Engineering Composite Reinforcements

Size: px
Start display at page:

Download "Engineering Composite Reinforcements"

Transcription

1 Facing up to the Challenges of Natural Fibres as Potential Engineering Composite Reinforcements Jim Thomason Composites September th 2013 Leuven, Belgium

2 Jim why are you so down on Natural Fibre? Natural Fibre Composites Some personal NF History Some of the NFC Challenges NF Anisotropy NF cross section Some Conclusions

3 Natural Fibre some Personal History Half Day Symposium on Natural Fibre Composites

4 ECCM-8, Naples 1998 Prof Verpoest also attended Held standard team meeting

5 ECCM-8 NF Symposium The Natural Fibre Conundrum NF green, cheap, great properties can replace glass fibre Hey Lets make some NF composites and replace glass fibre Hmmm my NF composites are nowhere near what I predicted

6 Natural Fibre some Personal History Potential Advantages of Natural Fibres Potentially low cost Low density (1.45 g/cc vs 2.6 g/cc for GF) Very green image Incinerable - thermally recyclable (with no net increase in CO2 balance) Modulus range exceeds that of E-glass Non-abrasive - low wear of processing equipment No skin irritation problems during handling Identified Disadvantages of Natural Fibres Fibre properties dependent on level of processing (high properties require more fibre processing = cost penalty) Properties dependent on seasonal conditions High levels of water adsorption and poor dimensional stability Low strength compared to E-glass Anisotropic structure - low transverse properties = poor flex & compression performance Composites generally require higher fibre loading resulting in high processing viscosities. Surface treatments and polymer coupling agents required for best composite properties Odour problem after composite processing Potentially Bioactive

7 Natural Fibre some Personal History Owens Corning NFC Project Based on Long Fibre PP Process Technology 12 mm pultruded pellets, 20-50% NF-PP Pilot Plant capability 500kg/day plan for first production plant in India New Sizings developed - some patented for Natural Fibre and Regenerated Cellulose Fibre (Rayon) Multiple Demonstrator Parts Moulded and Tested Huge automotive OEM, Tier 1 and Tier 2 interest

8 Natural Fibre Composite - Demonstrators INDUSTRY LEADER Organizer / Moulder OC, MIG Plastics JCI Part Method Part Wt. (kg) Buick - Door handle Inj. Mould 0.14 pull Jeep Grand Cherokee - Door Inner Inj. Mould 0.91 Mayco Plastics Delphi, Proto Plastics SEG Kunststoff technik Pelzer, Clion Gmbh Chrysler - Air deflector GM Instrument panel retainer Audi A2 - Fender stiffener DCX PT Cruiser - Underbody shield Inj. Mould 0.31 Inj. Mould 2.6kg Inj. Mould 0.45 Extrusion Compress 1.35

9 Typical Properties of PP Based Compounds INDUSTRY LEADER 30% 30% 30% 30% Talc Jute-A Jute-B Glass* Modulus (GPa) Tensile (MPa) Flex Str (MPa) N Izod (J/m) Un Izod (J/m) HDT ( C) Density

10 Relative Performance (%) Comparison PP Composite Performance INDUSTRY LEADER Modulus Strength Notched Unnotched Short Glass Modulus Strength Notched Unnotched Long Jute Relative Performance (%) Modulus Strength Notched Unnotched Modulus Strength Notched Unnotched Fibre Content (% weight) Fibre Content (% weight) Long Glass Long Rayon

11 Comparison Composite Cost/Performance INDUSTRY LEADER $ / kg Composite per MPa Tensile Strength 0.03 $ / kg Composite per GPa Tensile Modulus 0.02 Strength 20% NF 40% NF 20% Talc 40% Talc 20% GF 40%GF $ / kg Natural Fiber Input % NF 40% NF 20% Talc 40% Talc % GF 40%GF $ / kg Natural Fiber Input Modulus $ / kg Composite per ft-lb Unnotched Izod $ / kg Composite per ft-lb Notched Izod Unnotched Impact Jute 20% NF 40% NF 20% Talc 40% Talc 20% GF 40%GF % NF $ / kg Natural 40% NF Fiber Input % GF 40%GF Talc> $ / kg Natural Fiber Input Notched Impact

12 Natural Fibre some Personal History Owens Corning NFC Project Project shelved 2002, Natural Fibre Composites are not Performance-Cost competitive with existing materials

13 Some Philosophy If you know your enemies and know yourself, you can win a hundred battles without a single loss. If you only know yourself, but not your opponent, you may win or may lose. If you know neither yourself nor your enemy, you will always endanger yourself. The Art of War, Sun Tzu

14 Some INDUSTRY LEADER of the Challenges of Working with NF Fibre natural variability Fibre highly anisotropic Low transverse and shear reinforcement performance Fibres mostly non-circular Fibre lumen = composite voids Fibre cross section non-uniform along length Fibre diameter often much larger than man-made fibres High moisture content in fibres at ambient RH processing issues Temperature sensitivity in particular odour issues in processing Many forms of NF not suitable for use in standard industry processes Poor (often negative) performance in composites Composite fibre content measurement? Moisture sensitivity in composite Bio-activity (rotting,fungus, mould) Fibre-matrix interaction - poor Fogging/Emission issues in Automotive applications

15 Some typical fibre properties are shown in the Table below Why Natural Fibre Composites? Sisal Jute Flax Glass Modulus (GPa) Strength (GPa) >1.5 Density Specific Modulus So some natural fibre may have the potential to replace glass fibres??? E = V E + V C η 0 η L f f m E m

16 Typical Specs for Automotive Application INDUSTRY LEADER There are very few applications where only modulus is required!!! A typical automotive spec sheet will need Melt Flow Rate (ISO 1133, ASTM D1238) Glass Fibre Content (ISO 3451/1) Density (ISO 1183, ASTM D792) Tensile Strength (ISO R527, ASTM D638M) Flexural Modulus (ISO 178, ASTM D790M) Shear Modulus (ASTM D4065) Impact Strength, Izod (ISO 180, ASTM D256) Heat Deflection temperature (ISO 73, ASTM D648) Heat Aging Performance (ISO 188, ASTM D573) Flammability (ISO 3795) Fogging (FLTM BO ) Mould Shrinkage (ISO 2577) Coeff. of Linear Thermal Expansion (ASTM D696)

17 Modulus (GPa) Comparison Predicted Composite Modulus For injection moulded long fibre polypropylene Glass Fibre NF 20 GPa(Sisal) NF 40 GPa (Jute) NF 60 GPa (Flax) Remember comparison on weight content (i.e. specific fibre properties) means NO weight saving advantage! Fibre Content (% weight)

