Advancing Disc Bearing Specifications AASHTO T-2 Columbus, OH June 24, 2014

Size: px
Start display at page:

Download "Advancing Disc Bearing Specifications AASHTO T-2 Columbus, OH June 24, 2014"

Transcription

1

2 Advancing Disc Bearing Specifications AASHTO T-2 Columbus, OH June 24, 2014 Paul Bradford, PE, PhD PB Engineering Consultant PBENG

3

4

5

6 How does it work? - Compression Urethane tries to expand laterally Friction inhibits expansion Disc bulges

7 Disc Bearing Limits Motivation 1. No change since the 1970 s, increase in allowables has not kept up with other materials 2. Excellent field performance for 40 years 3. Tested to much higher levels 4. Higher demands 5. Turn towards elastomeric bearing design methods

8 Current Disc Bearing Limits; 1. Stress (currently 5.0 ksi) 2. Strain (currently 10%) 3. No lower bound Shape Factor 4. No shape factor influence on allowables Thin pads can accommodate higher stresses, but not high strains Thick pads can accommodate higher strains, but not high stresses

9 Shape Factor S=1.50 S=2.00 S=3.00

10 Proposed Disc Bearing Limits Is c c ksi [0.10] [5.00] Individual upper limits based on testing and field history 3. S c 0.24 [N/A, 0.20] Analogous to AASHTO , implicitly sets limits on stress, strain, and shape factor combinations 4. S 1.40 [N/A]

11 SeS = Se Product + Strain Limit S c 0.24 c 0.24 S c ( S) S Thin Pads

12 S c 0.24 SeS = Se Product + Stress Limit E 2 1 S c 0.24E 1 S S 2 c 7.00 ksi ( S) S Thinner Pads

13 Se product - indicator of the max shear strain due to compression c 6S Gent & Lindley Solution, BE 1/76 c c CS c Stanton & Roeder, NCHRP 248 (1982) C varies according to aspect ratio, C = 6.0 for circular bearings

14 Se Product was (is) an implicit constraint in AASHTO specifications EC E c C c 6GS 2 c S c 2.00GS 0.33 (AASHTO ) Equivalent criteria Se Product Material independent Allows for design comparisons between different materials

15 Linear FEA Studies Baseline: S = 2.0 Pad, 62D, E = 10 ksi, nu = Axisymmetric section

16 Linear FEA Studies S=2.00, = 0.10, E = 10 S = 2.0 Pad, 62D, 10% strain

17 Baseline: S = 2.0, 10% strain, 62D Stress (psi) Peak core shear stress = 1.93 ksi Stresses Groove area Radial Coordinate (in) SRR STT SZZ SRZ

18 For baseline pad For proposed pad designs C 1.9 ksi 1.7 ksi 2.3 ksi C Other durometers? Analyses were run with E = 10: C 0.2 E

19 Required Coefficient of Friction; COF R COF R Radial Coordinate (in.) Baseline and Prop S2,e10 Prop S1.5,e14 Prop S3, e8 No real change in required coefficient of friction Move to slightly higher shape factors reduces the average COF R

20 SeS Validation Test Program Test Series 1 - Durometer OD 3.56 ID 1.88 TH A 1.94 S 0.12 ea Dur E Ec e s d R P 42D D D D Test Series 2 - Shape Factor Material - 62D E OD 3.56 ID A S TH Ec ea e s d R P

21 Test Program Test Series 3 - Coupon Tests Sample 0.25 Thickness E>> (in) (in 2 ) 42D 52D 62D 72D 42D 52D 62D 72D 42D 52D 62D 72D S D A ea e e e e s s s s Ec Ec Ec Ec D 52D 62D 72D 42D 52D 62D 72D d d d d P P P P Test Sequence Test Name Test Series Description 1 Exercise 1,2, 3 150% Compression-Deflection 2 Baseline 1,2, 3 100% Compression-Deflection 3 Rotation 1, 2 125% Design Static +.50 Dynamic 4 Post Rotation 1, 2 100% Compression-Deflection 5 Degradation 1 X Vertical Load at Y Temperature in Z Vibration Environment for H hours, where XYZ-H is TBD 6 Post Degradation 1 100% Compression-Deflection

22 Project Brg Tests 11 projects, 38 bearings, circa Fall kips to 2800 kips 5.0 to 7.5 ksi 62D material

23 Test Program

24 Test Program Project Documentation 7.5 ksi, 0.02 radians

25 Test-Predicted Deviation Analysis Calc FEA Mean STDev Material Temperature Procedure Equipment Design

26 ?

27

28 Analytical Solutions Disc with frictionless surfaces 2 ri rr, r 2c 0, 3 rr r 1 0 r G 3 r 2 zz c i Normalized Stress v1 vm p 0 rr E r 3 2 i 1 Ef c 2 f 1 r i 3 c zz r Stress normalized by E E t KS A f

29 Material Tests

30 Force & Displacement Test Data Force Scale Displacement TIme (s) d x 12,000 F

31 Linear Solid Model Standard Linear Solid F Ks Km c

32 Force (kips) Force vs Time F Test Fit FRlx F-Ks F-KmD Time (s)

33 Force Error (lbs) df df

34 10.00 Force at Constant Velocity Free expansion test Force (kips) V=.010 V=.020 Ks only Displacement (Inches)

35 F Free Expansion Results Ks Km c 0? Hypothetical Bonded Results E K' K'' Loss factor Damping ratio 2.00 S Ec K' K'' Loss factor Damping ratio Ks related to molecular network configuration (entropy & int. energy) c, Km related to sliding of molecular segments

