active online... For a machine, experience

More information

Data Mining Classification: Basic Concepts and Techniques. Lecture Notes for Chapter 3. Introduction to Data Mining, 2nd Edition

Data Mining Classification: Basic Concepts and Techniques. Lecture Notes for Chapter 3. Introduction to Data Mining, 2nd Edition Data Mining Classification: Basic Concepts and Techniques Lecture Notes for Chapter 3 by Tan, Steinbach, Karpatne, Kumar 1 Classification: Definition Given a collection of records (training set ) Each

More information

CS Machine Learning Qualifying Exam

CS Machine Learning Qualifying Exam CS Machine Learning Qualifying Exam Georgia Institute of Technology March 30, 2017 The exam is divided into four areas: Core, Statistical Methods and Models, Learning Theory, and Decision Processes. There

More information

MINIMUM EXPECTED RISK PROBABILITY ESTIMATES FOR NONPARAMETRIC NEIGHBORHOOD CLASSIFIERS. Maya Gupta, Luca Cazzanti, and Santosh Srivastava

MINIMUM EXPECTED RISK PROBABILITY ESTIMATES FOR NONPARAMETRIC NEIGHBORHOOD CLASSIFIERS. Maya Gupta, Luca Cazzanti, and Santosh Srivastava MINIMUM EXPECTED RISK PROBABILITY ESTIMATES FOR NONPARAMETRIC NEIGHBORHOOD CLASSIFIERS Maya Gupta, Luca Cazzanti, and Santosh Srivastava University of Washington Dept. of Electrical Engineering Seattle,

More information

Bayesian Networks Inference with Probabilistic Graphical Models

Bayesian Networks Inference with Probabilistic Graphical Models 4190.408 2016-Spring Bayesian Networks Inference with Probabilistic Graphical Models Byoung-Tak Zhang intelligence Lab Seoul National University 4190.408 Artificial (2016-Spring) 1 Machine Learning? Learning

More information

Maximum Entropy Generative Models for Similarity-based Learning

Maximum Entropy Generative Models for Similarity-based Learning Maximum Entropy Generative Models for Similarity-based Learning Maya R. Gupta Dept. of EE University of Washington Seattle, WA 98195 gupta@ee.washington.edu Luca Cazzanti Applied Physics Lab University

More information

A Modular NMF Matching Algorithm for Radiation Spectra

A Modular NMF Matching Algorithm for Radiation Spectra A Modular NMF Matching Algorithm for Radiation Spectra Melissa L. Koudelka Sensor Exploitation Applications Sandia National Laboratories mlkoude@sandia.gov Daniel J. Dorsey Systems Technologies Sandia

More information

Learning Linear Detectors

Learning Linear Detectors Learning Linear Detectors Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Today Detection versus Classification Bayes Classifiers Linear Classifiers Examples of Detection 3 Learning: Detection

More information

Discriminative Learning and Big Data

Discriminative Learning and Big Data AIMS-CDT Michaelmas 2016 Discriminative Learning and Big Data Lecture 2: Other loss functions and ANN Andrew Zisserman Visual Geometry Group University of Oxford http://www.robots.ox.ac.uk/~vgg Lecture

More information

COMS 4771 Introduction to Machine Learning. Nakul Verma

COMS 4771 Introduction to Machine Learning. Nakul Verma COMS 4771 Introduction to Machine Learning Nakul Verma Announcements HW1 due next lecture Project details are available decide on the group and topic by Thursday Last time Generative vs. Discriminative

More information

Gaussian and Linear Discriminant Analysis; Multiclass Classification

Gaussian and Linear Discriminant Analysis; Multiclass Classification Gaussian and Linear Discriminant Analysis; Multiclass Classification Professor Ameet Talwalkar Slide Credit: Professor Fei Sha Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 13, 2015

More information

Consistency of Nearest Neighbor Methods

Consistency of Nearest Neighbor Methods E0 370 Statistical Learning Theory Lecture 16 Oct 25, 2011 Consistency of Nearest Neighbor Methods Lecturer: Shivani Agarwal Scribe: Arun Rajkumar 1 Introduction In this lecture we return to the study