18 Actual Modulus Injection Moulded Jute-PP INDUSTRY LEADER Modulus (GPa) ASTM GFPP ASTM Bar Plaque Flow Plaque Cross Flow Glass Jute Fibre Content (% weight)

19 Thermoelastic Anisotropy of Flax and Sisal Fibres INDUSTRY LEADER Goal Quantify anisotropy of Flax & Sisal fibres Full thermoelastic characterisation Measure UD fibre-epoxy laminates E(θ,T), G 12,ν 12, ν 21,α(θ,T) Epoxy matrix E m (T),ν m, α m (T) Laminate fibre volume fraction? Flax & Sisal fibre E 1f (fibre cross section?) Calculate E 1f (T), E 2f (T), G 12f (T), ν 12f (T), α 1f (T), α 2f (T)

20 Composite DMA Results Log Storage Modulus (Pa) Sisal 0 Sisal 10 Sisal 20 Sisal 30 Sisal 50 Sisal 80 Resin Temperature ( C)

21 Anisotropy of Fibre Modulus 100 Modulus (GPa) Flax E1 Sisal E1 Flax G12 Flax E2 Sisal E2 Sisal G Temperature ( C)

22 Thermal Strain (mm/m) Composite Thermal Strain Epoxy Flax 90 Flax 65 Flax 45 Flax 25 Flax Temperature ( C)

23 CLTE mm/m C Fibre Expansion Coefficients Fibre Transverse Sisal Transverse Flax Transverse Sisal Axial Flax Axial Fibre Axial Temperature ( C)

24 Summary INDUSTRY LEADER Thermo-Mechanical Properties NF Glass Flax Sisal Longitudinal Modulus (GPa) Transverse Modulus (GPa) Shear Modulus (GPa) Axial LCTE (µm/m. o C) Transverse LCTE (µm/m. o C)

25 Single Fibre Testing 1 mm Fibre Stress = Load/Area = P/A f (= 4P/πD f 2???)

26 Single Fibre Cross Section Area A f in single fibre testing is almost universally evaluated from D f using a transverse image of fibre and assumption of circular cross-section Is this acceptable for Natural Fibres??

27 Single Fibre CSA Measurements 1. Single fibre diameter determined by averaging 4 transverse measurements at 2 mm intervals 2. Fibres embedded, cut and polished 3. true cross sectional area determined at approximately the same position on fibre 4. Sample ground down 2 mm and polished 5. Steps 3-4 repeated 10x

28 Natural Fibre CSA Evaluation Diameter CSA (mm 2 ) y=2.55x Flax Sisal Y X y=1.97x y=x Measured CSA (mm 2 )

29 Single Fibre Modulus 1/Modulus (10 6 /GPa) Sisal Flax y=11.4x E y=10.7x+33.0 * f = 1 E f + C A L Sisal, 1000/33=30 GPa Flax, 1000/14.1=71 GPa f Fibre CSA/Gauge Length (mm)

30 Natural Fibre CSA Evaluation Diameter CSA/True CSA Flax Sisal Average Diameter (mm)

31 Natural Fibre CSA Evaluation Diameter method significantly overestimates CSA Underestimates single fibre modulus and strength Magnitude of error is diameter dependent

32 Effect CSA on Single Fibre Properties INDUSTRY LEADER CSA method Diameter Actual Flax Strength (MPa) Sisal Strength (MPa) Flax Modulus (GPa) Sisal Modulus (GPa) 20 30

33 Apparent Modulus (GPa) Effect of Diameter CSA on Apparent NF Modulus Assume a diameter independent modulus Flax, E1f=71.0 GPa Sisal, E1f=30.5 GPa Average Diameter (mm)

34 Simple Model of NF CSA Diameter Errors INDUSTRY LEADER 10µm Flax 20µm NF non-circular simplest model is oval X-section Sisal

35 Simple Model of NF CSA Diameter Errors INDUSTRY LEADER Due to NF natural twist the oval cross section will be viewed differently at different positions along the fibre Transverse view from microscope

36 Parameteric Ellipse Analysis y True CSA = 0.25πAB B " Diameter"CSA = 0.25πD 2 φ t X max x A X(t),Y(t) X(t) = 0.5ACos(t)Cos( φ) 0.5BSin(t)Sin( φ) fibre diameter D Can solve for X max for any φ and then average over φ=0-90 for different A:B ratios

37 5 CSA Ratio from Ellipse Analysis CSA Ratio (D 2 /AB) A/B 5 A/B 3 A/B 2 A/B 1 Av CSA Ratio Ellipse Major Axis Orientation Angle

38 Natural Fibre CSA Evaluation 'Diameter"CSA/True CSA Flax measured Sisal measured Average Fibre "Diameter" (mm)

39 Natural Fibre CSA Evaluation 'Diameter"CSA/True CSA Lines of fixed CSA and varying ellipse A:B ratio Flax measured Sisal measured Flax thin Flax average 0 Flax thick Sisal thin Sisal average Sisal thick Average Fibre "Diameter" (mm)

40 Abaca Other Fibres Coir Kenaf Jute

41 Abaca Other Fibres Ellipse A:B Coir Kenaf Jute Similar issues probable in CSA estimation from fibre diameter

42 Natural Fibre CSA Evaluation Average CSA (mm 2 ) Diameter CSA / True CSA Sisal Flax Jute Hemp Kenaf Abaca Coir

43 Summary INDUSTRY LEADER Thermo-Mechanical Properties NF Longitudinal Modulus (GPa) 75 Glass Flax Sisal 61.5 (71.0) 24.9 (30.5) Transverse Modulus (GPa) Shear Modulus (GPa) Axial LCTE (µm/m. o C) Transverse LCTE (µm/m. o C)

44 What does this anisotropy mean for the reinforcement performance of natural fibres? E = η η V E + V 0 C L f Comparison NF and GF often assumes isotropic fibre f m E m Hence simple Krenchel analysis for η 0 η = cos 4 ( θ) 0 NF is more like an orthotropic composite material Apply laminate theory to model reinforcement performance

45 E = x ε x ε y γ xy Engineering Stiffness, Off-axis Orthotropic Lamina = σ ε x x S S S S S S ε = Sσ xy xy set σ xy = { σx 0 0} S S S σ 0 0 x and for all θ, S11 = S cos θ + (2S + S )sin θcos θ + S sin The terms S 11, etc., are found from S= 33 hence ε = x S11 1 E ν E E σ ν E 1 E x = x 4 21 θ S G

