Influence of fibre proportion and position on the machinability of GFRP composites- An FEA model

Size: px
Start display at page:

Download "Influence of fibre proportion and position on the machinability of GFRP composites- An FEA model"

Transcription

1 Indian Journal of Engineering & Materials Sciences Vol. 12, October 2005, pp Influence of fibre proportion and position on the machinability of GFRP composites- An FEA model D Abdul Budan* Department of Mechanical Engineering, PSG College of Technology, Coimbatore , India Received 19 July 2004; accepted 31 May 2005 More commonly considered criteria for judging the machinibility are the cutting forces on the tool and power consumption. A classical Merchant s model is widely used to predict the cutting forces while machining isotropic material. However, no such model exists to predict the cutting forces while machining orthotropic materials. In this paper, an effort is made to modify the Merchant s formula by incorporating the K-factor to evaluate the shear strength, the fibre orientation as shear angle and a constant coefficient of friction. The cutting forces evaluated by modified Merchant s model on unidirectional GFRP composite material has been compared with the results predicted by two-dimensional FEA model. In FEA model both maximum stress and Tsai-Hill failure criteria were used to simulate the chip separation. The influence of composite design, in particular the fibre proportion and orientation on cutting forces has been investigated. The higher fibre proportion in the composite caused an increase in cutting force values. Fibre orientations 45 and 60 have shown favorable results. The FEA predicted results have shown good agreement with the results evaluated by modified Merchant s model. IPC Code: G01N3/58, C08B A large range of components made from polymer matrix composite (PMC) are fabricated, but for small production or for extremely complex or accurate shapes, machining of PMC is very much essential. More efficient technique for machining is possible provided the peculiarity in behaviour of this material is taken in to consideration. In recent years much attention has been focused on the problems arising from the machining of PMC by conventional means. Due to heterogeneity of PMC some problems like delamination, short tool life, fibre pull out and matrix de-bonding occur during machining. Also high abrasive nature of glass and graphite fibres leads to rapid tool wear. In industry, much of the data available on tooling and cutting parameter for PMC are based on metal cutting. Sufficient literature on various aspects of machining of conventional material are available but only a few literature exists on the machining of PMCs. In one of the investigation a scheme of twin node processing and concept of loading/unloading were presented for the chip formation and a coupled finite model of thermo-elastic-plastic large deformation for orthogonal cutting was developed. It is reported that *Present address: Department of Mechanical Engineering, University BDT College of Engineering, Davangere , India ( abdul_budan@rediffmail.com) the FEA results have shown good agreement with experimental values 1. An experimental study reported that on both unidirectional and multidirectional graphite/epoxy composites similar type of chips were observed and the distinct surface profiles were observed on different fibre orientation 2,3. A study on fibre orientation has revealed that the cutting forces also depend on fibre orientation. Maximum fibre debonding was observed at 135 fibre orientation 4. An investigation to evaluate the effect of tool wear on cutting forces on UGFRP composite laminate revealed that under selected operating condition rapid tool nose wear was observed. A strict correlation is found between the flank wear and the vertical force variation 5-7. The predictions from the numerical simulation verified with the experimental results for graphite/epoxy laminates. It is reported that FEA method is a valid approach for modeling orthogonal cutting of FRP material 8. A study on the influence of fibre volume on mechanical property during the machining of GFRP composites revealed that, increased fibre content increases the tensile and flexural modulus incrementally. However, there is a drop of reinforcing efficiency of the composite due to higher void content 9,10. This work motivated the author to consider the fibre proportion as one of the major influencing parameter on the machining performance for the present investigation.

2 444 INDIAN J. ENG. MATER. SCI., OCTOBER 2005 In the present work, few experiments on glass/epoxy specimens with fibre proportion ranging from 30 to 70% by weight have been conducted to evaluate the obliquity in tensile failure. Based on the angle of obliquity an equivalent factor (K) to evaluate shear strength of the specimen has been derived using strength of material approach 11. The value of K-factor, shear angle equal to fibre orientation and the friction angle for a constant coefficient of friction have been incorporated in the existing Merchant s equation to apply on unidirectional glass fibre reinforced polymer (UGFRP) composite material. Secondly an FEA model to predict the cutting forces during the machining of UGFRP composite has been developed. Maximum stress and Tsai-Hill failure criteria were adapted to simulate the chip separation. Variation of mechanical properties with respect to fibre proportion has been considered in the finite element analysis 12, all aspects of tool and cutting parameters have considered. In most of the previous works, research was carried out on specimens with a specific fibre percentage. However, the investigation on the influence of fibre proportion on machining performance is insufficient. The present investigation considers the fibre proportion as one of the major parameter influencing on machining performance. In this analysis the influence of fibre volume has been compared with the other parameters, viz., fibre orientation, tool rake angle and depth of cut on the machinability of UGFRP composite materials. Results revealed that the higher fibre proportion of the composite results in increased cutting forces. Fibre angles 45 and 60 have shown favorable results. The predicted principal cutting forces by FEA agree well with the results evaluated by modified Merchant s model. Merchants Model Modification Variation of stresses with aspect of cross section 11 Visualising the prismatic bar subjected to axial tension as made up of a bundle of longitudinal fibres, each of which carries its fair share of the load, the distribution of forces over the cross-section will be uniform. It is seen that the resultant of this uniform distribution of internal forces must be equal to the external load P. Thus, if A is the cross-sectional area and σ t the force per unit area, we have. P = σ t A or σ t = P/A (1) Consider the state of stress on an oblique crosssection pq cutting the bar at an angle φ ' with the normal cross-section mn as illustrated in Fig. 1a. First we isolate that portion of the bar to the left of the oblique section pq as a free body and represent the action of the removed portion on this free body by the resultant stress S as shown in Fig. 1b. From the equilibrium condition, this internal force S must be equal, opposite, and collinear with the external force P. Resolving the force S in to two components to the plane pq, we find N = P cosφ ' and Q = P sinφ ' Corresponding stresses are : Normal stress σ n =N/A = (P/A)cos 2 φ ' Shear stress τ s =Q/A = (P sinφ ' ) / (A/cosφ ' ) = ½.(P/A)sin2φ ' where A =Area of the oblique section pq = A/cosφ ' Substituting (P/A ) in the above equation from (1) we get τ s = ½.(σ t ) sin2φ ' = K σ t (2) where K = ½ sin2φ ' Shear stress acting on the oblique plane is approximately equal to K times that of tensile stress. The tensile failure tests conducted on FRP specimens revealed that the rupture takes place at certain obliquity. The obliquity ranges from 0 to 45 with respect to fibre proportion. The average obliquity of 22.5 has been considered in the present analysis. The K factor calculated based on average obliquity is On substituting this value in Eq. (2) we get. τ s = σ t (3) Now the Merchant s equations used for conventional materials are given by Fig. 1 Obliquity (φ ) in axial tension of FRP material

