CHEMC2410: Materials Science from Microstructures to Properties Composites: basic principles


 Gwen Sharp
 1 years ago
 Views:
Transcription
1 CHEMC2410: Materials Science from Microstructures to Properties Composites: basic principles Mark Hughes 14 th March 2017
2 Today s learning outcomes To understand the role of reinforcement, matrix and interface To understand the concept of volume fraction and the rule of mixtures To understand the principle of load sharing and reinforcement To become familiar with the effect of geometry on elastic stress transfer and reinforcement processes
3 Composite materials Composite materials are nowadays widely used by Humankind Many elegantly structured hierarchical composite have evolved in Nature. These are far more complex than any synthetic equivalents The properties of a composite are partly dependent on the properties of the constituents (parts) or phases that make them up One thing that is common to all natural composites and many synthetic composites is that they have very organised (micro)structures and this also partly explains the properties of the composite The properties of a composite are therefore controlled by both the constituent properties and the microstructure
4 Natural & synthetic composite microstructures Wood fibre Manmade laminates
5 From nano or microstructure to properties A composite is a material composed of two or more distinct constituents (or phases) separated by an identifiable interface Often there is a reinforcement phase of a stiff and strong material (frequently a fibre) embedded in a compliant and weak matrix (e.g. polymer) Because composites often have a very wellorganised microstructure, many properties can be predicted from the volume weighted sum of the properties of the constituents. This is known as the general Rule of Mixtures Other properties are more difficult to predict and, as Aristotle said: the whole is greater than the sum of its parts
6 Example: toughening PLA with nanocellulose PLA is a rather brittle thermoplastic polymer The addition of small amounts of nanocellulose (1%, by weight) can result in an increase in the work of fracture of up to ten times
7 Mechanical properties For many reallife engineering applications it is often desirable to have a blend of properties: Good stiffness: resistance to deflection under shortterm loading Adequate strength: how much force can be sustained before it breaks Toughness: the ability to resist the propagation of cracks (arguably the most important property of an engineering material)
8 Stress, strain, stiffness, strength (Source: Wikipedia) Stress: load/crosssectional area Strain: extension/original length Poisson s ratio: ratio of transverse to axial strain Stiffness: Young s modulus, E, stress/strain (in linear elastic region Hooke s law) Strength: stress at ultimate load (tension or compression)
9 The range of properties that Nature can achieve (Source: J.E. Gordon: Structures )
10 Constituents: reinforcement, matrix and interface
11 Reinforcement Generally stronger and stiffer than the matrix The reinforcement provides the strength to the composite Reinforcement is mainly in the form of a fibre (glass, carbon, aramid, boron.) Fibres are good in tension (compare with rope), but poor in compression and shear, therefore need a matrix in which the fibre is embedded to support the fibre and to transfer externally applied loads to the reinforcement Fibre geometry as we shall see is important. Fibres may be short (i.e. a defined aspect ratio) or long (in effect infinitely long)
12 Flax fibre
13 Reinforcement properties Fibre type Density (g cm 3 ) Young s modulus (GPa) Tensile strength (MPa) Failure strain (%) Synthetic fibres Eglass high strength carbon Kevlar (aramid) boron Natural fibres flax hemp cotton cellulose
14 Matrices Can be metals, ceramics or, most commonly, polymers Most often weaker and less stiff than the reinforcement (especially if it is polymer) In addition to transferring externally applied loads to the reinforcement, the matrix protects the reinforcement from mechanical, physical, chemical (and biological) degradation, which would lead to a loss in performance
15 Some matrix properties (polymers) Polymer Density (g cm 3 ) Young s modulus (GPa) Tensile strength (MPa) Failure strain (%) Thermosets epoxy resins polyesters Thermoplastics Nylon polypropylene PEEK