46 Offaxis Stiffness Contribution of Anisotropic Fibre Fibre Modulus Contribution Flax Krenchel Flax "Laminate" Sisal Krenchel Sisal "Laminate" Off-axis Angle ( )

47 Offaxis Stiffness Contribution of Anisotropic Fibre Fibre Modulus Contribution Integration of curves gives an average orientation Flax Krenchel factor for RoM random Flax in-plane "Laminate" GMT Krenchel Sisal ηkrenchel 0 =0.375 Laminate Sisal η "Laminate" 0 = Off-axis Angle ( )

48 Comparison Predicted Composite Modulus INDUSTRY LEADER For Randon Inplane moulded long fibre polypropylene GMT Modulus (GPa) Glass Fibre NF 20 GPa(Sisal) NF 40 GPa (Jute) NF 60 GPa (Flax) 0 Krenchel Fibre Content (% weight)

49 Comparison Predicted Composite Modulus INDUSTRY LEADER For Randon Inplane moulded long fibre polypropylene GMT Modulus (GPa) Glass Fibre NF 20 GPa (Sisal) NF 40 GPa (Jute) NF 60 GPa (Flax) 0 Laminate Fibre Content (% weight)

50 NF Anisotropy Challenge Fibre Modulus Contribution OK - Lets just make Unidirectional Composites? Actual contribution 40-50% less than expected Flax Krenchel at only 10 - how unidirectional Flax "Laminate" and non-wavy Sisal can you Krenchel make your UD NF composites Sisal "Laminate"? Off-axis Angle ( )

51 Conclusions (1) GLOBAL Estimation VISION of natural fibre cross section area via the diameter method leads to significant overestimation of CSA. results in significant underestimation of mechanical properties obtained by single fibre testing. also contributes significantly to the variability observed in the measurement of natural fibres properties. since the magnitude of the CSA error is diameter dependent single fibre properties will appear to be diameter dependent.

52 Conclusions (2) Flax and Sisal fibres exhibit very high levels of mechanical and thermomechanical anisotropy. Ignoring natural fibre anisotropy and using only the axial modulus of natural fibres in estimating their composite reinforcing ability will significantly overestimate their potential in any off-axis composite loading scenario.

53 Announcement Sustainable Composites In August 2013 the Advanced Composites Group at the University of Strathclyde filed its first patent application in the area of Glass Fibre Recovery covering cost effective, industrially applicable, treatments to regenerate the strength of thermally recycled glass fibres.

The Challenges of Natural Fibres. as Engineering Composite. Reinforcements

The Challenges of Natural Fibres. as Engineering Composite. Reinforcements The Challenges of Natural Fibres as Engineering Composite Reinforcements Jim Thomason, Fiona Gentles, Jamie Carruthers 19 th Annual BEPS Meeting September 28-3 th 211 Vienna, Austria Introduction Natural

More information

Anisotropy in Natural Fibres and its Influence on Composite Performance. Jim Thomason

Anisotropy in Natural Fibres and its Influence on Composite Performance. Jim Thomason Anisotropy in Natural Fibres and its Influence on Composite Performance Jim Thomason Thermoplastic Composites Growth Strong continuing growth Attractive & Improving Performance to Price Ratio Clean processing

More information

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina Module III - Macro-mechanics of Lamina Lecture 23 Macro-Mechanics of Lamina For better understanding of the macromechanics of lamina, the knowledge of the material properties in essential. Therefore, the

More information

Effect of Specimen Dimensions on Flexural Modulus in a 3-Point Bending Test

Effect of Specimen Dimensions on Flexural Modulus in a 3-Point Bending Test Effect of Specimen Dimensions on Flexural Modulus in a 3-Point Bending Test M. Praveen Kumar 1 and V. Balakrishna Murthy 2* 1 Mechanical Engineering Department, P.V.P. Siddhartha Institute of Technology,

More information

DuPont Zenite LCP. liquid crystal polymer resin PRODUCT AND PROPERTY GUIDE

DuPont Zenite LCP. liquid crystal polymer resin PRODUCT AND PROPERTY GUIDE DuPont Zenite LCP liquid crystal polymer resin PRODUCT AND PROPERTY GUIDE DuPont Zenite LCP liquid crystal polymer resin Description Zenite is the DuPont trademark for its liquid crystal polymer (LCP)

More information

ASPECTS CONCERNING TO THE MECHANICAL PROPERTIES OF THE GLASS / FLAX / EPOXY COMPOSITE MATERIAL

ASPECTS CONCERNING TO THE MECHANICAL PROPERTIES OF THE GLASS / FLAX / EPOXY COMPOSITE MATERIAL 5 th International Conference Advanced Composite Materials Engineering COMAT 2014 16-17 October 2014, Braşov, Romania ASPECTS CONCERNING TO THE MECHANICAL PROPERTIES OF THE GLASS / FLAX / EPOXY COMPOSITE

More information

TABLE OF CONTENTS. Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA

TABLE OF CONTENTS. Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA TABLE OF CONTENTS 1. INTRODUCTION TO COMPOSITE MATERIALS 1.1 Introduction... 1.2 Classification... 1.2.1

More information

Chapter 2 - Macromechanical Analysis of a Lamina. Exercise Set. 2.1 The number of independent elastic constants in three dimensions are: 2.

Chapter 2 - Macromechanical Analysis of a Lamina. Exercise Set. 2.1 The number of independent elastic constants in three dimensions are: 2. Chapter - Macromechanical Analysis of a Lamina Exercise Set. The number of independent elastic constants in three dimensions are: Anisotropic Monoclinic 3 Orthotropic 9 Transversely Orthotropic 5 Isotropic.

More information

Composites Design and Analysis. Stress Strain Relationship

Composites Design and Analysis. Stress Strain Relationship Composites Design and Analysis Stress Strain Relationship Composite design and analysis Laminate Theory Manufacturing Methods Materials Composite Materials Design / Analysis Engineer Design Guidelines

More information

Hygrothermal stresses in laminates

Hygrothermal stresses in laminates Hygrothermal stresses in laminates Changing environment conditions (temperature and moisture) have an important effect on the properties which are matrix dominated. Change in temperaturet and moisture

More information

The influence of fibre length, diameter and concentration on the modulus of glass fibre reinforced

The influence of fibre length, diameter and concentration on the modulus of glass fibre reinforced The influence of fibre length, diameter and concentration on the modulus of glass fibre reinforced Polyamide 6,6. J. L. Thomason University of Strathclyde, Department of Mechanical Engineering, 75 Montrose

More information

Module 7: Micromechanics Lecture 25: Strength of Materials Approach. Introduction. The Lecture Contains. Effective Transverse Modulus