3 BUDAN: INFLUENCE OF FIBRE PROPORTION AND POSITION ON THE MACHINABILITY OF GFRP COMPOSITES 445 Cutting force F c = { t 1 b 1 τ s cos(β - α) / sinφ cos (φ + β - α)} (4) Feed force F t = { t 1 b 1 τ s sin(β - α) / sinφ cos (φ + β - α)} (5) In the present work a 2-dimensional FEA model has been constructed per mm basis, hence the width of cut (b 1 ) is assumed as 1# mm. Considering the work to be ductile, with a constant coefficient of friction 0.3 the corresponding friction angle (β) is 17. Literature revealed that the shear in FRP usually occur along fibre orientation, considering φ as θ and substituting φ, β and τ s equal to θ, 17 and 0.354σ t respectively in Eqs (4) and (5), we get Cutting force F c = { 0.354σ t t 1 cos(17 - α) / sinθ cos (17+θ - α)} (6) rake angle, relief angle and nose radius. Only a portion of the specimen is modelled. Condense of the model is necessary to reduce the computational time. Work-piece and chip portion are modelled separately and the coincident nodes are coupled along both x and y direction, so that the work piece and chip behave as a single object before fracture. Contact elements are generated between the tool and work piece. Appropriate boundary condition included x- symmetric along the work piece boundary and fully pinned at the bottom associated with vice constraint. Fig. 3a illustrates the tool geometry, boundary conditions and cutting forces. Fig. 3b illustrates the finite element model of work tool interface. The following assumptions were made in the construction of present FEA model 8 : (i) The incremental plastic, visco-elastic and thermal strains are negligible with Feed force F t = { 0.354σ t t 1 sin(17 - α) / sinθ cos (17+θ - α)} (7) The σ t values for glass/epoxy composite for various fibre percentages have been obtained from the engineers guide to composite materials 12. Finite Element Analysis Material property evaluation The material considered in the present investigation is a unidirectional GFRP composite. E-glass fibre reinforced with epoxy resin. Since the pattern of cutting up to 30 and beyond 75 is quite different, only fibre orientations 30, 45, 60 and 75 have been considered. FEA models were developed on five specimens with fibre percentages 30, 40, 50, 60 and 70% by weight. Based on the individual properties of fibre and matrix, the composite properties have been evaluated along different fibre orientation. The empirical equations developed by Halpin Tsai were used to evaluate the mechanical properties of the composite materials. The composite properties thus evaluated are illustrated in Fig. 2(a-c). The Young s modulus and the density of the tool material are E = N/mm 2 and ρ = kg/mm 3 respectively. FEA model and Methodology An FEA model for orthogonal cutting of UGFRP composite has been constructed using ANSYS 5.4 a commercially available FEA package. The tool was defined as a rigid body with the geometry defined by Fig. 2 Stiffness properties evaluated by Halpin Tsai equations

4 446 INDIAN J. ENG. MATER. SCI., OCTOBER 2005 respect to the elastic component, this assumption is true for lower range of cutting speeds usually adopted for machining FRP composite. (ii) Heat flux generated on the rake face through friction is minimal and may be neglected. (iii) The composite material is assumed to be orthotropic and locally homogeneous there by allowing incremental linear stress-strain relation in cutting FRP material. (iv) The cutting process is quasi-static. This assumption is supported by the fact that FRP materials show minimal strain rate dependence due to the brittle fibre dominance. (v) As the temperature generated on the tool flank through friction is well below the matrix disintegration temperature, a constant coefficient of friction 0.3 was used to specify friction for all constants. Tool displacement and chip separation criteria In FRP machining the chip separation can be defined by using a stress criteria approach for both primary and secondary fracture. In primary fracture the chip formation was achieved by nodal de-bonding criterion. Secondary fracture and subsequent chip release transpired when the stresses at the free edge reaches the critical values promoting global failure by either the maximum stress or Tsai-Hill criteria. An iterative approach was used to satisfy the failure criterion in each fibre orientation. The tool displacement was extended till the failure criterion for secondary fracture was satisfied. Chip release was defined when the global failure envelope approached a distance ahead of the cutting tool on the free edge, which is consistent with the distance of node separation during primary fracture. Material removal occurs through a combination of compression and shear failure at the tool nose. Thus the condition required to satisfy for primary fracture is given as. σ y = σ mu cosec 2 ϕ where σ mu = matrix ultimate strength. = 82.8 MPa and ϕ = (90 - θ) where θ is the fibre orientation. Two theories, viz., maximum stress/strain theory and Tsai-Hill criterion were used. The Tsai-Hill criteria accounts for stress component interaction, where as maximum stress criteria accounts for no interaction. Maximum stress criteria: Maximum strain criteria: σ x = S / (sinθ.cosθ) ε x = S / ( G xy sinθ.cosθ) where S and G xy are shear strength and modulus of the composite. Fig. 3a Tool geometry, boundary conditions and cutting forces Fig. 3b Finite element model of work tool interface Tsai-Hill criteria cos 4 θ/x 2 + {1/S 2 1/X 2 } cos 2 θ / sin 2 θ + sin 4 θ/y 2 = 1/σ 2 x where, X and Y are tensile and compressive strength respectively. Chip release was believed to occur when the criteria for both primary and secondary fracture were satisfied. The nodes coupled at the chip and work piece interface are de-bonded by deleting the corresponding coupled set. This process is repeated until the free edge reaches the fracture stress. Results and Discussion Effect of fibre orientation The cutting and feed forces for fibre orientations 30, 45, 60 and 75 have been evaluated using FEA model keeping the other parameters constant. Since the cutting pattern up to 30 and beyond 75 is quite different only orientations 30 to 75 have been

5 BUDAN: INFLUENCE OF FIBRE PROPORTION AND POSITION ON THE MACHINABILITY OF GFRP COMPOSITES 447 considered. FEA results revealed that the tool requires high cutting and feed forces at 30 -fibre orientation. Larger chip thickness at this fibre angle is the reason for higher cutting forces. Minimum tool forces were observed at 45 and 60 fibre orientation. Figs 4a and 4b illustrate the comparison of FEA and Merchant s equation results. Comparison of results of previous work 8 with the results of FEA and Merchant s model are illustrated in Fig. 6a. Except at 30 fibre orientation all the FEA results have shown good agreement with the Merchant s model. Though slight variation in cutting force results of two models was observed at 75 -fibre orientation, the feed force values from 45 to 75 are well matching. Fibre orientations 45 and 60 have shown favourable results. Effect of tool rake angles Four tool rake angles 0, 5, 10 and 15 were selected to analyse its effect on cutting forces keeping the other parameters remain constant. Figs 5a and 5b illustrate the comparison of cutting and feed forces evaluated by FEA and modified Merchant s equation respectively with the tool rake angle. Results revealed that, the rake angle has a strong influence on cutting forces. As illustrated in Fig. 5a for a given depth of cut, the cutting force tends to decay with the increase of rake angle. The same effect is noted on the feed force, which is also largely reduced for higher rake angle values. The above observations conform to the conclusion made in the previous work 7. The results revealed that the extent of the effect of tool rake angle is less when compared to the effect of fibre orientation and fibre percentage. However, since the small tool rake angles (0-5 ) expose the tool face to wear early (Crater wear) and weakens the tool due to smaller cross section of the tool head, an average tool rake angle between 5 and 10 is preferable. Cutting force results of Merchant s model are almost matching with the FEA results. The 10 -tool rake angle has shown favourable results. Effect of depth of cut Three depths of cuts 0.12, 0.25 and 0.5 mm has been chosen keeping the other parameters constant. Results revealed that the cutting and feed force values increased with the increase of depth of cut. The range of cutting force and feed force values are 55.4 to N s and 4.7 to 37.8 N s respectively. These results indicate that the effect of depth of cut on tool forces is comparatively high. Figs 6a and 6b illustrate the relation between FEA and Merchants model on the cutting and feed force values versus depth of cuts. From the best-fit straight line in the above figure it Fig. 4 Effect of fibre orientation on (a) cutting force and (b) feed force Fig. 5 Effect of tool rake angle on (a) cutting force and (b) feed force