36 Moving Forward Complete; SeS Validation Equipment, fine tune load testing procedure Material Test, algorithm, software Finite Elements Results

37 Thank You Acknowledgements: AASHTO T2 Joints & Bearings Committee RJ Watson, Inc. PBENG

STRUCTURAL ANALYSIS OF A WESTFALL 2800 MIXER, BETA = 0.8 GFS R1. By Kimbal A. Hall, PE. Submitted to: WESTFALL MANUFACTURING COMPANY

STRUCTURAL ANALYSIS OF A WESTFALL 2800 MIXER, BETA = 0.8 GFS R1. By Kimbal A. Hall, PE. Submitted to: WESTFALL MANUFACTURING COMPANY STRUCTURAL ANALYSIS OF A WESTFALL 2800 MIXER, BETA = 0.8 GFS-411519-1R1 By Kimbal A. Hall, PE Submitted to: WESTFALL MANUFACTURING COMPANY OCTOBER 2011 ALDEN RESEARCH LABORATORY, INC. 30 Shrewsbury Street

More information

NCHRP FY 2004 Rotational Limits for Elastomeric Bearings. Final Report. Appendix I. John F. Stanton Charles W. Roeder Peter Mackenzie-Helnwein

NCHRP FY 2004 Rotational Limits for Elastomeric Bearings. Final Report. Appendix I. John F. Stanton Charles W. Roeder Peter Mackenzie-Helnwein NCHRP 12-68 FY 2004 Rotational Limits for Elastomeric Bearings Final Report Appendix I John F. Stanton Charles W. Roeder Peter Mackenzie-Helnwein Department of Civil and Environmental Engineering University

More information

The Design of Polyurethane Parts: Using Closed Solutions and Finite Element Analysis to Obtain Optimal Results

The Design of Polyurethane Parts: Using Closed Solutions and Finite Element Analysis to Obtain Optimal Results The Design of Polyurethane Parts: Using Closed Solutions and Finite Element Analysis to Obtain Optimal Results By: Richard Palinkas George Nybakken Ian Laskowitz Chemtura Corporation Overview How does

More information

NCHRP FY 2004 Rotational Limits for Elastomeric Bearings. Final Report APPENDIX D. John F. Stanton Charles W. Roeder Peter Mackenzie-Helnwein

NCHRP FY 2004 Rotational Limits for Elastomeric Bearings. Final Report APPENDIX D. John F. Stanton Charles W. Roeder Peter Mackenzie-Helnwein NCHRP 12-68 FY 2004 Rotational Limits for Elastomeric Bearings Final Report APPENDIX D John F. Stanton Charles W. Roeder Peter Mackenzie-Helnwein Department of Civil and Environmental Engineering University

More information

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola MECHANICS OF MATERIALS Prepared by Engr. John Paul Timola Mechanics of materials branch of mechanics that studies the internal effects of stress and strain in a solid body. stress is associated with the

More information

Due Monday, September 14 th, 12:00 midnight

Due Monday, September 14 th, 12:00 midnight Due Monday, September 14 th, 1: midnight This homework is considering the analysis of plane and space (3D) trusses as discussed in class. A list of MatLab programs that were discussed in class is provided

More information

3 A y 0.090

3 A y 0.090 ROBLM.1 5.0 in. 5 8 in. diameter A standard tension test is used to determine the properties of an experimental plastic. The test specimen is a 5 -in.-diameter rod and it is subjected to an 800-lb tensile

More information

Problem d d d B C E D. 0.8d. Additional lecturebook examples 29 ME 323

Problem d d d B C E D. 0.8d. Additional lecturebook examples 29 ME 323 Problem 9.1 Two beam segments, AC and CD, are connected together at C by a frictionless pin. Segment CD is cantilevered from a rigid support at D, and segment AC has a roller support at A. a) Determine

More information

Solution: The strain in the bar is: ANS: E =6.37 GPa Poison s ration for the material is:

Solution: The strain in the bar is: ANS: E =6.37 GPa Poison s ration for the material is: Problem 10.4 A prismatic bar with length L 6m and a circular cross section with diameter D 0.0 m is subjected to 0-kN compressive forces at its ends. The length and diameter of the deformed bar are measured

More information

ROTATION LIMITS FOR ELASTOMERIC BEARINGS FINAL REPORT. Prepared for NCHRP Transportation Research Board Of The National Academies

ROTATION LIMITS FOR ELASTOMERIC BEARINGS FINAL REPORT. Prepared for NCHRP Transportation Research Board Of The National Academies Project No. 1-68 COPY No. ROTATION LIMITS FOR ELASTOMERIC BEARINGS FINAL REPORT Prepared for NCHRP Transportation Research Board Of The National Academies John F. Stanton Charles W. Roeder Peter Mackenzie-Helnwein

More information

[5] Stress and Strain

[5] Stress and Strain [5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law

More information

Improving the earthquake performance of bridges using seismic isolation

Improving the earthquake performance of bridges using seismic isolation Improving the earthquake performance of bridges using seismic isolation Ian Buckle Professor, University of Nevada Reno TRB Webinar February 10, 2016 Sponsored by TRB Committee AFF50: Seismic Design and

More information

[7] Torsion. [7.1] Torsion. [7.2] Statically Indeterminate Torsion. [7] Torsion Page 1 of 21