16 Interface Interface (or interphase ), transmits the externally applied loads to the reinforcement via shear stresses at the interface The interface is analogous to a glue bond If there is no bonding (adhesion) between the matrix and the reinforcement, then stress transfer will be poor and it will lead to impaired composite properties On the other hand bonding may be too good! The interface is therefore a crucial factor in the short and longterm performance of composites Optimising the properties of the interface is a key step in the development of composites (Source:
17 Microstructure
18 Microstructure: the reinforcement architecture The term reinforcement (fibre) architecture includes: The geometry of the reinforcement (aspect ratio, morphology) The volume fraction of the reinforcement The orientation of the reinforcement with respect to applied loads The packing arrangement of the reinforcement (also related to the orientation) woven, nonwoven textiles, unidirectional fabrics Geometry, orientation, packing arrangement and volume fraction are all interdependent
19 Volume fraction V f = V fibre /V composite V f V fibre V composite = fibre volume fraction = volume of fibre in composite = volume of composite One of the most important concepts in composite science The volume fraction of the reinforcement, frequently referred to as the fibre volume fraction, strongly affects many composite properties Varies from a few per cent (<10%) to up to around 70% (above this value, the reinforcement will be in contact and so the matrix cannot completely surround the reinforcement)
20 Packing arrangement and volume fraction (de Morais et al, 2003) Circular crosssectional fibres:  Upper limit of volume faction when fibres touch  Square or hexagonal array (Hull and Clyne 1992)
21 Effect of fibre architecture on volume fraction 3D volumes do not pack to high volume fractions To obtain high volume fractions, organised packing arrangements are needed Computer model consisting of 150 fibres with an aspect ratio of 37. Volume fraction 8% (Source: ETH Zurich:
22 Rule of Mixtures The volume weighted average of the properties of each constituent comprising the composite can be used to describe a number of material properties In general terms, this relationship is known as the Rule of Mixtures and may be expressed as follows: X V X V X c f f m m X c X f X m V m is the composite property is the fibre property is the matrix property is the volume fraction of matrix. This is the volume of matrix in the composite as a fraction of the total volume of the composite. Assuming that the composite consists of two phases only (with no voids), V m may be expressed alternatively as 1 V f
23 Composite density Fibre density: 1500 kg/m 3 Polymer matrix density: 900 kg/m 3 V f : 0,45 Composite density: 1170 kg/m 3 If the composite density was found to be 1050 kg/m 3 what could this indicate?
24 Reinforcement processes: elastic stress transfer
25 Model composites The properties of a composite containing many fibres can sometimes be predicted from the properties of a composite consisting of one fibre This gives rise to concept of a model composite system consisting of a single fibre embedded in a matrix Tensile stress Key to the understanding of the mechanical behaviour of fibre reinforced composite materials is the concept of load sharing between fibre and matrix
26 Load sharing Whilst stress may vary sharply from point to point along the fibre (particularly in short fibres), the proportion of the external load carried by each of the individual constituents can be assessed by volumeaveraging the loads associated within them. DoITPoMS, University of Cambridge
27 Load sharing V ( 1 V ) c f f f m c f m V f is the composite applied stress is the volume averaged fibre stress is the volume averaged matrix stress is the volume fraction of reinforcement. This is the volume of fibre present in the composite as a fraction of the total volume of the composite
28 Reinforcement principles For a two phase composite, a certain proportion of the load will be carried by the fibre and the remainder by the matrix The proportion of the load carried by each constituent will depend upon the microstructural arrangement (architecture) The reinforcement may be considered to be acting efficiently if it carries a relatively large proportion of the externally applied load A high reinforcing efficiency can lead to greater composite strength and stiffness, since the reinforcement is usually both stronger and stiffer than the matrix
29 Micromechanics The mechanical (and other) properties of a composite originate at the microstructural level, in other words at the level of the individual fibre and how it interacts with the matrix and with other fibres the micromechanics The ratio of length to diameter is known as the aspect ratio, s s = L/D Is a long fibre better than a short one?