6 448 INDIAN J. ENG. MATER. SCI., OCTOBER 2005 observed that the cutting forces undergo a sensibly linear increase with increasing the depth of cut, this observation conform to the conclusion reported in previous study 5. Most of the results evaluated by Merchant s model have shown good agreement with FEA model. Higher depth of cuts result poor surface quality and smaller depth of cuts slows down the productivity. Hence, an optimum depth of cut which can overcome both the limitations is essential. Effect of fibre percentage Five specimens with fibre percentage ranging from 30 to 70 by weight were selected with the other parameters remain constant. Figs 7a and 7b illustrate the effect fibre percentage on cutting and feed forces. Results revealed that the increase of fibre content increased the cutting and feed force values. As the matrix is soft, it gets deformed easily even with small cutting forces, however the tool require higher cutting forces to shear the brittle fibre material. It is observed from the results that the minimum to maximum values of the cutting and feed forces were to N s and 15.4 to 38.8 N s respectively. This range indicated that the effect of fibre percentage on tool force values is very high compare to all the other parameters. Most of the results of Merchant s model have shown good agreement with FEA results. Specimens with higher fibre percentages are strong enough, but they require higher cutting forces and they face limitations like fuzzy and poor surface quality, delamination and fibre pullout. An optimum fibre proportion based on the strength and surface quality requirement is recommendable. Specimens with 40 and 50 fibre percentage by weight have shown favourable results in the present cutting condition. The strain distribution with respect to fibre percentage and tool displacement on specimens with 30, 50 and 70% by weight are illustrated in Figs 8a, 8b and 8c respectively. These models revealed that the specimens with higher fibre proportion strained more. Conclusions The following conclusions may be drawn from this study: (i) Results revealed that the tool requires higher cutting forces at 30 fibre orientation, as the chip thickness at this fibre orientation is high. At 45 orientation the cutting force and feed force values are and 15.4 N s respectively. At 60 orientation the cutting force and feed force values are and 20.1 N s respectively. These two orientations have Fig. 6 Effect of depth of cut on (a) cutting force and (b) feed force Fig. 7 Effect of fibre percentage on (a) cutting force and (b) Feed Force

7 BUDAN: INFLUENCE OF FIBRE PROPORTION AND POSITION ON THE MACHINABILITY OF GFRP COMPOSITES 449 Fig. 8a Strain distribution on specimen with 30% fibre content Fig. 8b Strain distribution on specimen with 50% fibre content Fig. 8c Strain distribution on specimen with 70% fibre content shown favourable results when compared to 30 and 75 fibre orientations. (ii) The cutting and feed forces tend to decay when the rake angle increases. The extent of the effect of tool rake angle on tool forces is less compared to fibre orientation and percentage. However since the small rake angles (0-5 ) cause the tool to wear early and high rake angles ( 15 ) weakens the tool strength an average angle between 5-10 tool rake is preferable. (iii) The higher depth of cut leads to increase the cutting forces. The cutting and feed force values on 0.12# mm depth of cut are 55.4 and 4.7N s respectively. On 0.5# mm depth of cut, they are and 37.8 N s respectively. This reveals that the extent of the effect of depth of cut on tool forces is comparatively higher than the tool rake angle. (iv) The cutting and feed force values on 30% fibre weight are and 15.4 N s where as on 70% fibre weight they are and to 38.8 N s respectively. This revealed that Increase in fibre percentage have increased the tool force values. Composites with higher fibre content are strong, but require higher cutting forces, produce fuzzy and poor surface quality. An optimum fibre proportion based on the strength and surface quality requirement is preferable. Specimens with 30 to 40% fibre weight have shown good machinability. (v) The modified Merchant s formula has been utilised successfully to validate the FEA predicted results. Most of the FEA results have shown good agreement with the Merchant s model. The model can be used to select the optimised tool, cutting and design parameters. (vi) As the preparation of specimens for various fibre proportion and position is tedious and highly expensive. The model saves the time, expenses and risk involved in preparation and machining of FRP specimens. Nomenclature E 11, E 22 = Young s modulus of composite along and transverse to fibre orientation respectively. ν 12 = Poisons ratio of composite, G 12 = Shear modulus of composite, V m, V f = Volume fraction of matrix & fibre respectively, Ex and Ey = Young s modulus along x and y direction, ν xy = Poisson s ratio G xy = shear modulus. σ mu = Matrix Ultimate Strength. θ = fibre orientation φ = shear angle σ t = tensile strength of composite φ ' = obliquity of tensile failure.. S = shear strength of the composite. = Shear modulus of composite. G xy

8 450 INDIAN J. ENG. MATER. SCI., OCTOBER 2005 X Y S t 1 b 1 β σ n τ t α Fc Ft K W f = tensile strength = compressive strength = shear strength = un-deformed chip thickness or depth of cut. = width of cut = friction angle = normal stress = Shear stress = tool rake angle = principal cutting force = feed force (thrust force) = shear strength equivalent factor. = fibre percentage by weight. References 1 Lin Z C & Lin S Y, Trans ASME J Eng Mater Technol, 114 (1992) Wang D H, Ramulu M & Arola D, Int J Mach Tools Manufact, 35 (1995) Wang D H, Ramulu M & Arola D, Int J Mach Tools Manufact, 35 (1995) Wern C W, Ramulu M & Shukla A, Exp Mech, (1995) Caprino G, De lorio I, Nele L & Santo L, Composites, 27A (1996) Caprino G, Nele L & Santo L, Composites, 29A (1998) Caprino G, Nele L & Santo L, Composites, 29A (1998) Arola D & Ramulu M, Int J Mach Tools Manufact, 39 (1997) Joshi S S, Ramakrishnan N, Sarathy D & Ramakrishnan P, (1998) 17 th AIMTDR Nam-Jeong Lee & Jyongsik Jang, Composites, 30A (1999) Timoshenko S P & Young D H, Elem Strength Mater, (1978) John W Weeton, Dean M Peter & Karyan L Thomas, Engineers guide to Composite materials (ASTM), Property Data: PMC (1987) Sec.6-56.

Micromechanical analysis of FRP hybrid composite lamina for in-plane transverse loading

Micromechanical analysis of FRP hybrid composite lamina for in-plane transverse loading Indian Journal of Engineering & Materials Sciences Vol. 15, October 2008, pp. 382-390 Micromechanical analysis of FRP hybrid composite lamina for in-plane transverse loading K Sivaji Babu a *, K Mohana

More information

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011 Interlaminar failure analysis of FRP cross ply laminate with elliptical cutout Venkateswara Rao.S 1, Sd. Abdul Kalam 1, Srilakshmi.S 1, Bala Krishna Murthy.V 2 1 Mechanical Engineering Department, P. V.