[7] Torsion. [7.1] Torsion. [7.2] Statically Indeterminate Torsion. [7] Torsion Page 1 of 21 [7] Torsion Page 1 of 21 [7] Torsion [7.1] Torsion [7.2] Statically Indeterminate Torsion [7] Torsion Page 2 of 21 [7.1] Torsion SHEAR STRAIN DUE TO TORSION 1) A shaft with a circular cross section is

More information

Response Spectrum Analysis Shock and Seismic. FEMAP & NX Nastran

Response Spectrum Analysis Shock and Seismic. FEMAP & NX Nastran Response Spectrum Analysis Shock and Seismic FEMAP & NX Nastran Table of Contents 1. INTRODUCTION... 3 2. THE ACCELEROGRAM... 4 3. CREATING A RESPONSE SPECTRUM... 5 4. NX NASTRAN METHOD... 8 5. RESPONSE

More information

P.E. Civil Exam Review:

P.E. Civil Exam Review: P.E. Civil Exam Review: Structural Analysis J.P. Mohsen Email: jpm@louisville.edu Structures Determinate Indeterminate STATICALLY DETERMINATE STATICALLY INDETERMINATE Stability and Determinacy of Trusses

More information

Modelling Seismic Isolation and Viscous Damping

Modelling Seismic Isolation and Viscous Damping Modelling Seismic Isolation and Viscous Damping Andreas Schellenberg, Ph.D., P.E. Open System for Earthquake Engineering Simulation Pacific Earthquake Engineering Research Center Outline of Presentation

More information

2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?

2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)? IDE 110 S08 Test 1 Name: 1. Determine the internal axial forces in segments (1), (2) and (3). (a) N 1 = kn (b) N 2 = kn (c) N 3 = kn 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at

More information

Symmetric Bending of Beams

Symmetric Bending of Beams Symmetric Bending of Beams beam is any long structural member on which loads act perpendicular to the longitudinal axis. Learning objectives Understand the theory, its limitations and its applications

More information

Mechanical Properties of Materials

Mechanical Properties of Materials Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of

More information

Lecture 2: Stresses in Pavements

Lecture 2: Stresses in Pavements Lecture 2: Stresses in Pavements Stresses in Layered Systems At any point, 9 stresses exist. They are 3 normal stresses (s z, s r, s t ) and 6 shearing stresses ( t rz = t zr, t rt = t tr, and t tz = t

More information

ALASKA ENERGY AUTHORITY AEA ENGINEERING FEASIBILITY REPORT. Appendix B8. Finite Element Analysis

ALASKA ENERGY AUTHORITY AEA ENGINEERING FEASIBILITY REPORT. Appendix B8. Finite Element Analysis ALASKA ENERGY AUTHORITY AEA11-022 ENGINEERING FEASIBILITY REPORT Appendix B8 Finite Element Analysis Susitna-Watana Hydroelectric Project Alaska Energy Authority FERC Project No. 14241 December 2014 Seismic

More information

Finite Element Analysis Lecture 1. Dr./ Ahmed Nagib

Finite Element Analysis Lecture 1. Dr./ Ahmed Nagib Finite Element Analysis Lecture 1 Dr./ Ahmed Nagib April 30, 2016 Research and Development Mathematical Model Mathematical Model Mathematical Model Finite Element Analysis The linear equation of motion

More information

Finite element simulations of fretting contact systems

Finite element simulations of fretting contact systems Computer Methods and Experimental Measurements for Surface Effects and Contact Mechanics VII 45 Finite element simulations of fretting contact systems G. Shi, D. Backman & N. Bellinger Structures and Materials

More information

Indeterminate Analysis Force Method 1

Indeterminate Analysis Force Method 1 Indeterminate Analysis Force Method 1 The force (flexibility) method expresses the relationships between displacements and forces that exist in a structure. Primary objective of the force method is to

More information

Copyright. magazine. bearing capacity and modulus of subgrade reaction? Modulus of Subgrade Reaction (Ks)

Copyright. magazine. bearing capacity and modulus of subgrade reaction? Modulus of Subgrade Reaction (Ks) Structural Design design issues for structural engineers Correlation between Soil Bearing Capacity and Modulus of Subgrade Reaction By Apurba Tribedi Apurba Tribedi is a Senior Product Manager at Bentley.

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain - Axial Loading Statics

More information

Copyright by Joseph Vincent Muscarella, P.E. 1995

Copyright by Joseph Vincent Muscarella, P.E. 1995 Copyright by Joseph Vincent Muscarella, P.E. 1995 xviii AN EXPERIMENTAL STUDY OF ELASTOMERIC BRIDGE BEARINGS WITH DESIGN RECOMMENDATIONS by JOSEPH VINCENT MUSCARELLA, B.S, M.S. DISSERTATION Presented to

More information

A Review On Methodology Of Material Characterization And Finite Element Modelling Of Rubber-Like Materials

A Review On Methodology Of Material Characterization And Finite Element Modelling Of Rubber-Like Materials IOSR Journal of Engineering (IOSRJEN) ISSN (e): 50-301, ISSN (p): 78-8719 PP 06-10 www.iosrjen.org A Review On Methodology Of Material Characterization And Finite Element Modelling Of Rubber-Like Materials

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion Introduction Stress and strain in components subjected to torque T Circular Cross-section shape Material Shaft design Non-circular

More information

SHAKING TABLE DEMONSTRATION OF DYNAMIC RESPONSE OF BASE-ISOLATED BUILDINGS ***** Instructor Manual *****

SHAKING TABLE DEMONSTRATION OF DYNAMIC RESPONSE OF BASE-ISOLATED BUILDINGS ***** Instructor Manual ***** SHAKING TABLE DEMONSTRATION OF DYNAMIC RESPONSE OF BASE-ISOLATED BUILDINGS ***** Instructor Manual ***** A PROJECT DEVELOPED FOR THE UNIVERSITY CONSORTIUM ON INSTRUCTIONAL SHAKE TABLES http://wusceel.cive.wustl.edu/ucist/

More information

This procedure covers the determination of the moment of inertia about the neutral axis.