Module 7: Micromechanics Lecture 25: Strength of Materials Approach. Introduction. The Lecture Contains. Effective Transverse Modulus Introduction In the previous lecture we have introduced the concept of Representative Volume Element or Unit Cell. This is the basic building block in a micromechanical study. Further, we explained the

More information

Material Characterization of Natural Fiber Acrylic Thermoset Composites

Material Characterization of Natural Fiber Acrylic Thermoset Composites Material Characterization of Natural Fiber Acrylic Thermoset Composites Andre Bendo Jeremy Funk, John Norton, Dr. Gero Nordmann & Dr. Michael Kalbe BASF Corporation 08/01/2011 1 Presentation verview Key

More information

Mechanical and Thermal Properties of Coir Fiber Reinforced Epoxy Composites Using a Micromechanical Approach

Mechanical and Thermal Properties of Coir Fiber Reinforced Epoxy Composites Using a Micromechanical Approach Mechanical and Thermal Properties of Coir Fiber Reinforced Epoxy Composites Using a Micromechanical Approach Sandhyarani Biswas Department of Mechanical Engineering, N.I.T Rourkela, INDIA Abstract: Now-a-days,

More information

Open-hole compressive strength prediction of CFRP composite laminates

Open-hole compressive strength prediction of CFRP composite laminates Open-hole compressive strength prediction of CFRP composite laminates O. İnal 1, A. Ataş 2,* 1 Department of Mechanical Engineering, Balikesir University, Balikesir, 10145, Turkey, inal@balikesir.edu.tr

More information

VALIDATION of CoDA SOFTWARE for COMPOSITES SYNTHESIS AND PRELIMINARY DESIGN (or GETTING COMPOSITES USED - PART 2 )

VALIDATION of CoDA SOFTWARE for COMPOSITES SYNTHESIS AND PRELIMINARY DESIGN (or GETTING COMPOSITES USED - PART 2 ) VALIDATION of CoDA SOFTWARE for COMPOSITES SYNTHESIS AND PRELIMINARY DESIGN (or GETTING COMPOSITES USED - PART 2 ) Graham D Sims and William R Broughton Composites Design Data and Methods, Centre for Materials

More information

Comparison of Ply-wise Stress-Strain results for graphite/epoxy laminated plate subjected to in-plane normal loads using CLT and ANSYS ACP PrepPost

Comparison of Ply-wise Stress-Strain results for graphite/epoxy laminated plate subjected to in-plane normal loads using CLT and ANSYS ACP PrepPost Comparison of Ply-wise Stress-Strain results for graphite/epoxy laminated plate subjected to in-plane normal loads using CLT and ANSYS ACP PrepPost 1 Mihir A. Mehta, 2 Satyen D. Ramani 1 PG Student, Department

More information

Failure analysis of serial pinned joints in composite materials

Failure analysis of serial pinned joints in composite materials Indian Journal of Engineering & Materials Sciences Vol. 18, April 2011, pp. 102-110 Failure analysis of serial pinned joints in composite materials Alaattin Aktaş* Department of Mechanical Engineering,

More information

Influence of fibre proportion and position on the machinability of GFRP composites- An FEA model

Influence of fibre proportion and position on the machinability of GFRP composites- An FEA model Indian Journal of Engineering & Materials Sciences Vol. 12, October 2005, pp. 443-450 Influence of fibre proportion and position on the machinability of GFRP composites- An FEA model D Abdul Budan* Department

More information

The influence of fiber undulation on the mechanical properties of FRP-laminates. Christian Fiebig, Michael Koch

The influence of fiber undulation on the mechanical properties of FRP-laminates. Christian Fiebig, Michael Koch URN (Paper): urn:nbn:de:gbv:ilm1-2014iwk-099:3 58 th ILMENAU SCIENTIFIC COLLOQUIUM Technische Universität Ilmenau, 08 12 September 2014 URN: urn:nbn:de:gbv:ilm1-2014iwk:3 The influence of fiber undulation

More information

Stress, Strain Stress strain relationships for different types of materials Stress strain relationships for a unidirectional/bidirectional lamina

Stress, Strain Stress strain relationships for different types of materials Stress strain relationships for a unidirectional/bidirectional lamina Chapter 2 Macromechanical Analysis of a Lamina Stress, Strain Stress strain relationships for different types of materials Stress strain relationships for a unidirectional/bidirectional lamina Islamic

More information

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and 6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile

More information

The Accuracy of Characteristic Length Method on Failure Load Prediction of Composite Pinned Joints

The Accuracy of Characteristic Length Method on Failure Load Prediction of Composite Pinned Joints , June 30 - July 2, 2010, London, U.K. The Accuracy of Characteristic Length Method on Failure Load Prediction of Composite Pinned Joints O. Aluko, and Q. Mazumder Abstract An analytical model was developed

More information

ME 7502 Lecture 2 Effective Properties of Particulate and Unidirectional Composites

ME 7502 Lecture 2 Effective Properties of Particulate and Unidirectional Composites ME 75 Lecture Effective Properties of Particulate and Unidirectional Composites Concepts from Elasticit Theor Statistical Homogeneit, Representative Volume Element, Composite Material Effective Stress-

More information

Assessment Methods of Mechanical Properties of Composite Materials

Assessment Methods of Mechanical Properties of Composite Materials Mechanics and Mechanical Engineering Vol. 21, No. 4 (2017) 1005 1018 c Lodz University of Technology Assessment Methods of Mechanical Properties of Composite Materials Monika Kamocka Radoslaw J. Mania

More information

ISO 178 INTERNATIONAL STANDARD. Plastics Determination of flexural properties. Plastiques Détermination des propriétés en flexion

ISO 178 INTERNATIONAL STANDARD. Plastics Determination of flexural properties. Plastiques Détermination des propriétés en flexion INTERNATIONAL STANDARD ISO 178 Fourth edition 2001-12-15 Plastics Determination of flexural properties Plastiques Détermination des propriétés en flexion Reference number ISO 2001 PDF disclaimer This PDF

More information

Mechanical Behavior of Composite Tapered Lamina

Mechanical Behavior of Composite Tapered Lamina International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 8 (August 2014), PP.19-27 Mechanical Behavior of Composite Tapered Lamina

More information

FLEXURAL BEHAVIOR OF NEEDLE PUNCH GLASS/JUTE HYBRID MAT COMPOSITES

FLEXURAL BEHAVIOR OF NEEDLE PUNCH GLASS/JUTE HYBRID MAT COMPOSITES FLEXURAL BEHAVIOR OF NEEDLE PUNCH GLASS/JUTE HYBRID MAT COMPOSITES Defang Zhao 1, Kai Mao 1, Zhilan Xu 1, Zhiyuan Zhang 1, Yuqiu Yang 2, Hiroyuki Hamada 1 1 Advanced Fibro-Science, Kyoto Institute of Technology,