More information

Brief Introduction to Machine Learning

Brief Introduction to Machine Learning Brief Introduction to Machine Learning Yuh-Jye Lee Lab of Data Science and Machine Intelligence Dept. of Applied Math. at NCTU August 29, 2016 1 / 49 1 Introduction 2 Binary Classification 3 Support Vector

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak 1 Introduction. Random variables During the course we are interested in reasoning about considered phenomenon. In other words,

More information

When Dictionary Learning Meets Classification

When Dictionary Learning Meets Classification When Dictionary Learning Meets Classification Bufford, Teresa 1 Chen, Yuxin 2 Horning, Mitchell 3 Shee, Liberty 1 Mentor: Professor Yohann Tendero 1 UCLA 2 Dalhousie University 3 Harvey Mudd College August

More information

Overfitting, Bias / Variance Analysis

Overfitting, Bias / Variance Analysis Overfitting, Bias / Variance Analysis Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 8, 207 / 40 Outline Administration 2 Review of last lecture 3 Basic

More information

Online Estimation of Discrete Densities using Classifier Chains

Online Estimation of Discrete Densities using Classifier Chains Online Estimation of Discrete Densities using Classifier Chains Michael Geilke 1 and Eibe Frank 2 and Stefan Kramer 1 1 Johannes Gutenberg-Universtität Mainz, Germany {geilke,kramer}@informatik.uni-mainz.de

More information

W compression of a variety of signals such as sound and

W compression of a variety of signals such as sound and EEE TRANSACTONS ON NFORMATON THEORY. VOL. 38, NO. 2, MARCH 1992 713 Entropy-Based Algorithms for Best Basis Selection Ronald R. Coifman and Mladen Victor Wickerhauser Abstract-Adapted waveform analysis

More information

Mining Classification Knowledge

Mining Classification Knowledge Mining Classification Knowledge Remarks on NonSymbolic Methods JERZY STEFANOWSKI Institute of Computing Sciences, Poznań University of Technology COST Doctoral School, Troina 2008 Outline 1. Bayesian classification

More information

Machine Learning 2017

Machine Learning 2017 Machine Learning 2017 Volker Roth Department of Mathematics & Computer Science University of Basel 21st March 2017 Volker Roth (University of Basel) Machine Learning 2017 21st March 2017 1 / 41 Section

More information

StatPatternRecognition: A C++ Package for Multivariate Classification of HEP Data. Ilya Narsky, Caltech

StatPatternRecognition: A C++ Package for Multivariate Classification of HEP Data. Ilya Narsky, Caltech StatPatternRecognition: A C++ Package for Multivariate Classification of HEP Data Ilya Narsky, Caltech Motivation Introduction advanced classification tools in a convenient C++ package for HEP researchers

More information

Generative and Discriminative Approaches to Graphical Models CMSC Topics in AI

Generative and Discriminative Approaches to Graphical Models CMSC Topics in AI Generative and Discriminative Approaches to Graphical Models CMSC 35900 Topics in AI Lecture 2 Yasemin Altun January 26, 2007 Review of Inference on Graphical Models Elimination algorithm finds single

More information

Doug Cochran. 3 October 2011

Doug Cochran. 3 October 2011 ) ) School Electrical, Computer, & Energy Arizona State University (Joint work with Stephen Howard and Bill Moran) 3 October 2011 Tenets ) The purpose sensor networks is to sense; i.e., to enable detection,

More information

Data Mining. CS57300 Purdue University. Bruno Ribeiro. February 8, 2018

Data Mining. CS57300 Purdue University. Bruno Ribeiro. February 8, 2018 Data Mining CS57300 Purdue University Bruno Ribeiro February 8, 2018 Decision trees Why Trees? interpretable/intuitive, popular in medical applications because they mimic the way a doctor thinks model

More information

PROBABILITY AND INFORMATION THEORY. Dr. Gjergji Kasneci Introduction to Information Retrieval WS

PROBABILITY AND INFORMATION THEORY. Dr. Gjergji Kasneci Introduction to Information Retrieval WS PROBABILITY AND INFORMATION THEORY Dr. Gjergji Kasneci Introduction to Information Retrieval WS 2012-13 1 Outline Intro Basics of probability and information theory Probability space Rules of probability