30 Micromechanics Consider a simple, ideal composite (Fig. 1), consisting of a single element of reinforcement (fibre), of finite length, uniform geometry and having homogeneous properties embedded in a matrix material Single Filament/Fibre Composites (SFC) are often used in the study of composite micromechanics Tensile stress Fig. 1: Single filament composite
31 Reinforcement processes: stress transfer In order for the composite to support an externally applied load, it is a requirement that the loads are transmitted to the reinforcement This is achieved through shear stresses that operate at the interface Stress transfer is influenced by: The elastic properties (i.e. Young s modulus) of the constituents The geometry and orientation (relative to the applied stress) of the reinforcement A model proposed by Cox in 1952, known as the shearlag model, is often used to describe composite micromechanical behaviour
32 Shear lag model: thought experiment! stiff reinforcement (Source: Hull & Clyne 1996) compliant matrix Distortion of compliant matrix around stiff reinforcement
33 Shear lag model In a photoelastic model shear stress can be visualised as the change in optical properties (Source: Hull & Clyne 1996) SSMGITALY  Laboratory for Physical Modelling of Structures and Photoelasticity (University of Trento, Italy) Distortion of compliant matrix around stiff reinforcement
34 Interfacial shear stresses i Interfacial shear stress ( ) operates at the interface, parallel to the fibre surface Using a forcebalance approach it can be shown that: d dx f i 2 r Where: x is the axial distance from the fibre midpoint r is the fibre radius (Source: Hull & Clyne 1996)
35 Variation of fibre stress along the length It can be shown that the axial stress distribution, due to elastic stress transfer in a fibre, may be given by: f E 1 cosh nx / r sec h ns f 1 E f 1 s n is the fibre Young s modulus is the applied composite strain is the fibre aspect ratio, defined as L/r (where L is the fibre half length) is a dimensionless constant given by: 2E n E v V m 1 ln 1 f m f 1 2 E m v m is the matrix Young s modulus is the matrix Poisson s ratio
36 Effect of aspect ratio 250 s = 100 fibre axial stress (MN m 2 ) aspect ratio = 5 aspect ratio = 25 aspect ratio = 100 Reinforcement acts more effectively s = position along fibre (arbitary units) Assumptions: fibre modulus: 50 GPa; matrix modulus: 3.5 GPa; axial strain: 0.5%
37 Experimental validation Microdroplet test: hemp fibre embedded in epoxy (Source: Eichhorn and Young, 2004)
38 Experimental validation Axial stress along fibre, measured using Raman spectroscopy (Source: Eichhorn and Young, 2004)
39 Influence of aspect ratio on axial stiffness 160 s=1000 s=100 Stress (MN m 2 ) s=10 s= Strain (%)
40 Variation of interfacial shear stress It may be shown that the variation of shear stress along the fibre can be given by: i n 2 1 E f nx sinh sec h( ns) r
41 Shear stress distribution interfacial shear stress (MN m 2 ) aspect ratio = 5 aspect ratio = 25 aspect ratio = position along fibre (arbitary units) Assumptions: fibre modulus: 50 GPa; matrix modulus: 3.5 GPa; axial strain: 0.5%
42 Coxtype stress transfer As the aspect ratio increases, the efficiency of stresstransfer increases to a point where a plateau fibre stress is reached For a given set of fibre & matrix properties and applied strain, a maximum axial fibre stress and interfacial shear stress will be attained As aspect ratio increases no further axial stress in the fibre will be achieved, i.e. there is no stress transfer, except at the end of the fibre So, in long fibre composites, it can be assumed that fibre and matrix undergo equal strain, when a stress is applied parallel to the fibre axis
43 Literature Eichhorn, S.J. and Young, R.J. (2004). Composite micromechanics of hemp fibres and epoxy resin microdroplets. Composites Science and Technology 64, Hull, D. and Clyne, T.W. (1996). An Introduction to Composite Materials. Cambridge University Press, Cambridge, UK (Chapter 2: fibres and matrix; Chapter 6: reinforcement in short fibre composites) Piggott, M.R. Load bearing fibre composites. Pergamon Press (Chapter 5: reinforcement processes) Cox, H.L. (1952). The Elasticity and Strength of Paper and Other Fibrous Materials. Brit. J. Appl. Phys., 3: de Morais, W. A., J. R. M. d'almeida, L. B. Godefroid (2003). Effect of the fiber reinforcement on the low energy impact behavior of fabric reinforced resin matrix composite materials J. Braz. Soc. Mech. Sci. & Eng. 25(4) (