More information

DESIGN OF LAMINATES FOR IN-PLANE LOADING

DESIGN OF LAMINATES FOR IN-PLANE LOADING DESIGN OF LAMINATES FOR IN-PLANOADING G. VERCHERY ISMANS 44 avenue F.A. Bartholdi, 72000 Le Mans, France Georges.Verchery@m4x.org SUMMARY This work relates to the design of laminated structures primarily

More information

Flexural properties of polymers

Flexural properties of polymers A2 _EN BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS FACULTY OF MECHANICAL ENGINEERING DEPARTMENT OF POLYMER ENGINEERING Flexural properties of polymers BENDING TEST OF CHECK THE VALIDITY OF NOTE ON

More information

Stress-Strain Behavior

Stress-Strain Behavior Stress-Strain Behavior 6.3 A specimen of aluminum having a rectangular cross section 10 mm 1.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.

More information

Strength of GRP-laminates with multiple fragment damages

Strength of GRP-laminates with multiple fragment damages Strength of GRP-laminates with multiple fragment damages S. Kazemahvazi, J. Kiele, D. Zenkert Kungliga Tekniska Högskolan, KTH 100 44 Stockholm, Sweden sohrabk@kth.se SUMMARY The strength of glass fibre

More information

Metric (S.I. Units System) English (U.S. Units System) Method PHYSICAL

Metric (S.I. Units System) English (U.S. Units System) Method PHYSICAL INECTOBLEND FABS007 General Purpose ABS FABS007 is available in black color only. Further information and details are available upon request Melt Flow Rate @ 230C / 3.8kg, nominal D 1238 1.05 0.40.7 5

More information

CHEM-C2410: Materials Science from Microstructures to Properties Composites: basic principles

CHEM-C2410: Materials Science from Microstructures to Properties Composites: basic principles CHEM-C2410: Materials Science from Microstructures to Properties Composites: basic principles Mark Hughes 14 th March 2017 Today s learning outcomes To understand the role of reinforcement, matrix and

More information

Composite Structures. Indian Institute of Technology Kanpur

Composite Structures. Indian Institute of Technology Kanpur Mechanics of Laminated Composite Structures Nachiketa Tiwari Indian Institute of Technology Kanpur Lecture 23 Analysis of an Orthotropic Ply Lecture Overview Introduction Engineering constants for an 2

More information

GB/T / ISO 527-1:1993

GB/T / ISO 527-1:1993 Translated English of Chinese Standard: GB/T1040.1-2006 www.chinesestandard.net Sales@ChineseStandard.net GB NATIONAL STANDARD OF THE PEOPLE S REPUBLIC OF CHINA ICS 83.080.01 G 31 GB/T 1040.1-2006 / ISO

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain - Axial Loading Statics

More information

Micromechanical analysis of FRP hybrid composite lamina for in-plane transverse loading

Micromechanical analysis of FRP hybrid composite lamina for in-plane transverse loading Indian Journal of Engineering & Materials Sciences Vol. 15, October 2008, pp. 382-390 Micromechanical analysis of FRP hybrid composite lamina for in-plane transverse loading K Sivaji Babu a *, K Mohana

More information

Properties of sisal fibre reinforced epoxy composite

Properties of sisal fibre reinforced epoxy composite Indian Journal of Fibre & Textile Research Vol. 41, September 2016, pp. 235-241 Properties of sisal fibre reinforced epoxy composite M K Gupta a & R K Srivastava Department of Mechanical Engineering, Motilal

More information

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS

More information

Theory at a Glance (for IES, GATE, PSU)

Theory at a Glance (for IES, GATE, PSU) 1. Stress and Strain Theory at a Glance (for IES, GATE, PSU) 1.1 Stress () When a material is subjected to an external force, a resisting force is set up within the component. The internal resistance force

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

Evaluation of in-plane orthotropic elastic constants of paper and paperboard

Evaluation of in-plane orthotropic elastic constants of paper and paperboard Evaluation of in-plane orthotropic elastic constants of paper and paperboard T. Yokoyama and K. Nakai Department of Mechanical Engineering, Okayama University of Science - Ridai-cho, Okayama 7-5, Japan

More information

Determination of the Shear Buckling Load of a Large Polymer Composite I-Section Using Strain and Displacement Sensors

Determination of the Shear Buckling Load of a Large Polymer Composite I-Section Using Strain and Displacement Sensors Sensors 2012, 12, 16024-16036; doi:10.3390/s121216024 Article OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Determination of the Shear Buckling Load of a Large Polymer Composite I-Section

More information

Derivation of the stress concentrations at holes in orthotropic plates using thermoelastic stress analysis

Derivation of the stress concentrations at holes in orthotropic plates using thermoelastic stress analysis Derivation of the stress concentrations at holes in orthotropic plates using thermoelastic stress analysis S. Quinn, S. Sambasivam and J.M. Dulieu-Barton School of Engineering Sciences, University of Southampton,

More information

Non-conventional Glass fiber NCF composites with thermoset and thermoplastic matrices. F Talence, France Le Cheylard, France

Non-conventional Glass fiber NCF composites with thermoset and thermoplastic matrices. F Talence, France Le Cheylard, France 20 th International Conference on Composite Materials Copenhagen, 19-24th July 2015 Non-conventional Glass fiber NCF composites with thermoset and thermoplastic matrices. Thierry Lorriot 1, Jalal El Yagoubi

More information

FINITE ELEMENT AND EXPERIMENTAL STUDY OF NOVEL CONCEPT OF 3D FIBRE CELL STRUCTURE

FINITE ELEMENT AND EXPERIMENTAL STUDY OF NOVEL CONCEPT OF 3D FIBRE CELL STRUCTURE FINITE ELEMENT AND EXPERIMENTAL STUDY OF NOVEL CONCEPT OF 3D FIBRE CELL STRUCTURE M. Růžička, V. Kulíšek 2, J. Had, O. Prejzek Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical

More information

Lecture 8. Stress Strain in Multi-dimension

Lecture 8. Stress Strain in Multi-dimension Lecture 8. Stress Strain in Multi-dimension Module. General Field Equations General Field Equations [] Equilibrium Equations in Elastic bodies xx x y z yx zx f x 0, etc [2] Kinematics xx u x x,etc. [3]

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS CHATR Stress MCHANICS OF MATRIALS and Strain Axial Loading Stress & Strain: Axial Loading Suitability of a structure or machine may depend on the deformations in the structure as well as the stresses induced

More information

Towards Affordable, Closed-Loop Recyclable Future Low Carbon Vehicles. Supervisors : Dr. L.T. Harper, Dr. M. Johnson, Prof. N.A.