More information

Recitation 2: Probability

Recitation 2: Probability Recitation 2: Probability Colin White, Kenny Marino January 23, 2018 Outline Facts about sets Definitions and facts about probability Random Variables and Joint Distributions Characteristics of distributions

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Wavelets and Multiresolution Processing (Wavelet Transforms) Christophoros Nikou cnikou@cs.uoi.gr University of Ioannina - Department of Computer Science 2 Contents Image pyramids

More information

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Topics Discriminant functions Logistic regression Perceptron Generative models Generative vs. discriminative

More information

EE 381V: Large Scale Optimization Fall Lecture 24 April 11

EE 381V: Large Scale Optimization Fall Lecture 24 April 11 EE 381V: Large Scale Optimization Fall 2012 Lecture 24 April 11 Lecturer: Caramanis & Sanghavi Scribe: Tao Huang 24.1 Review In past classes, we studied the problem of sparsity. Sparsity problem is that

More information

STATISTICAL BEHAVIOR AND CONSISTENCY OF CLASSIFICATION METHODS BASED ON CONVEX RISK MINIMIZATION

STATISTICAL BEHAVIOR AND CONSISTENCY OF CLASSIFICATION METHODS BASED ON CONVEX RISK MINIMIZATION STATISTICAL BEHAVIOR AND CONSISTENCY OF CLASSIFICATION METHODS BASED ON CONVEX RISK MINIMIZATION Tong Zhang The Annals of Statistics, 2004 Outline Motivation Approximation error under convex risk minimization

More information

Nearest Neighbors Methods for Support Vector Machines

Nearest Neighbors Methods for Support Vector Machines Nearest Neighbors Methods for Support Vector Machines A. J. Quiroz, Dpto. de Matemáticas. Universidad de Los Andes joint work with María González-Lima, Universidad Simón Boĺıvar and Sergio A. Camelo, Universidad

More information

High Dimensional Discriminant Analysis

High Dimensional Discriminant Analysis High Dimensional Discriminant Analysis Charles Bouveyron LMC-IMAG & INRIA Rhône-Alpes Joint work with S. Girard and C. Schmid High Dimensional Discriminant Analysis - Lear seminar p.1/43 Introduction High

More information

Machine Learning. Theory of Classification and Nonparametric Classifier. Lecture 2, January 16, What is theoretically the best classifier

Machine Learning. Theory of Classification and Nonparametric Classifier. Lecture 2, January 16, What is theoretically the best classifier Machine Learning 10-701/15 701/15-781, 781, Spring 2008 Theory of Classification and Nonparametric Classifier Eric Xing Lecture 2, January 16, 2006 Reading: Chap. 2,5 CB and handouts Outline What is theoretically

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Le Song Machine Learning I CSE 6740, Fall 2013 Naïve Bayes classifier Still use Bayes decision rule for classification P y x = P x y P y P x But assume p x y = 1 is fully factorized

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 6220 - Section 3 - Fall 2016 Lecture 12 Jan-Willem van de Meent (credit: Yijun Zhao, Percy Liang) DIMENSIONALITY REDUCTION Borrowing from: Percy Liang (Stanford) Linear Dimensionality

More information

Invariant Scattering Convolution Networks

Invariant Scattering Convolution Networks Invariant Scattering Convolution Networks Joan Bruna and Stephane Mallat Submitted to PAMI, Feb. 2012 Presented by Bo Chen Other important related papers: [1] S. Mallat, A Theory for Multiresolution Signal

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 18, 2016 Outline One versus all/one versus one Ranking loss for multiclass/multilabel classification Scaling to millions of labels Multiclass

More information

Learning Theory. Ingo Steinwart University of Stuttgart. September 4, 2013

Learning Theory. Ingo Steinwart University of Stuttgart. September 4, 2013 Learning Theory Ingo Steinwart University of Stuttgart September 4, 2013 Ingo Steinwart University of Stuttgart () Learning Theory September 4, 2013 1 / 62 Basics Informal Introduction Informal Description

More information

Information geometry for bivariate distribution control

Information geometry for bivariate distribution control Information geometry for bivariate distribution control C.T.J.Dodson + Hong Wang Mathematics + Control Systems Centre, University of Manchester Institute of Science and Technology Optimal control of stochastic

More information