More information

Failure analysis of serial pinned joints in composite materials

Failure analysis of serial pinned joints in composite materials Indian Journal of Engineering & Materials Sciences Vol. 18, April 2011, pp. 102-110 Failure analysis of serial pinned joints in composite materials Alaattin Aktaş* Department of Mechanical Engineering,

More information

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina Module III - Macro-mechanics of Lamina Lecture 23 Macro-Mechanics of Lamina For better understanding of the macromechanics of lamina, the knowledge of the material properties in essential. Therefore, the

More information

BIAXIAL STRENGTH INVESTIGATION OF CFRP COMPOSITE LAMINATES BY USING CRUCIFORM SPECIMENS

BIAXIAL STRENGTH INVESTIGATION OF CFRP COMPOSITE LAMINATES BY USING CRUCIFORM SPECIMENS BIAXIAL STRENGTH INVESTIGATION OF CFRP COMPOSITE LAMINATES BY USING CRUCIFORM SPECIMENS H. Kumazawa and T. Takatoya Airframes and Structures Group, Japan Aerospace Exploration Agency 6-13-1, Ohsawa, Mitaka,

More information

Computational Analysis for Composites

Computational Analysis for Composites Computational Analysis for Composites Professor Johann Sienz and Dr. Tony Murmu Swansea University July, 011 The topics covered include: OUTLINE Overview of composites and their applications Micromechanics

More information

Materials and Structures. Indian Institute of Technology Kanpur

Materials and Structures. Indian Institute of Technology Kanpur Introduction to Composite Materials and Structures Nachiketa Tiwari Indian Institute of Technology Kanpur Lecture 16 Behavior of Unidirectional Composites Lecture Overview Mt Material ilaxes in unidirectional

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

Effect of Specimen Dimensions on Flexural Modulus in a 3-Point Bending Test

Effect of Specimen Dimensions on Flexural Modulus in a 3-Point Bending Test Effect of Specimen Dimensions on Flexural Modulus in a 3-Point Bending Test M. Praveen Kumar 1 and V. Balakrishna Murthy 2* 1 Mechanical Engineering Department, P.V.P. Siddhartha Institute of Technology,

More information

MICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING

MICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING MICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING N. Krishna Vihari 1, P. Phani Prasanthi 1, V. Bala Krishna Murthy 2* and A. Srihari Prasad 3 1 Mech. Engg. Dept., P. V. P. Siddhartha

More information

Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part II: Model development and finite element simulations

Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part II: Model development and finite element simulations Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part II: Model development and finite element simulations W. Van Paepegem *, I. De Baere and J. Degrieck Ghent

More information

Open-hole compressive strength prediction of CFRP composite laminates

Open-hole compressive strength prediction of CFRP composite laminates Open-hole compressive strength prediction of CFRP composite laminates O. İnal 1, A. Ataş 2,* 1 Department of Mechanical Engineering, Balikesir University, Balikesir, 10145, Turkey, inal@balikesir.edu.tr

More information

A Fracture Mechanics Approach to the Water Jet Drilling of Composite Materials. Y. A-H Mashal* and M. W. Algrafi

A Fracture Mechanics Approach to the Water Jet Drilling of Composite Materials. Y. A-H Mashal* and M. W. Algrafi A Fracture Mechanics Approach to the Water Jet Drilling of Composite Materials Y. A-H Mashal* and M. W. Algrafi Department of Mechanical Engineering, College of Engineering, Taibah University, KSA prof.yosry@gmail.com

More information

QUESTION BANK Composite Materials

QUESTION BANK Composite Materials QUESTION BANK Composite Materials 1. Define composite material. 2. What is the need for composite material? 3. Mention important characterits of composite material 4. Give examples for fiber material 5.

More information

Mechanical Properties of Materials

Mechanical Properties of Materials Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of

More information

TABLE OF CONTENTS. Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA

TABLE OF CONTENTS. Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA TABLE OF CONTENTS 1. INTRODUCTION TO COMPOSITE MATERIALS 1.1 Introduction... 1.2 Classification... 1.2.1

More information

ME 2570 MECHANICS OF MATERIALS

ME 2570 MECHANICS OF MATERIALS ME 2570 MECHANICS OF MATERIALS Chapter III. Mechanical Properties of Materials 1 Tension and Compression Test The strength of a material depends on its ability to sustain a load without undue deformation

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 4, July 2013

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 4, July 2013 Delamination Studies in Fibre-Reinforced Polymer Composites K.Kantha Rao, Dr P. Shailesh, K. Vijay Kumar 1 Associate Professor, Narasimha Reddy Engineering College Hyderabad. 2 Professor, St. Peter s Engineering

More information

Analysis of Composite Pressure Vessels

Analysis of Composite Pressure Vessels Analysis of Composite Pressure Vessels Reza Mohammadzadeh Gheshlaghi 1 Mohammad Hassan Hojjati Hamid Reza Mohammadi Daniali 3 1 Engineering Research Centre, Tabriz, Iran,3 Department of Mechanical Engineering,

More information

Mechanical and Thermal Properties of Coir Fiber Reinforced Epoxy Composites Using a Micromechanical Approach

Mechanical and Thermal Properties of Coir Fiber Reinforced Epoxy Composites Using a Micromechanical Approach Mechanical and Thermal Properties of Coir Fiber Reinforced Epoxy Composites Using a Micromechanical Approach Sandhyarani Biswas Department of Mechanical Engineering, N.I.T Rourkela, INDIA Abstract: Now-a-days,

More information

A FINITE ELEMENT MODEL TO PREDICT MULTI- AXIAL STRESS-STRAIN RESPONSE OF CERAMIC MATRIX COMPOSITES WITH STRAIN INDUCED DAMAGE

A FINITE ELEMENT MODEL TO PREDICT MULTI- AXIAL STRESS-STRAIN RESPONSE OF CERAMIC MATRIX COMPOSITES WITH STRAIN INDUCED DAMAGE A FINITE ELEMENT MODEL TO PREDICT MULTI- AXIAL STRESS-STRAIN RESPONSE OF CERAMIC MATRIX COMPOSITES WITH STRAIN INDUCED DAMAGE Daxu Zhang and D. R. Hayhurst School of Mechanical, Aerospace and Civil Engineering,

More information

Finite element analysis of drilled holes in uni-directional composite laminates using failure theories

Finite element analysis of drilled holes in uni-directional composite laminates using failure theories American Journal of Science and Technology 2014; 1(3): 101-105 Published online May 30, 2014 (http://www.aascit.org/journal/ajst) Finite element analysis of drilled holes in uni-directional composite laminates

More information

Chapter 7. Highlights:

Chapter 7. Highlights: Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true

More information

Composites Design and Analysis. Stress Strain Relationship

Composites Design and Analysis. Stress Strain Relationship Composites Design and Analysis Stress Strain Relationship Composite design and analysis Laminate Theory Manufacturing Methods Materials Composite Materials Design / Analysis Engineer Design Guidelines