This procedure covers the determination of the moment of inertia about the neutral axis. 327 Sample Problems Problem 16.1 The moment of inertia about the neutral axis for the T-beam shown is most nearly (A) 36 in 4 (C) 236 in 4 (B) 136 in 4 (D) 736 in 4 This procedure covers the determination

More information

Task 1 - Material Testing of Bionax Pipe and Joints

Task 1 - Material Testing of Bionax Pipe and Joints Task 1 - Material Testing of Bionax Pipe and Joints Submitted to: Jeff Phillips Western Regional Engineer IPEX Management, Inc. 20460 Duncan Way Langley, BC, Canada V3A 7A3 Ph: 604-534-8631 Fax: 604-534-7616

More information

Solution: T, A1, A2, A3, L1, L2, L3, E1, E2, E3, P are known Five equations in five unknowns, F1, F2, F3, ua and va

Solution: T, A1, A2, A3, L1, L2, L3, E1, E2, E3, P are known Five equations in five unknowns, F1, F2, F3, ua and va ME 323 Examination # 1 February 18, 2016 Name (Print) (Last) (First) Instructor PROBLEM #1 (20 points) A structure is constructed from members 1, 2 and 3, with these members made up of the same material

More information

Design of a Balanced-Cantilever Bridge

Design of a Balanced-Cantilever Bridge Design of a Balanced-Cantilever Bridge CL (Bridge is symmetric about CL) 0.8 L 0.2 L 0.6 L 0.2 L 0.8 L L = 80 ft Bridge Span = 2.6 L = 2.6 80 = 208 Bridge Width = 30 No. of girders = 6, Width of each girder

More information

OPTIMAL DESIGN OF CLUTCH PLATE BASED ON HEAT AND STRUCTURAL PARAMETERS USING CFD AND FEA

OPTIMAL DESIGN OF CLUTCH PLATE BASED ON HEAT AND STRUCTURAL PARAMETERS USING CFD AND FEA International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 5, May 2018, pp. 717 724, Article ID: IJMET_09_05_079 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=5

More information

Free Body Diagram: Solution: The maximum load which can be safely supported by EACH of the support members is: ANS: A =0.217 in 2

Free Body Diagram: Solution: The maximum load which can be safely supported by EACH of the support members is: ANS: A =0.217 in 2 Problem 10.9 The angle β of the system in Problem 10.8 is 60. The bars are made of a material that will safely support a tensile normal stress of 8 ksi. Based on this criterion, if you want to design the

More information

Chapter 1 Introduction- Concept of Stress

Chapter 1 Introduction- Concept of Stress hapter 1 Introduction- oncept of Stress INTRODUTION Review of Statics xial Stress earing Stress Torsional Stress 14 6 ending Stress W W L Introduction 1-1 Shear Stress W W Stress and Strain L y y τ xy

More information

Applications of Eigenvalues & Eigenvectors

Applications of Eigenvalues & Eigenvectors Applications of Eigenvalues & Eigenvectors Louie L. Yaw Walla Walla University Engineering Department For Linear Algebra Class November 17, 214 Outline 1 The eigenvalue/eigenvector problem 2 Principal

More information

5. What is the moment of inertia about the x - x axis of the rectangular beam shown?

5. What is the moment of inertia about the x - x axis of the rectangular beam shown? 1 of 5 Continuing Education Course #274 What Every Engineer Should Know About Structures Part D - Bending Strength Of Materials NOTE: The following question was revised on 15 August 2018 1. The moment

More information

Tracker Tower 01 Prototype Test & Analysis Overview

Tracker Tower 01 Prototype Test & Analysis Overview Tracker Tower 01 Prototype Test & Analysis Overview Erik Swensen June 19, 2002 HPS-102070-0002 Test Background Design Philosophy: Tracker Tower 01 Prototype was used as an engineering evaluation model

More information

International Construction Consulting, LLC

International Construction Consulting, LLC International Construction Consulting, LLC HDD Design, Calculations, and Cost Estimate Bow Tie to Industrial Park; Soyo, Angola www.oil-gas-consulting.com JOB No: NA PREPRD.BY: G Lamberson DATE: 16-Jan-18

More information

NAME: Given Formulae: Law of Cosines: Law of Sines:

NAME: Given Formulae: Law of Cosines: Law of Sines: NME: Given Formulae: Law of Cosines: EXM 3 PST PROBLEMS (LESSONS 21 TO 28) 100 points Thursday, November 16, 2017, 7pm to 9:30, Room 200 You are allowed to use a calculator and drawing equipment, only.