Towards Affordable, Closed-Loop Recyclable Future Low Carbon Vehicles. Supervisors : Dr. L.T. Harper, Dr. M. Johnson, Prof. N.A. Towards Affordable, Closed-Loop Recyclable Future Low Carbon Vehicles Supervisors : Dr. L.T. Harper, Dr. M. Johnson, Prof. N.A. Warrior Moulding issues with CF/PP Now looking to use CF/PA6 consolidation

More information

Effective Properties of Randomly Oriented Kenaf Short Fiber Reinforced Epoxy Composite

Effective Properties of Randomly Oriented Kenaf Short Fiber Reinforced Epoxy Composite Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2015 Effective Properties of Randomly Oriented Kenaf Short Fiber Reinforced Epoxy Composite Dayakar Naik

More information

EFFECT OF LAMINATION ANGLE AND THICKNESS ON ANALYSIS OF COMPOSITE PLATE UNDER THERMO MECHANICAL LOADING

EFFECT OF LAMINATION ANGLE AND THICKNESS ON ANALYSIS OF COMPOSITE PLATE UNDER THERMO MECHANICAL LOADING Journal of MECHANICAL ENGINEERING Strojnícky časopis, VOL 67 (217), NO 1, 5-22 EFFECT OF LAMINATION ANGLE AND THICKNESS ON ANALYSIS OF COMPOSITE PLATE UNDER THERMO MECHANICAL LOADING Arnab Choudhury 1,

More information

Passive Damping Characteristics of Carbon Epoxy Composite Plates

Passive Damping Characteristics of Carbon Epoxy Composite Plates Journal of Materials Science and Engineering A 6 (-) 35-4 doi:.765/6-63/6.-.5 D DAVID PUBLISHING Passive Damping Characteristics of Carbon Epoxy Composite Plates Dileep Kumar K * and V V Subba Rao Faculty

More information

CHEM-E2200: Polymer blends and composites Fibre architecture and principles of reinforcement

CHEM-E2200: Polymer blends and composites Fibre architecture and principles of reinforcement CHEM-E2200: Polymer blends and composites Fibre architecture and principles of reinforcement Mark Hughes 19 th September 2016 Outline Fibre architecture Volume fraction and the rule of mixtures Principle

More information

Development of a code to generate randomly distributed short fiber composites to estimate mechanical properties using FEM

Development of a code to generate randomly distributed short fiber composites to estimate mechanical properties using FEM International Journal of Theoretical and Applied Mechanics. ISSN 0973-6085 Volume 12, Number 4 (2017) pp. 863-872 Research India Publications http://www.ripublication.com Development of a code to generate

More information

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011 Interlaminar failure analysis of FRP cross ply laminate with elliptical cutout Venkateswara Rao.S 1, Sd. Abdul Kalam 1, Srilakshmi.S 1, Bala Krishna Murthy.V 2 1 Mechanical Engineering Department, P. V.

More information

ISO 178 INTERNATIONAL STANDARD. Plastics Determination of flexural properties. Plastiques Détermination des propriétés en flexion

ISO 178 INTERNATIONAL STANDARD. Plastics Determination of flexural properties. Plastiques Détermination des propriétés en flexion INTERNATIONAL STANDARD ISO 178 Fifth edition 2010-12-15 Plastics Determination of flexural properties Plastiques Détermination des propriétés en flexion Reference number ISO 178:2010(E) ISO 2010 PDF disclaimer

More information

CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS

CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS CHAPTER THE EFFECTS OF FORCES ON MATERIALS EXERCISE 1, Page 50 1. A rectangular bar having a cross-sectional area of 80 mm has a tensile force of 0 kn applied to it. Determine the stress in the bar. Stress

More information

ME 582 Advanced Materials Science. Chapter 2 Macromechanical Analysis of a Lamina (Part 2)

ME 582 Advanced Materials Science. Chapter 2 Macromechanical Analysis of a Lamina (Part 2) ME 582 Advanced Materials Science Chapter 2 Macromechanical Analysis of a Lamina (Part 2) Laboratory for Composite Materials Research Department of Mechanical Engineering University of South Alabama, Mobile,

More information

QUESTION BANK Composite Materials

QUESTION BANK Composite Materials QUESTION BANK Composite Materials 1. Define composite material. 2. What is the need for composite material? 3. Mention important characterits of composite material 4. Give examples for fiber material 5.

More information

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS For Marker s Use Only LAST NAME (printed): FIRST

More information

Module 2 Stresses in machine elements. Version 2 ME, IIT Kharagpur

Module 2 Stresses in machine elements. Version 2 ME, IIT Kharagpur Module Stresses in machine elements Lesson Compound stresses in machine parts Instructional Objectives t the end of this lesson, the student should be able to understand Elements of force system at a beam

More information

Bending of Simply Supported Isotropic and Composite Laminate Plates

Bending of Simply Supported Isotropic and Composite Laminate Plates Bending of Simply Supported Isotropic and Composite Laminate Plates Ernesto Gutierrez-Miravete 1 Isotropic Plates Consider simply a supported rectangular plate of isotropic material (length a, width b,

More information

MarkForged's Onyx is a material that is ideal for customer-facing parts that need to look good while standing up to industrial requirements.

MarkForged's Onyx is a material that is ideal for customer-facing parts that need to look good while standing up to industrial requirements. ONYX MarkForged's Onyx is a material that is ideal for customer-facing parts that need to look good while standing up to industrial requirements. Onyx is based on a remarkably tough nylon, but also provides

More information

SOME RESEARCH ON FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS

SOME RESEARCH ON FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS Mechanical Testing and Diagnosis ISSN 2247 9635, 2012 (II), Volume 3, 79-85 SOME RESEARCH ON FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS Valeriu DULGHERU, Viorel BOSTAN, Marin GUŢU Technical University

More information

Analysis of Flexural Properties of Carbon Fiber Reinforced / E-Poxy Composite Material

Analysis of Flexural Properties of Carbon Fiber Reinforced / E-Poxy Composite Material ISSN 2395-1621 Analysis of Flexural Properties of Carbon Fiber Reinforced / E-Poxy Composite Material #1 Kishor Shingare, #2 Dr. S.M. Shendokar, #3 Prof. P.V. Deshmukh, #4 Prof. S.S. Chavan 1 kishorshingare911@gmail.com