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain - Axial Loading Statics

More information

Finite element modelling of infinitely wide Angle-ply FRP. laminates

Finite element modelling of infinitely wide Angle-ply FRP. laminates www.ijaser.com 2012 by the authors Licensee IJASER- Under Creative Commons License 3.0 editorial@ijaser.com Research article ISSN 2277 9442 Finite element modelling of infinitely wide Angle-ply FRP laminates

More information

DYNAMIC FAILURE ANALYSIS OF LAMINATED COMPOSITE PLATES

DYNAMIC FAILURE ANALYSIS OF LAMINATED COMPOSITE PLATES Association of Metallurgical Engineers of Serbia AMES Scientific paper UDC:669.1-419:628.183=20 DYNAMIC FAILURE ANALYSIS OF LAMINATED COMPOSITE PLATES J. ESKANDARI JAM 1 and N. GARSHASBI NIA 2 1- Aerospace

More information

Discrete Element Modelling of a Reinforced Concrete Structure

Discrete Element Modelling of a Reinforced Concrete Structure Discrete Element Modelling of a Reinforced Concrete Structure S. Hentz, L. Daudeville, F.-V. Donzé Laboratoire Sols, Solides, Structures, Domaine Universitaire, BP 38041 Grenoble Cedex 9 France sebastian.hentz@inpg.fr

More information

Theory at a Glance (for IES, GATE, PSU)

Theory at a Glance (for IES, GATE, PSU) 1. Stress and Strain Theory at a Glance (for IES, GATE, PSU) 1.1 Stress () When a material is subjected to an external force, a resisting force is set up within the component. The internal resistance force

More information

ME 243. Mechanics of Solids

ME 243. Mechanics of Solids ME 243 Mechanics of Solids Lecture 2: Stress and Strain Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil

More information

Calculation of Damage-dependent Directional Failure Indices from the Tsai-Wu Static Failure Criterion

Calculation of Damage-dependent Directional Failure Indices from the Tsai-Wu Static Failure Criterion Van Paepegem, W. and Degrieck, J. (3. alculation of Damage-dependent Directional Failure Indices from the sai-wu Static Failure riterion. omposites Science and echnology, 63(, 35-3. alculation of Damage-dependent

More information

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.

More information

UNIT I SIMPLE STRESSES AND STRAINS

UNIT I SIMPLE STRESSES AND STRAINS Subject with Code : SM-1(15A01303) Year & Sem: II-B.Tech & I-Sem SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) UNIT I SIMPLE STRESSES

More information

Prediction of Elastic Constants on 3D Four-directional Braided

Prediction of Elastic Constants on 3D Four-directional Braided Prediction of Elastic Constants on 3D Four-directional Braided Composites Prediction of Elastic Constants on 3D Four-directional Braided Composites Liang Dao Zhou 1,2,* and Zhuo Zhuang 1 1 School of Aerospace,

More information

Module 7: Micromechanics Lecture 34: Self Consistent, Mori -Tanaka and Halpin -Tsai Models. Introduction. The Lecture Contains. Self Consistent Method

Module 7: Micromechanics Lecture 34: Self Consistent, Mori -Tanaka and Halpin -Tsai Models. Introduction. The Lecture Contains. Self Consistent Method Introduction In this lecture we will introduce some more micromechanical methods to predict the effective properties of the composite. Here we will introduce expressions for the effective properties without

More information

Module-4. Mechanical Properties of Metals

Module-4. Mechanical Properties of Metals Module-4 Mechanical Properties of Metals Contents ) Elastic deformation and Plastic deformation ) Interpretation of tensile stress-strain curves 3) Yielding under multi-axial stress, Yield criteria, Macroscopic

More information

Modelling the behaviour of plastics for design under impact

Modelling the behaviour of plastics for design under impact Modelling the behaviour of plastics for design under impact G. Dean and L. Crocker MPP IAG Meeting 6 October 24 Land Rover door trim Loading stages and selected regions Project MPP7.9 Main tasks Tests

More information

DAMAGE MECHANICS MODEL FOR OFF-AXIS FATIGUE BEHAVIOR OF UNIDIRECTIONAL CARBON FIBER-REINFORCED COMPOSITES AT ROOM AND HIGH TEMPERATURES

DAMAGE MECHANICS MODEL FOR OFF-AXIS FATIGUE BEHAVIOR OF UNIDIRECTIONAL CARBON FIBER-REINFORCED COMPOSITES AT ROOM AND HIGH TEMPERATURES DAMAGE MECHANICS MODEL FOR OFF-AXIS FATIGUE BEHAVIOR OF UNIDIRECTIONAL CARBON FIBER-REINFORCED COMPOSITES AT ROOM AND HIGH TEMPERATURES M. Kawai Institute of Engineering Mechanics University of Tsukuba,

More information

Passive Damping Characteristics of Carbon Epoxy Composite Plates

Passive Damping Characteristics of Carbon Epoxy Composite Plates Journal of Materials Science and Engineering A 6 (-) 35-4 doi:.765/6-63/6.-.5 D DAVID PUBLISHING Passive Damping Characteristics of Carbon Epoxy Composite Plates Dileep Kumar K * and V V Subba Rao Faculty

More information

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour Tensile-Test Specimen and Machine Review of Mechanical Properties Outline Tensile test True stress - true strain (flow curve) mechanical properties: - Resilience - Ductility - Toughness - Hardness A standard

More information

Comparison of Ply-wise Stress-Strain results for graphite/epoxy laminated plate subjected to in-plane normal loads using CLT and ANSYS ACP PrepPost

Comparison of Ply-wise Stress-Strain results for graphite/epoxy laminated plate subjected to in-plane normal loads using CLT and ANSYS ACP PrepPost Comparison of Ply-wise Stress-Strain results for graphite/epoxy laminated plate subjected to in-plane normal loads using CLT and ANSYS ACP PrepPost 1 Mihir A. Mehta, 2 Satyen D. Ramani 1 PG Student, Department

More information

Tensile behaviour of anti-symmetric CFRP composite

Tensile behaviour of anti-symmetric CFRP composite Available online at www.sciencedirect.com Procedia Engineering 1 (211) 1865 187 ICM11 Tensile behaviour of anti-symmetric CFRP composite K. J. Wong a,b, *, X. J. Gong a, S. Aivazzadeh a, M. N. Tamin b

More information

Elastic parameters prediction under dynamic loading based on the. unit cell of composites considering end constraint effect

Elastic parameters prediction under dynamic loading based on the. unit cell of composites considering end constraint effect Elastic parameters prediction under dynamic loading based on the unit cell of composites considering end constraint effect Wang Meng 1,, Fei Qingguo 1,, Zhang Peiwei 1, (1. Institute of Aerospace Machinery

More information

Progressive Damage of GFRP Composite Plate Under Ballistic Impact: Experimental and Numerical Study

Progressive Damage of GFRP Composite Plate Under Ballistic Impact: Experimental and Numerical Study Progressive Damage of GFRP Composite Plate Under Ballistic Impact: Experimental and Numerical Study Progressive Damage of GFRP Composite Plate Under Ballistic Impact: Experimental and Numerical Study Md