More information

INTRODUCTION TO STRAIN

INTRODUCTION TO STRAIN SIMPLE STRAIN INTRODUCTION TO STRAIN In general terms, Strain is a geometric quantity that measures the deformation of a body. There are two types of strain: normal strain: characterizes dimensional changes,

More information

Final Exam - Spring

Final Exam - Spring EM121 Final Exam - Spring 2011-2012 Name : Section Number : Record all your answers to the multiple choice problems (1-15) by filling in the appropriate circle. All multiple choice answers will be graded

More information

3 Relation between complete and natural degrees of freedom

3 Relation between complete and natural degrees of freedom Stiffness matrix for D tapered beams by ouie. Yaw, PhD, PE, SE Walla Walla University March 9, 9 Introduction This article presents information necessary for the construction of the stiffness matrix of

More information

Lecture 8: Flexibility Method. Example

Lecture 8: Flexibility Method. Example ecture 8: lexibility Method Example The plane frame shown at the left has fixed supports at A and C. The frame is acted upon by the vertical load P as shown. In the analysis account for both flexural and

More information

COMPRESSION AND BENDING STIFFNESS OF FIBER-REINFORCED ELASTOMERIC BEARINGS. Abstract. Introduction

COMPRESSION AND BENDING STIFFNESS OF FIBER-REINFORCED ELASTOMERIC BEARINGS. Abstract. Introduction COMPRESSION AND BENDING STIFFNESS OF FIBER-REINFORCED ELASTOMERIC BEARINGS Hsiang-Chuan Tsai, National Taiwan University of Science and Technology, Taipei, Taiwan James M. Kelly, University of California,

More information

Limiting High Speed Dynamic Forces on the Track Structure; The Amtrak Acela Case. Allan M. Zarembski Ph.D., PE.; President, ZETA-TECH Associates, Inc.

Limiting High Speed Dynamic Forces on the Track Structure; The Amtrak Acela Case. Allan M. Zarembski Ph.D., PE.; President, ZETA-TECH Associates, Inc. Limiting High Speed Dynamic Forces on the Track Structure; The Amtrak Acela Case Allan M. Zarembski Ph.D., PE.; President, ZETA-TECH Associates, Inc. Joseph W. Palese, MCE, PE; Director Analytical Engineering,

More information

ELASTIC STAIBILITY CIF TUE FACINGS Of HAT SANDWICI-1 PANELS WIASI SUBJECTED TO COMBINED EDGEWISE STRESSES

ELASTIC STAIBILITY CIF TUE FACINGS Of HAT SANDWICI-1 PANELS WIASI SUBJECTED TO COMBINED EDGEWISE STRESSES ELASTIC STAIBILITY CIF TUE FACINGS Of HAT SANDWICI-1 PANELS WIASI SUBJECTED TO COMBINED EDGEWISE STRESSES Information Reviewed and Reaffirmed Aucust 1955 NFORMA-tiON RE'4,E\AE.'L; n PE.1-17;9';f2,. This!Report

More information

Athermal design of nearly incompressible bonds

Athermal design of nearly incompressible bonds Athermal design of nearly incompressible s Keith B. Doyle Optical Research Associates, 1800 West Park Drive, Westborough, MA Gregory J. Michels, Victor L. Genberg Sigmadyne, Inc., Rochester, NY ABSTRACT

More information

If the solution does not follow a logical thought process, it will be assumed in error.

If the solution does not follow a logical thought process, it will be assumed in error. Please indicate your group number (If applicable) Circle Your Instructor s Name and Section: MWF 8:30-9:20 AM Prof. Kai Ming Li MWF 2:30-3:20 PM Prof. Fabio Semperlotti MWF 9:30-10:20 AM Prof. Jim Jones

More information

Base Design Considerations for Jointed Concrete. Dan G. Zollinger, Ph.D., P.E. Texas A&M University, College Station, TX, USA

Base Design Considerations for Jointed Concrete. Dan G. Zollinger, Ph.D., P.E. Texas A&M University, College Station, TX, USA Base Design Considerations for Jointed Concrete Dan G. Zollinger, Ph.D., P.E. Texas A&M University, College Station, TX, USA Discussion What is Erosion Effects on Performance Erosion Testing Use of Erosion

More information

Aluminum shell. Brass core. 40 in

Aluminum shell. Brass core. 40 in PROBLEM #1 (22 points) A solid brass core is connected to a hollow rod made of aluminum. Both are attached at each end to a rigid plate as shown in Fig. 1. The moduli of aluminum and brass are EA=11,000

More information

Review of the Master SN Neuber Rule in the ASME Division 2 Rewrite Project

Review of the Master SN Neuber Rule in the ASME Division 2 Rewrite Project Review of the Master SN Neuber Rule in the ASME Division 2 Rewrite Project ASME BPVC Code Week Atlanta, GA February 2007 Chris Hinnant Paulin Research Group Houston, TX Table of Contents 1.0 Introduction

More information

Characterization of Elastomeric Isolators for Shock

Characterization of Elastomeric Isolators for Shock ME 4054 Design Projects Characterization of Elastomeric Isolators for Shock - Vol. 1 - May 1, 2009 Team Nick Haupt Matt Hildebrand Jim Holmberg Brian Kornis Sam Newbauer Advisors Jim Wieczorek Ed Alexander

More information

ANSWERS September 2014

ANSWERS September 2014 NSWERS September 2014 nswers to selected questions: Sheet # (1) (2) () (4) SCE-55 D SCE-86 D SCE-88 D C MCM-21 MCM-12 D MMC-80 C C D MCM-52 D D MCM-1 C D D MCM-51 D D MCM-57 D D MCM-60 D MLS-12 C D NS

More information

IN SITU TESTING TECHNOLOGY FOR FOUNDATION & EARTHQUAKE ENGINEERING. Wesley Spang, Ph.D., P.E. AGRA Earth & Environmental, Inc.