More information

DEVELOPMENT OF THERMOELASTIC STRESS ANALYSIS AS A NON-DESTRUCTIVE EVALUATION TOOL

DEVELOPMENT OF THERMOELASTIC STRESS ANALYSIS AS A NON-DESTRUCTIVE EVALUATION TOOL DEVELOPMENT OF THERMOELASTIC STRESS ANALYSIS AS A NON-DESTRUCTIVE EVALUATION TOOL S. Quinn*, R.K. Fruehmann and J.M. Dulieu-Barton School of Engineering Sciences University of Southampton Southampton SO17

More information

Module-6: Laminated Composites-II. Learning Unit-1: M6.1. M 6.1 Structural Mechanics of Laminates

Module-6: Laminated Composites-II. Learning Unit-1: M6.1. M 6.1 Structural Mechanics of Laminates Module-6: Laminated Composites-II Learning Unit-1: M6.1 M 6.1 Structural Mechanics of Laminates Classical Lamination Theory: Laminate Stiffness Matrix To this point in the development of classical lamination

More information

Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part II: Model development and finite element simulations

Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part II: Model development and finite element simulations Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part II: Model development and finite element simulations W. Van Paepegem *, I. De Baere and J. Degrieck Ghent

More information

Prediction of Compressive Strength of Fibrous Composites Using Two Different Approaches

Prediction of Compressive Strength of Fibrous Composites Using Two Different Approaches Jordan Journal of Civil Engineering, Volume 8, No. 2, 214 Prediction of Compressive Strength of Fibrous Composites Using Two Different Approaches Yousef S. Al Rjoub 1) * and Karim S. Numayr 2) 1) Civil

More information

Prediction of Elastic Constants on 3D Four-directional Braided

Prediction of Elastic Constants on 3D Four-directional Braided Prediction of Elastic Constants on 3D Four-directional Braided Composites Prediction of Elastic Constants on 3D Four-directional Braided Composites Liang Dao Zhou 1,2,* and Zhuo Zhuang 1 1 School of Aerospace,

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:

More information

N o n l i n e a r M u l t i - S c a l e M o d e l i n g o f A e r o s p a c e C o m p o s i t e s M a t e r i a l s & S t r u c t u r e s

N o n l i n e a r M u l t i - S c a l e M o d e l i n g o f A e r o s p a c e C o m p o s i t e s M a t e r i a l s & S t r u c t u r e s N o n l i n e a r M u l t i - S c a l e M o d e l i n g o f A e r o s p a c e C o m p o s i t e s M a t e r i a l s & S t r u c t u r e s R o g e r A. A s s a k e r C E O, e - X s t r e a m e n g i n e

More information

Mechanical Properties of Polymers. Scope. MSE 383, Unit 3-1. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

Mechanical Properties of Polymers. Scope. MSE 383, Unit 3-1. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Mechanical Properties of Polymers Scope MSE 383, Unit 3-1 Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Structure - mechanical properties relations Time-dependent mechanical

More information

DRAPING SIMULATION. Recent achievements and future trends. Dr. Sylvain Bel LGCIE University Lyon 1

DRAPING SIMULATION. Recent achievements and future trends. Dr. Sylvain Bel LGCIE University Lyon 1 DRAPING SIMULATION Recent achievements and future trends 1 Dr. Sylvain Bel LGCIE University Lyon 1 2 DRAPING SIMULATION Why? How? What? DRAPING SIMULATION WHY? Clamps Punch Fabric Die 1 2 Resin 3 4 Fig.

More information

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour Tensile-Test Specimen and Machine Review of Mechanical Properties Outline Tensile test True stress - true strain (flow curve) mechanical properties: - Resilience - Ductility - Toughness - Hardness A standard

More information

DYNAMIC RESPONSE OF SYNTACTIC FOAM CORE SANDWICH USING A MULTIPLE SCALES BASED ASYMPTOTIC METHOD

DYNAMIC RESPONSE OF SYNTACTIC FOAM CORE SANDWICH USING A MULTIPLE SCALES BASED ASYMPTOTIC METHOD ECCM6-6 TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, -6 June 4 DYNAMIC RESPONSE OF SYNTACTIC FOAM CORE SANDWICH USING A MULTIPLE SCALES BASED ASYMPTOTIC METHOD K. V. Nagendra Gopal a*,

More information

A STRUCTURE DESIGN OF CFRP REAR PRESSURE BULKHEAD WITHOUT STIFFENERS

A STRUCTURE DESIGN OF CFRP REAR PRESSURE BULKHEAD WITHOUT STIFFENERS Xi an, 2-25 th August 217 A STRUCTURE DESIGN OF CFRP REAR PRESSURE BULKHEAD WITHOUT STIFFENERS LI Zhongyang 1, LI Dong 2 Mailbox72-35, Yanliang District, Xian, China, Email: zhongyangli@live.com Keywords:

More information

MODELLING THE THERMOELASTIC PROPERTIES OF SHORT FIBRE COMPOSITES WITH ANISOTROPIC PHASES

MODELLING THE THERMOELASTIC PROPERTIES OF SHORT FIBRE COMPOSITES WITH ANISOTROPIC PHASES MODELLING THE THERMOELASTIC PROPERTIES OF SHORT FIBRE COMPOSITES WITH ANISOTROPIC PHASES P.J.Hine*, C.D.Price*, B.Whiteside $, A.M.Cunha # and I.M.Ward* * - IRC in Polymer Science and Technology, University

More information

LAMINATION THEORY FOR THE STRENGTH OF FIBER COMPOSITE MATERIALS

LAMINATION THEORY FOR THE STRENGTH OF FIBER COMPOSITE MATERIALS XXII. LAMINATION THEORY FOR THE STRENGTH OF FIBER COMPOSITE MATERIALS Introduction The lamination theory for the elastic stiffness of fiber composite materials is the backbone of the entire field, it holds

More information

FLEXURAL RESPONSE OF FIBER RENFORCED PLASTIC DECKS USING HIGHER-ORDER SHEAR DEFORMABLE PLATE THEORY

FLEXURAL RESPONSE OF FIBER RENFORCED PLASTIC DECKS USING HIGHER-ORDER SHEAR DEFORMABLE PLATE THEORY Asia-Pacific Conference on FRP in Structures (APFIS 2007) S.T. Smith (ed) 2007 International Institute for FRP in Construction FLEXURAL RESPONSE OF FIBER RENFORCED PLASTIC DECKS USING HIGHER-ORDER SHEAR