More information

Finite-Element Analysis of Stress Concentration in ASTM D 638 Tension Specimens

Finite-Element Analysis of Stress Concentration in ASTM D 638 Tension Specimens Monika G. Garrell, 1 Albert J. Shih, 2 Edgar Lara-Curzio, 3 and Ronald O. Scattergood 4 Journal of Testing and Evaluation, Vol. 31, No. 1 Paper ID JTE11402_311 Available online at: www.astm.org Finite-Element

More information

NUMERICAL FEM ANALYSIS FOR THE PART OF COMPOSITE HELICOPTER ROTOR BLADE

NUMERICAL FEM ANALYSIS FOR THE PART OF COMPOSITE HELICOPTER ROTOR BLADE Journal of KONES Powertrain and Transport, Vol. 19, No. 1 2012 NUMERICAL FEM ANALYSIS FOR THE PART OF COMPOSITE HELICOPTER ROTOR BLADE Hubert D bski Lublin University of Technology, Department of Machine

More information

Plane Strain Test for Metal Sheet Characterization

Plane Strain Test for Metal Sheet Characterization Plane Strain Test for Metal Sheet Characterization Paulo Flores 1, Felix Bonnet 2 and Anne-Marie Habraken 3 1 DIM, University of Concepción, Edmundo Larenas 270, Concepción, Chile 2 ENS - Cachan, Avenue

More information

The science of elasticity

The science of elasticity The science of elasticity In 1676 Hooke realized that 1.Every kind of solid changes shape when a mechanical force acts on it. 2.It is this change of shape which enables the solid to supply the reaction

More information

Module 5: Theories of Failure

Module 5: Theories of Failure Module 5: Theories of Failure Objectives: The objectives/outcomes of this lecture on Theories of Failure is to enable students for 1. Recognize loading on Structural Members/Machine elements and allowable

More information

Most of the material in this package is based on a recently published book. This is:

Most of the material in this package is based on a recently published book. This is: Mechanics of Composite Materials Version 2.1 Bill Clyne, University of Cambridge Boban Tanovic, MATTER Assumed Pre-knowledge It is assumed that the student is familiar with simple concepts of mechanical

More information

Static and Time Dependent Failure of Fibre Reinforced Elastomeric Components. Salim Mirza Element Materials Technology Hitchin, UK

Static and Time Dependent Failure of Fibre Reinforced Elastomeric Components. Salim Mirza Element Materials Technology Hitchin, UK Static and Time Dependent Failure of Fibre Reinforced Elastomeric Components Salim Mirza Element Materials Technology Hitchin, UK Introduction Fibre reinforced elastomers are used in many applications,

More information

A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials

A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials Dublin, October 2010 A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials FracMan Technology Group Dr Mark Cottrell Presentation Outline Some Physical

More information

Bending of Simply Supported Isotropic and Composite Laminate Plates

Bending of Simply Supported Isotropic and Composite Laminate Plates Bending of Simply Supported Isotropic and Composite Laminate Plates Ernesto Gutierrez-Miravete 1 Isotropic Plates Consider simply a supported rectangular plate of isotropic material (length a, width b,

More information

Coupling of plasticity and damage in glass fibre reinforced polymer composites

Coupling of plasticity and damage in glass fibre reinforced polymer composites EPJ Web of Conferences 6, 48 1) DOI: 1.151/epjconf/1648 c Owned by the authors, published by EDP Sciences, 1 Coupling of plasticity and damage in glass fibre reinforced polymer composites R. Kvale Joki

More information

Introduction to Engineering Materials ENGR2000. Dr. Coates

Introduction to Engineering Materials ENGR2000. Dr. Coates Introduction to Engineering Materials ENGR2 Chapter 6: Mechanical Properties of Metals Dr. Coates 6.2 Concepts of Stress and Strain tension compression shear torsion Tension Tests The specimen is deformed

More information

CHEM-C2410: Materials Science from Microstructures to Properties Composites: basic principles

CHEM-C2410: Materials Science from Microstructures to Properties Composites: basic principles CHEM-C2410: Materials Science from Microstructures to Properties Composites: basic principles Mark Hughes 14 th March 2017 Today s learning outcomes To understand the role of reinforcement, matrix and

More information

Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure

Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure ISSN : 48-96, Vol. 6, Issue 8, ( Part -4 August 06, pp.3-38 RESEARCH ARTICLE Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure Dr.Ragbe.M.Abdusslam Eng. Khaled.S.Bagar ABSTRACT

More information

Failure Analysis of Unidirectional Composite Pinned- Joints

Failure Analysis of Unidirectional Composite Pinned- Joints 217 IJEDR Volume, Issue 4 ISSN: 2321-9939 Failure Analysis of Unidirectional Composite Pinned- Joints 1 Sai Ashok.M, 2 Mr. U. Koteswara Rao 1 M-tech Machine Design, 2 Associate Professor & Asst. COE 1

More information

PREDICTION OF OUT-OF-PLANE FAILURE MODES IN CFRP

PREDICTION OF OUT-OF-PLANE FAILURE MODES IN CFRP PREDICTION OF OUT-OF-PLANE FAILURE MODES IN CFRP R. R. Pinto 1, P. P. Camanho 2 1 INEGI - Instituto de Engenharia Mecanica e Gestao Industrial, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal 2 DEMec,

More information

MODELING OF THE BEHAVIOR OF WOVEN LAMINATED COMPOSITES UNTIL RUPTURE

MODELING OF THE BEHAVIOR OF WOVEN LAMINATED COMPOSITES UNTIL RUPTURE MODELING OF THE BEHAVIOR OF WOVEN LAMINATED COMPOSITES UNTIL RUPTURE Jean Paul Charles, Christian Hochard,3, Pierre Antoine Aubourg,3 Eurocopter, 375 Marignane cedex, France Unimeca, 6 rue J. Curie, 3453

More information

An Analytical Model for Long Tube Hydroforming in a Square Cross-Section Die Considering Anisotropic Effects of the Material

An Analytical Model for Long Tube Hydroforming in a Square Cross-Section Die Considering Anisotropic Effects of the Material Journal of Stress Analysis Vol. 1, No. 2, Autumn Winter 2016-17 An Analytical Model for Long Tube Hydroforming in a Square Cross-Section Die Considering Anisotropic Effects of the Material H. Haghighat,

More information

Finite element analysis of longitudinal debonding between fibre and matrix interface

Finite element analysis of longitudinal debonding between fibre and matrix interface Indian Journal of Engineering & Materials Sciences Vol. 11, February 2004, pp. 43-48 Finite element analysis of longitudinal debonding between fibre and matrix interface K Aslantaş & S Taşgetiren Department

More information

4.MECHANICAL PROPERTIES OF MATERIALS

4.MECHANICAL PROPERTIES OF MATERIALS 4.MECHANICAL PROPERTIES OF MATERIALS The diagram representing the relation between stress and strain in a given material is an important characteristic of the material. To obtain the stress-strain diagram

More information

The Accuracy of Characteristic Length Method on Failure Load Prediction of Composite Pinned Joints