IN SITU TESTING TECHNOLOGY FOR FOUNDATION & EARTHQUAKE ENGINEERING. Wesley Spang, Ph.D., P.E. AGRA Earth & Environmental, Inc. IN SITU TESTING TECHNOLOGY FOR FOUNDATION & EARTHQUAKE ENGINEERING Wesley Spang, Ph.D., P.E. AGRA Earth & Environmental, Inc. Portland, Oregon In situ testing of soil, which essentially consists of evaluating

More information

A MODEL FOR SIMULATING THE COMPRESSION STIFFNESS DEGRADATION IN CIRCULAR ELASTOMERIC BEARINGS DUE TO FATIGUE. Pu Deng

A MODEL FOR SIMULATING THE COMPRESSION STIFFNESS DEGRADATION IN CIRCULAR ELASTOMERIC BEARINGS DUE TO FATIGUE. Pu Deng The Pennsylvania State University The Graduate School College of Engineering A MODEL FOR SIMULATING THE COMPRESSION STIFFNESS DEGRADATION IN CIRCULAR ELASTOMERIC BEARINGS DUE TO FATIGUE A Thesis in Civil

More information

Anchor Bolt Design (Per ACI and "Design of Reinforcement in Concrete Pedestals" CSA Today, Vol III, No. 12)

Anchor Bolt Design (Per ACI and Design of Reinforcement in Concrete Pedestals CSA Today, Vol III, No. 12) Anchor Bolt Design (Per ACI 318-08 and "Design of Reinforcement in Concrete Pedestals" CSA Today, Vol III, No. 12) Design Assumptions: Base Units and Design 1. Tension is equally distributed among all

More information

Mechanics of Materials Primer

Mechanics of Materials Primer Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus

More information

Application of cyclic accumulation models for undrained and partially drained general boundary value problems

Application of cyclic accumulation models for undrained and partially drained general boundary value problems Application of cyclic accumulation models for undrained and partially drained general boundary value problems A. M. Page Risueño Yngres Dag 2014, May 15 th 2014 Introduction Cyclic loads in geotechnical

More information

Figure 1 Lifting Lug Geometry with Weld

Figure 1 Lifting Lug Geometry with Weld Should you Perform Nonlinear Stress Analysis? Many of our clients inquire whether nonlinearity should be considered in their analyses. The answer to that question is not simple. Sometimes, as in certain

More information

Drilled Shaft Foundations in Limestone. Dan Brown, P.E., Ph.D. Dan Brown and Associates

Drilled Shaft Foundations in Limestone. Dan Brown, P.E., Ph.D. Dan Brown and Associates Drilled Shaft Foundations in Limestone Dan Brown, P.E., Ph.D. Dan Brown and Associates Foundation Engineering How we teach our students Fundamental understanding of soil and rock behavior (good!) Focus

More information

FHWA Bridge Design Guidance No. 1 Revision Date: July 21, Load Rating Evaluation of Gusset Plates in Truss Bridges

FHWA Bridge Design Guidance No. 1 Revision Date: July 21, Load Rating Evaluation of Gusset Plates in Truss Bridges FHWA Bridge Design Guidance No. 1 Revision Date: July 21, 2008 Load Rating Evaluation of Gusset Plates in Truss Bridges By Firas I. Sheikh Ibrahim, PhD, PE Part B Gusset Plate Resistance in Accordance

More information

TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES)

TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES) Page1 TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES) Restrained warping for the torsion of thin-wall open sections is not included in most commonly used frame analysis programs. Almost

More information

The Pennsylvania State University. The Graduate School. College of Engineering STABILITY OF LOW DAMPING RUBBER AND LEAD-RUBBER

The Pennsylvania State University. The Graduate School. College of Engineering STABILITY OF LOW DAMPING RUBBER AND LEAD-RUBBER The Pennsylvania State University The Graduate School College of Engineering STABILITY OF LOW DAMPING RUBBER AND LEAD-RUBBER SEISMIC ISOLATION BEARINGS A Thesis in Civil Engineering by Jared R. Weisman

More information

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14 Table of Contents Chapter 1: Research Objectives and Literature Review..1 1.1 Introduction...1 1.2 Literature Review......3 1.2.1 Describing Vibration......3 1.2.2 Vibration Isolation.....6 1.2.2.1 Overview.

More information

Name (Print) ME Mechanics of Materials Exam # 2 Date: March 29, 2017 Time: 8:00 10:00 PM - Location: WTHR 200

Name (Print) ME Mechanics of Materials Exam # 2 Date: March 29, 2017 Time: 8:00 10:00 PM - Location: WTHR 200 Name (Print) (Last) (First) Instructions: ME 323 - Mechanics of Materials Exam # 2 Date: Time: 8:00 10:00 PM - Location: WTHR 200 Circle your lecturer s name and your class meeting time. Koslowski Zhao

More information

A Simple Problem Which Students Can Solve and Check Using an Inexpensive Calculator

A Simple Problem Which Students Can Solve and Check Using an Inexpensive Calculator Session 3649 A Simple Problem Which Students Can Solve and Check Using an Inexpensive Calculator Patrick J. Cronin The Pennsylvania State University New Kensington Campus Abstract This paper proposes a

More information

Stress analysis of deflection analysis flexure and obif Vertical Load orientation

Stress analysis of deflection analysis flexure and obif Vertical Load orientation Stress analysis of deflection analysis flexure and obif Vertical Load orientation Note: Do not base your design decisions solely on the data presented in this report. Use this information in conjunction

More information

Sample Questions for the ME328 Machine Design Final Examination Closed notes, closed book, no calculator.

Sample Questions for the ME328 Machine Design Final Examination Closed notes, closed book, no calculator. Sample Questions for the ME328 Machine Design Final Examination Closed notes, closed book, no calculator. The following is from the first page of the examination. I recommend you read it before the exam.