More information

An orthotropic damage model for crash simulation of composites

An orthotropic damage model for crash simulation of composites High Performance Structures and Materials III 511 An orthotropic damage model for crash simulation of composites W. Wang 1, F. H. M. Swartjes 1 & M. D. Gan 1 BU Automotive Centre of Lightweight Structures

More information

Multiscale Approach to Damage Analysis of Laminated Composite Structures

Multiscale Approach to Damage Analysis of Laminated Composite Structures Multiscale Approach to Damage Analysis of Laminated Composite Structures D. Ivančević and I. Smojver Department of Aeronautical Engineering, Faculty of Mechanical Engineering and Naval Architecture, University

More information

SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS

SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS de Aguiar, José M., josemaguiar@gmail.com Faculdade de Tecnologia de São Paulo, FATEC-SP Centro Estadual de Educação Tecnológica Paula Souza. CEETEPS

More information

MINE ROOF SUPPORT DESIGN AND ANALYSIS. Document no : Revision no : 1.0

MINE ROOF SUPPORT DESIGN AND ANALYSIS. Document no : Revision no : 1.0 MINE ROOF SUPPORT DESIGN AND ANALYSIS Document no : 1806-2697-23 Revision no : 1.0 DOCUMENT TITLE : MINE ROOF SUPPORT DESIGN AND ANALYSIS DOCUMENT NUMBER : 1806-2697-23 ISSUE : Issue 1.0 DATE : 7 October

More information

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft. ME 323 - Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM-12:20PM Ghosh 2:30-3:20PM Gonzalez 12:30-1:20PM Zhao 4:30-5:20PM M (x) y 20 kip ft 0.2

More information

Computational Analysis for Composites

Computational Analysis for Composites Computational Analysis for Composites Professor Johann Sienz and Dr. Tony Murmu Swansea University July, 011 The topics covered include: OUTLINE Overview of composites and their applications Micromechanics

More information

STRESS ANALYSIS OF BONDED JOINTS IN PULTRUDED GRP COMPONENTS

STRESS ANALYSIS OF BONDED JOINTS IN PULTRUDED GRP COMPONENTS 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS STRESS ANALYSIS OF BONDED JOINTS IN PULTRUDED GRP COMPONENTS S.W. Boyd*, J. M. Dulieu-Barton*, O. T. Thomsen**, A.Gherardi* [J.M. Dulieu-Barton]: janice@soton.ac.uk

More information

Mechanical Behavior of Circular Composite Springs with Extended Flat Contact Surfaces

Mechanical Behavior of Circular Composite Springs with Extended Flat Contact Surfaces Mechanical Behavior of Circular Composite Springs with Extended Flat Contact Surfaces Ping-Cheung Tse epartment of Mechanical Engineering, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong

More information

Analysis of Composite Pressure Vessels

Analysis of Composite Pressure Vessels Analysis of Composite Pressure Vessels Reza Mohammadzadeh Gheshlaghi 1 Mohammad Hassan Hojjati Hamid Reza Mohammadi Daniali 3 1 Engineering Research Centre, Tabriz, Iran,3 Department of Mechanical Engineering,

More information

American Society for Testing and Materials (ASTM) Standards. Mechanical Testing of Composites and their Constituents

American Society for Testing and Materials (ASTM) Standards. Mechanical Testing of Composites and their Constituents Mechanical Testing of Composites and their Constituents American Society for Testing and Materials (ASTM) Standards Tests done to determine intrinsic material properties such as modulus and strength for

More information

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002 student personal identification (ID) number on each sheet. Do not write your name on any sheet. #1. A homogeneous, isotropic, linear elastic bar has rectangular cross sectional area A, modulus of elasticity

More information

Outline. Organization. Stresses in Beams

Outline. Organization. Stresses in Beams Stresses in Beams B the end of this lesson, ou should be able to: Calculate the maimum stress in a beam undergoing a bending moment 1 Outline Curvature Normal Strain Normal Stress Neutral is Moment of

More information

Fracture Behaviour of FRP Cross-Ply Laminate With Embedded Delamination Subjected To Transverse Load

Fracture Behaviour of FRP Cross-Ply Laminate With Embedded Delamination Subjected To Transverse Load Fracture Behaviour of FRP Cross-Ply Laminate With Embedded Delamination Subjected To Transverse Load Sriram Chintapalli 1, S.Srilakshmi 1 1 Dept. of Mech. Engg., P. V. P. Siddhartha Institute of Technology.

More information

12/8/2009. Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka

12/8/2009. Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Introduction and classes of properties Case studies showing selection of the right material for the job Deformation of material under the action of a

More information

One Corporate Drive, Suite 106, Bedford, PA USA

One Corporate Drive, Suite 106, Bedford, PA USA DESIGN GUIDE Revised: 4/2012 One Corporate Drive, Suite 106, Bedford, PA 15522-7401 USA Phone: 814-623-8125 Sales Fax: 814-623-6032 Website: www.bedfordreinforced.com E-mail: frpsales@bedfordreinforced.com

More information

NUMERICAL SIMULATION OF DAMAGE IN THERMOPLASTIC COMPOSITE MATERIALS

NUMERICAL SIMULATION OF DAMAGE IN THERMOPLASTIC COMPOSITE MATERIALS 5 th European LS-DYNA Users Conference Composites NUMERICAL SIMULATION OF DAMAGE IN THERMOPLASTIC COMPOSITE MATERIALS Kevin Brown 1, Richard Brooks, Nicholas Warrior School of Mechanical, Materials and

More information

Chapter. Materials. 1.1 Notations Used in This Chapter

Chapter. Materials. 1.1 Notations Used in This Chapter Chapter 1 Materials 1.1 Notations Used in This Chapter A Area of concrete cross-section C s Constant depending on the type of curing C t Creep coefficient (C t = ε sp /ε i ) C u Ultimate creep coefficient

More information

IJSER 1. INTRODUCTION. M.Elhadary

IJSER 1. INTRODUCTION. M.Elhadary 1591 A new failure criterion for GRP composite materials subjected to in-phase and out-of-phase biaxial fatigue loading under different stress ratios M.Elhadary Abstract this studying the fatigue behavior

More information

In Situ Ultrasonic NDT of Fracture and Fatigue in Composites

In Situ Ultrasonic NDT of Fracture and Fatigue in Composites ECNDT 26 - Mo.2.6.5 In Situ Ultrasonic NDT of Fracture and Fatigue in Composites I. SOLODOV, K. PFLEIDERER, and G. BUSSE Institute for Polymer Testing and Polymer Science (IKP), Non-destructive Testing

More information