The Accuracy of Characteristic Length Method on Failure Load Prediction of Composite Pinned Joints , June 30 - July 2, 2010, London, U.K. The Accuracy of Characteristic Length Method on Failure Load Prediction of Composite Pinned Joints O. Aluko, and Q. Mazumder Abstract An analytical model was developed

More information

Lecture #2: Split Hopkinson Bar Systems

Lecture #2: Split Hopkinson Bar Systems Lecture #2: Split Hopkinson Bar Systems by Dirk Mohr ETH Zurich, Department of Mechanical and Process Engineering, Chair of Computational Modeling of Materials in Manufacturing 2015 1 1 1 Uniaxial Compression

More information

ME 582 Advanced Materials Science. Chapter 2 Macromechanical Analysis of a Lamina (Part 2)

ME 582 Advanced Materials Science. Chapter 2 Macromechanical Analysis of a Lamina (Part 2) ME 582 Advanced Materials Science Chapter 2 Macromechanical Analysis of a Lamina (Part 2) Laboratory for Composite Materials Research Department of Mechanical Engineering University of South Alabama, Mobile,

More information

Multi Disciplinary Delamination Studies In Frp Composites Using 3d Finite Element Analysis Mohan Rentala

Multi Disciplinary Delamination Studies In Frp Composites Using 3d Finite Element Analysis Mohan Rentala Multi Disciplinary Delamination Studies In Frp Composites Using 3d Finite Element Analysis Mohan Rentala Abstract: FRP laminated composites have been extensively used in Aerospace and allied industries

More information

Hydrothermal ageing effects on flexural properties of GFRP composite laminates

Hydrothermal ageing effects on flexural properties of GFRP composite laminates Indian Journal of Engineering & Materials Sciences Vol. 20, October 2013, pp. 415-424 Hydrothermal ageing effects on flexural properties of GFRP composite laminates P Sampath Rao* & M Manzoor Hussain Department

More information

PRELIMINARY PREDICTION OF SPECIMEN PROPERTIES CLT and 1 st order FEM analyses

PRELIMINARY PREDICTION OF SPECIMEN PROPERTIES CLT and 1 st order FEM analyses OPTIMAT BLADES Page 1 of 24 PRELIMINARY PREDICTION OF SPECIMEN PROPERTIES CLT and 1 st order FEM analyses first issue Peter Joosse CHANGE RECORD Issue/revision date pages Summary of changes draft 24-10-02

More information

Capability Assessment of Finite Element Software in Predicting the Last Ply Failure of Composite Laminates

Capability Assessment of Finite Element Software in Predicting the Last Ply Failure of Composite Laminates Available online at www.sciencedirect.com Procedia Engineering 41 (2012 ) 1647 1653 International Symposium on Robotics and Intelligent Sensors 2012 (IRIS 2012) Capability Assessment of Finite Element

More information

Enhancing Prediction Accuracy In Sift Theory

Enhancing Prediction Accuracy In Sift Theory 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS Enhancing Prediction Accuracy In Sift Theory J. Wang 1 *, W. K. Chiu 1 Defence Science and Technology Organisation, Fishermans Bend, Australia, Department

More information

Solid Mechanics Chapter 1: Tension, Compression and Shear

Solid Mechanics Chapter 1: Tension, Compression and Shear Solid Mechanics Chapter 1: Tension, Compression and Shear Dr. Imran Latif Department of Civil and Environmental Engineering College of Engineering University of Nizwa (UoN) 1 Why do we study Mechanics

More information

Fracture Behaviour of FRP Cross-Ply Laminate With Embedded Delamination Subjected To Transverse Load

Fracture Behaviour of FRP Cross-Ply Laminate With Embedded Delamination Subjected To Transverse Load Fracture Behaviour of FRP Cross-Ply Laminate With Embedded Delamination Subjected To Transverse Load Sriram Chintapalli 1, S.Srilakshmi 1 1 Dept. of Mech. Engg., P. V. P. Siddhartha Institute of Technology.

More information

Fracture Mechanics, Damage and Fatigue: Composites

Fracture Mechanics, Damage and Fatigue: Composites University of Liège Aerospace & Mechanical Engineering Fracture Mechanics, Damage and Fatigue: Composites Ludovic Noels Computational & Multiscale Mechanics of Materials CM3 http://www.ltas-cm3.ulg.ac.be/

More information

POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS

POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS - Technical Paper - Tidarut JIRAWATTANASOMKUL *1, Dawei ZHANG *2 and Tamon UEDA *3 ABSTRACT The objective of this study is to propose a new

More information

SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS

SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS de Aguiar, José M., josemaguiar@gmail.com Faculdade de Tecnologia de São Paulo, FATEC-SP Centro Estadual de Educação Tecnológica Paula Souza. CEETEPS

More information

Impact and Crash Modeling of Composite Structures: A Challenge for Damage Mechanics

Impact and Crash Modeling of Composite Structures: A Challenge for Damage Mechanics Impact and Crash Modeling of Composite Structures: A Challenge for Damage Mechanics Dr. A. Johnson DLR Dr. A. K. Pickett ESI GmbH EURO-PAM 99 Impact and Crash Modelling of Composite Structures: A Challenge

More information

Influence of impact velocity on transition time for V-notched Charpy specimen*

Influence of impact velocity on transition time for V-notched Charpy specimen* [ 溶接学会論文集第 35 巻第 2 号 p. 80s-84s (2017)] Influence of impact velocity on transition time for V-notched Charpy specimen* by Yasuhito Takashima** and Fumiyoshi Minami** This study investigated the influence

More information

FINITE ELEMENT ANALYSIS OF A LAYERED COMPOSITE CYLINDER USING THE CONNECTION BETWEEN THE MACRO- AND MICROSTRUCTURE

FINITE ELEMENT ANALYSIS OF A LAYERED COMPOSITE CYLINDER USING THE CONNECTION BETWEEN THE MACRO- AND MICROSTRUCTURE FINITE ELEMENT ANALYI OF A LAYERED COMPOITE CYLINDER UING THE CONNECTION BETWEEN THE MACRO- AND MICROTRUCTURE A. zekrényes Research Assistant, Department of Applied Mechanics, Budapest University of Technology

More information

THE MUTUAL EFFECTS OF SHEAR AND TRANSVERSE DAMAGE IN POLYMERIC COMPOSITES

THE MUTUAL EFFECTS OF SHEAR AND TRANSVERSE DAMAGE IN POLYMERIC COMPOSITES THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS THE MUTUAL EFFECTS OF SHEAR AND TRANSVERSE DAMAGE IN POLYMERIC COMPOSITES L.V. Smith 1 *, M. Salavatian 1 1 School of Mechanical and Materials

More information

Modeling of Interfacial Debonding Induced by IC Crack for Concrete Beam-bonded with CFRP

Modeling of Interfacial Debonding Induced by IC Crack for Concrete Beam-bonded with CFRP Proceedings of the World Congress on Engineering 21 Vol II WCE 21, June 2 - July 1, 21, London, U.K. Modeling of Interfacial Debonding Induced by IC Crack for Concrete Beam-bonded with CFRP Lihua Huang,