More information

Lecture 3: Stresses in Rigid Pavements

Lecture 3: Stresses in Rigid Pavements Lecture 3: Stresses in Rigid Pavements Nature of Responses under Flexible and Rigid Plates Flexible plate: Uniform Contact Pressure Variable Deflection Profile Flexible Plate Rigid Plate plate: Non-Uniform

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third CHTR Stress MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University and Strain xial oading Contents Stress & Strain: xial oading Normal

More information

Use of Ultra-High Performance Concrete in Geotechnical and Substructure Applications

Use of Ultra-High Performance Concrete in Geotechnical and Substructure Applications Use of Ultra-High Performance Concrete in Geotechnical and Substructure Applications i PI: Muhannad Suleiman Co-PI: Sri Sritharan Graduate Research Assistant: Thomas L. Vande Voort January 13, 29 IOWA

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS CHATR Stress MCHANICS OF MATRIALS and Strain Axial Loading Stress & Strain: Axial Loading Suitability of a structure or machine may depend on the deformations in the structure as well as the stresses induced

More information

READING QUIZ. 2. When using the method of joints, typically equations of equilibrium are applied at every joint. A) Two B) Three C) Four D) Six

READING QUIZ. 2. When using the method of joints, typically equations of equilibrium are applied at every joint. A) Two B) Three C) Four D) Six READING QUIZ 1. One of the assumptions used when analyzing a simple truss is that the members are joined together by. A) Welding B) Bolting C) Riveting D) Smooth pins E) Super glue 2. When using the method

More information

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Elmer E. Marx, Alaska Department of Transportation and Public Facilities Michael Keever, California Department

More information

Massachusetts Institute of Technology 22.68J/2.64J Superconducting Magnets. February 27, Lecture #4 Magnetic Forces and Stresses

Massachusetts Institute of Technology 22.68J/2.64J Superconducting Magnets. February 27, Lecture #4 Magnetic Forces and Stresses Massachusetts Institute of Technology.68J/.64J Superconducting Magnets February 7, 003 Lecture #4 Magnetic Forces and Stresses 1 Forces For a solenoid, energy stored in the magnetic field acts equivalent

More information

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy Stress Analysis Lecture 3 ME 276 Spring 2017-2018 Dr./ Ahmed Mohamed Nagib Elmekawy Axial Stress 2 Beam under the action of two tensile forces 3 Beam under the action of two tensile forces 4 Shear Stress

More information

Mechanics of Materials

Mechanics of Materials Mechanics of Materials 2. Introduction Dr. Rami Zakaria References: 1. Engineering Mechanics: Statics, R.C. Hibbeler, 12 th ed, Pearson 2. Mechanics of Materials: R.C. Hibbeler, 9 th ed, Pearson 3. Mechanics

More information

TABLE OF CONTENTS SECTION TITLE PAGE 2 PRINCIPLES OF SEISMIC ISOLATION OF BRIDGES 3

TABLE OF CONTENTS SECTION TITLE PAGE 2 PRINCIPLES OF SEISMIC ISOLATION OF BRIDGES 3 TABLE OF CONTENTS SECTION TITLE PAGE 1 INTRODUCTION 1 2 PRINCIPLES OF SEISMIC ISOLATION OF BRIDGES 3 3 ANALYSIS METHODS OF SEISMICALLY ISOLATED BRIDGES 5 3.1 Introduction 5 3.2 Loadings for the Analysis

More information

Table of Contents. Preface...xvii. Part 1. Level

Table of Contents. Preface...xvii. Part 1. Level Preface...xvii Part 1. Level 1... 1 Chapter 1. The Basics of Linear Elastic Behavior... 3 1.1. Cohesion forces... 4 1.2. The notion of stress... 6 1.2.1. Definition... 6 1.2.2. Graphical representation...

More information

Errata (Includes critical corrections only for the 1 st, 2 nd & 3 rd reprints)

Errata (Includes critical corrections only for the 1 st, 2 nd & 3 rd reprints) Errata (Includes critical corrections only for the 1 st, 2 nd & 3 rd reprints) Mechanics of Materials, 8e James M. Gere & Barry J. Goodno ISBN: 9781111577735 Page Number Description of Correction 15 Example

More information

Durability of bonded aircraft structure. AMTAS Fall 2016 meeting October 27 th 2016 Seattle, WA

Durability of bonded aircraft structure. AMTAS Fall 2016 meeting October 27 th 2016 Seattle, WA Durability of bonded aircraft structure AMTAS Fall 216 meeting October 27 th 216 Seattle, WA Durability of Bonded Aircraft Structure Motivation and Key Issues: Adhesive bonding is a key path towards reduced

More information

Edward C. Robison, PE, SE. 02 January Architectural Metal Works ATTN: Sean Wentworth th ST Emeryville, CA 94608

Edward C. Robison, PE, SE. 02 January Architectural Metal Works ATTN: Sean Wentworth th ST Emeryville, CA 94608 Edward C. Robison, PE, SE ks ATTN: Sean Wentworth 1483 67 th ST Emeryville, CA 94608 02 January 2013 SUBJ: 501 CORTE MADERA AVE, CORTE MADERA, CA 94925 BALCONY GUARD BASE PLATE MOUNTS The guards for the

More information

Using Energy History Data to Obtain Load vs. Deflection Curves from Quasi-Static Abaqus/Explicit Analyses

Using Energy History Data to Obtain Load vs. Deflection Curves from Quasi-Static Abaqus/Explicit Analyses Using Energy History Data to Obtain Load vs. Deflection Curves from Quasi-Static Abaqus/Explicit Analyses Brian Baillargeon, Ramesh Marrey, Randy Grishaber 1, and David B. Woyak 2 1 Cordis Corporation,

More information

Research work in this thesis deals with the effects of lateral loads in the longitudinal

Research work in this thesis deals with the effects of lateral loads in the longitudinal ABSTRACT POSSIEL, BENJAMIN ALLEN. Point of Fixity Analysis of Laterally Loaded Bridge Bents. (Under the direction of Dr. Mohammed Gabr and Dr. Mervyn Kowalsky.) Research work in this thesis deals with

More information

Structural Calculations For:

Structural Calculations For: Structural Calculations For: Project: Address: Job No. Revision: Date: 1400 N. Vasco Rd. Livermore, CA 94551 D031014 Delta 1 - Plan Check May 8, 2015 Client: Ferreri & Blau MEMBER REPORT Roof, Typical

More information

Simplified Base Isolation Design Procedure. Gordon Wray, P.E.

Simplified Base Isolation Design Procedure. Gordon Wray, P.E. Simplified Base Isolation Design Procedure Gordon Wray, P.E. SEAONC Protective Systems Subcommittee Objectives > Current Unique Code Requirements More sophisticated engineering analysis Geotechnical need

More information

EI M M 0 dx. EI M x C dx. EIy M x C x C

EI M M 0 dx. EI M x C dx. EIy M x C x C PROE 9. For the loading shown, determine (a) the equation of the elastic curve for the cantilever beam, (b) the deflection at the free end, (c) the slope at the free end. (a) Elastic curve: : K d d d,

More information

Properties of Sections

Properties of Sections ARCH 314 Structures I Test Primer Questions Dr.-Ing. Peter von Buelow Properties of Sections 1. Select all that apply to the characteristics of the Center of Gravity: A) 1. The point about which the body

More information

Drop Test Simulation of a BGA Package: Methods & Experimental Comparison

Drop Test Simulation of a BGA Package: Methods & Experimental Comparison Drop Test Simulation of a BGA Package: Methods & Experimental Comparison Chris Cowan, Ozen Engineering, Inc. Harvey Tran, Intel Corporation Nghia Le, Intel Corporation Metin Ozen, Ozen Engineering, Inc.

More information

ABS Consulting Project No

ABS Consulting Project No SUPPORTING STRUCTURE DESIGN FOR BLAST RESISTANT WINDOWS CHILD DEVELOPMENT CENTER MOODY AFB, GA ABS Consulting Project No. 898 PREPARED FOR: ATLANTIC ENGINEERING SERVICE 6 ARLINGTON EXPRESSWAY BLDG. B,

More information

Comparison of LS-DYNA and NISA in Solving Dynamic Pulse Buckling Problems in Laminated Composite Beams

Comparison of LS-DYNA and NISA in Solving Dynamic Pulse Buckling Problems in Laminated Composite Beams 9 th International LS-DYNA Users Conference Simulation Technology (1) Comparison of LS-DYNA and NISA in Solving Dynamic Pulse Buckling Problems in Laminated Composite Beams Haipeng Han and Farid Taheri

More information

LS-DYNA MAT54 for simulating composite crash energy absorption

LS-DYNA MAT54 for simulating composite crash energy absorption LS-DYNA MAT54 for simulating composite crash energy absorption Bonnie Wade and Paolo Feraboli (UW) Mostafa Rassaian (Boeing BR&T) JAMS 2011 The Joint Advanced Materials and Structures Center of Excellence

More information

Finite Element Analysis of Magnetorheological Brake using ANSYS

Finite Element Analysis of Magnetorheological Brake using ANSYS International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Chiranjit

More information

Chapter 5. Vibration Analysis. Workbench - Mechanical Introduction ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved.

Chapter 5. Vibration Analysis. Workbench - Mechanical Introduction ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved. Workbench - Mechanical Introduction 12.0 Chapter 5 Vibration Analysis 5-1 Chapter Overview In this chapter, performing free vibration analyses in Simulation will be covered. In Simulation, performing a

More information

Project 3.13: Systems Approach to Wheel and Pad Metamaterial Design Including Robustness Issues PI: Fadel (Clemson)

Project 3.13: Systems Approach to Wheel and Pad Metamaterial Design Including Robustness Issues PI: Fadel (Clemson) PI: Fadel (Clemson) Project started: 2017 Estimated end: 2018 Resources / Funded effort: 2017 PI 1 SM, FAC 1 SM, 1 GSRA key: PI Principal Investigator (faculty unless otherwise indicated) co-pi co-principal

More information

MEMS Project 2 Assignment. Design of a Shaft to Transmit Torque Between Two Pulleys

MEMS Project 2 Assignment. Design of a Shaft to Transmit Torque Between Two Pulleys MEMS 029 Project 2 Assignment Design of a Shaft to Transmit Torque Between Two Pulleys Date: February 5, 206 Instructor: Dr. Stephen Ludwick Product Definition Shafts are incredibly important in order

More information

Homework No. 1 MAE/CE 459/559 John A. Gilbert, Ph.D. Fall 2004

Homework No. 1 MAE/CE 459/559 John A. Gilbert, Ph.D. Fall 2004 Homework No. 1 MAE/CE 459/559 John A. Gilbert, Ph.D. 1. A beam is loaded as shown. The dimensions of the cross section appear in the insert. the figure. Draw a complete free body diagram showing an equivalent

More information