More information

Burst pressure estimation of reworked nozzle weld on spherical domes

Burst pressure estimation of reworked nozzle weld on spherical domes Indian Journal of Engineering & Materials Science Vol. 21, February 2014, pp. 88-92 Burst pressure estimation of reworked nozzle weld on spherical domes G Jegan Lal a, Jayesh P a & K Thyagarajan b a Cryo

More information

FRACTURE MECHANICS APPROACHES STRENGTHENING USING FRP MATERIALS

FRACTURE MECHANICS APPROACHES STRENGTHENING USING FRP MATERIALS Fracture Mechanics of Concrete Structures Proceedings FRAMCOS-3 AEDIFICATIO Publishers, D-79104 Freiburg, Germany FRACTURE MECHANICS APPROACHES STRENGTHENING USING FRP MATERIALS Triantafillou Department

More information

VIBRATION CONTROL OF RECTANGULAR CROSS-PLY FRP PLATES USING PZT MATERIALS

VIBRATION CONTROL OF RECTANGULAR CROSS-PLY FRP PLATES USING PZT MATERIALS Journal of Engineering Science and Technology Vol. 12, No. 12 (217) 3398-3411 School of Engineering, Taylor s University VIBRATION CONTROL OF RECTANGULAR CROSS-PLY FRP PLATES USING PZT MATERIALS DILEEP

More information

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft. ME 323 - Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM-12:20PM Ghosh 2:30-3:20PM Gonzalez 12:30-1:20PM Zhao 4:30-5:20PM M (x) y 20 kip ft 0.2

More information

Stress and Displacement Analysis of a Rectangular Plate with Central Elliptical Hole

Stress and Displacement Analysis of a Rectangular Plate with Central Elliptical Hole Stress and Displacement Analysis of a Rectangular Plate with Central Elliptical Hole Dheeraj Gunwant, J. P. Singh mailto.dheerajgunwant@gmail.com, jitenderpal2007@gmail.com, AIT, Rampur Abstract- A static

More information

Module 4: Behaviour of a Laminae-II. Learning Unit 1: M1. M4.1 Mechanics of Composites. M4.1.1 Introduction to Mechanics of Composites

Module 4: Behaviour of a Laminae-II. Learning Unit 1: M1. M4.1 Mechanics of Composites. M4.1.1 Introduction to Mechanics of Composites Module 4: Behaviour of a Laminae-II Learning Unit 1: M1 M4.1 Mechanics of Composites M4.1.1 Introduction to Mechanics of Composites The relation between ply uniaxial strengths and constituent properties

More information

Geology 229 Engineering Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6)

Geology 229 Engineering Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6) Geology 229 Engineering Geology Lecture 5 Engineering Properties of Rocks (West, Ch. 6) Common mechanic properties: Density; Elastic properties: - elastic modulii Outline of this Lecture 1. Uniaxial rock

More information

Strength Prediction Of Composite Laminate

Strength Prediction Of Composite Laminate Strength Prediction Of Composite te Prof. Yogananda. A 1, Mr. R. Vijayakumar 2 Assistant Professor, Department of Mechanical Engineering, East West Institute of Technology, Bangalore. Research Scholar,

More information

SIMULATION OF PROGRESSIVE FAILURE PREDICTION OF FILAMENT WOUND COMPOSITE TUBES SUBJECTED TO MULTIPLE LOADING WITH MEMBRANE-FLEXION COUPLING EFFECTS

SIMULATION OF PROGRESSIVE FAILURE PREDICTION OF FILAMENT WOUND COMPOSITE TUBES SUBJECTED TO MULTIPLE LOADING WITH MEMBRANE-FLEXION COUPLING EFFECTS VOL. 5, NO. 4, APRIL 010 ISSN 1819-6608 006-010 Asian Research Publishing Network (ARPN). All rights reserved. SIMULATION OF PROGRESSIVE FAILURE PREDICTION OF FILAMENT WOUND COMPOSITE TUBES SUBJECTED TO

More information

Fatigue Damage Development in a Steel Based MMC

Fatigue Damage Development in a Steel Based MMC Fatigue Damage Development in a Steel Based MMC V. Tvergaard 1,T.O/ rts Pedersen 1 Abstract: The development of fatigue damage in a toolsteel metal matrix discontinuously reinforced with TiC particulates

More information

Mechanical Behavior of Composite Tapered Lamina

Mechanical Behavior of Composite Tapered Lamina International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 8 (August 2014), PP.19-27 Mechanical Behavior of Composite Tapered Lamina

More information

DAMAGE SIMULATION OF CFRP LAMINATES UNDER HIGH VELOCITY PROJECTILE IMPACT

DAMAGE SIMULATION OF CFRP LAMINATES UNDER HIGH VELOCITY PROJECTILE IMPACT 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS DAMAGE SIMULATION OF CFRP LAMINATES UNDER HIGH VELOCITY PROJECTILE IMPACT A. Yoshimura 1*, T. Okabe, M. Yamada 3, T. Ogasawara 1, Y. Tanabe 3 1 Advanced

More information

Stress-Strain Behavior

Stress-Strain Behavior Stress-Strain Behavior 6.3 A specimen of aluminum having a rectangular cross section 10 mm 1.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.

More information

Structural behaviour of traditional mortise-and-tenon timber joints

Structural behaviour of traditional mortise-and-tenon timber joints Structural behaviour of traditional mortise-and-tenon timber joints Artur O. Feio 1, Paulo B. Lourenço 2 and José S. Machado 3 1 CCR Construtora S.A., Portugal University Lusíada, Portugal 2 University

More information

Simulation of Geometrical Cross-Section for Practical Purposes

Simulation of Geometrical Cross-Section for Practical Purposes Simulation of Geometrical Cross-Section for Practical Purposes Bhasker R.S. 1, Prasad R. K. 2, Kumar V. 3, Prasad P. 4 123 Department of Mechanical Engineering, R.D. Engineering College, Ghaziabad, UP,

More information

Effect of various stress ratio parameters on cold upset forging of irregular shaped billets using white grease as lubricant

Effect of various stress ratio parameters on cold upset forging of irregular shaped billets using white grease as lubricant Indian Journal of Engineering & Materials Sciences Vol. 13, August 2006, pp. 281-292 Effect of various stress ratio parameters on cold upset forging of irregular shaped billets using white grease as lubricant

More information

Analysis of Flexural Properties of Carbon Fiber Reinforced / E-Poxy Composite Material

Analysis of Flexural Properties of Carbon Fiber Reinforced / E-Poxy Composite Material ISSN 2395-1621 Analysis of Flexural Properties of Carbon Fiber Reinforced / E-Poxy Composite Material #1 Kishor Shingare, #2 Dr. S.M. Shendokar, #3 Prof. P.V. Deshmukh, #4 Prof. S.S. Chavan 1 kishorshingare911@gmail.com

More information

Numerical analysis of the mechanical response of wood glulam beams reinforced through the thickness by FRP rods.

Numerical analysis of the mechanical response of wood glulam beams reinforced through the thickness by FRP rods. Numerical analysis of the mechanical response of wood glulam beams reinforced through the thickness by FRP rods. Giuseppe Giambanco 1, Tiziana Turetta 1, Alessia Cottone 1 1 Department of Structural, Aerospace

More information

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS

More information