CHEME2200: Polymer blends and composites Fibre architecture and principles of reinforcement
CHEME2200: Polymer blends and composites Fibre architecture and principles of reinforcement Mark Hughes 19 th September 2016 Outline Fibre architecture Volume fraction and the rule of mixtures Principle
More informationMost of the material in this package is based on a recently published book. This is:
Mechanics of Composite Materials Version 2.1 Bill Clyne, University of Cambridge Boban Tanovic, MATTER Assumed Preknowledge It is assumed that the student is familiar with simple concepts of mechanical
More informationModule 4: Behaviour of a LaminaeII. Learning Unit 1: M1. M4.1 Mechanics of Composites. M4.1.1 Introduction to Mechanics of Composites
Module 4: Behaviour of a LaminaeII Learning Unit 1: M1 M4.1 Mechanics of Composites M4.1.1 Introduction to Mechanics of Composites The relation between ply uniaxial strengths and constituent properties
More informationDevelopment of a code to generate randomly distributed short fiber composites to estimate mechanical properties using FEM
International Journal of Theoretical and Applied Mechanics. ISSN 09736085 Volume 12, Number 4 (2017) pp. 863872 Research India Publications http://www.ripublication.com Development of a code to generate
More informationMicromechanical analysis of FRP hybrid composite lamina for inplane transverse loading
Indian Journal of Engineering & Materials Sciences Vol. 15, October 2008, pp. 382390 Micromechanical analysis of FRP hybrid composite lamina for inplane transverse loading K Sivaji Babu a *, K Mohana
More informationQUESTION BANK Composite Materials
QUESTION BANK Composite Materials 1. Define composite material. 2. What is the need for composite material? 3. Mention important characterits of composite material 4. Give examples for fiber material 5.
More informationMICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING
MICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING N. Krishna Vihari 1, P. Phani Prasanthi 1, V. Bala Krishna Murthy 2* and A. Srihari Prasad 3 1 Mech. Engg. Dept., P. V. P. Siddhartha
More informationModule 7: Micromechanics Lecture 34: Self Consistent, Mori Tanaka and Halpin Tsai Models. Introduction. The Lecture Contains. Self Consistent Method
Introduction In this lecture we will introduce some more micromechanical methods to predict the effective properties of the composite. Here we will introduce expressions for the effective properties without
More informationComposite Materials. FibreMatrix Interfaces. There is nothing there really except the two of you (or the fiber and matrix).
Composite Materials FibreMatrix Interfaces There is nothing there really except the two of you (or the fiber and matrix). Composite Parameters Fibre properties Composite Interfaces Matrix properties Fibre
More informationMechanical and Thermal Properties of Coir Fiber Reinforced Epoxy Composites Using a Micromechanical Approach
Mechanical and Thermal Properties of Coir Fiber Reinforced Epoxy Composites Using a Micromechanical Approach Sandhyarani Biswas Department of Mechanical Engineering, N.I.T Rourkela, INDIA Abstract: Nowadays,
More informationAn integrated approach to the design of high performance carbon fibre reinforced risers  from micro to macro  scale
An integrated approach to the design of high performance carbon fibre reinforced risers  from micro to macro  scale Angelos Mintzas 1, Steve Hatton 1, Sarinova Simandjuntak 2, Andrew Little 2, Zhongyi
More informationISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 4, July 2013
Delamination Studies in FibreReinforced Polymer Composites K.Kantha Rao, Dr P. Shailesh, K. Vijay Kumar 1 Associate Professor, Narasimha Reddy Engineering College Hyderabad. 2 Professor, St. Peter s Engineering
More informationCHEME2105. Wood and Wood Products
CHEME2105 Wood and Wood Products Cell wall and massvolume relationships Mark Hughes 2 nd February 2016 The wood cell wall Massvolume relationships Today Composition of the cell wall Chemical composition
More informationA FINITE ELEMENT MODEL TO PREDICT MULTI AXIAL STRESSSTRAIN RESPONSE OF CERAMIC MATRIX COMPOSITES WITH STRAIN INDUCED DAMAGE
A FINITE ELEMENT MODEL TO PREDICT MULTI AXIAL STRESSSTRAIN RESPONSE OF CERAMIC MATRIX COMPOSITES WITH STRAIN INDUCED DAMAGE Daxu Zhang and D. R. Hayhurst School of Mechanical, Aerospace and Civil Engineering,
More informationTABLE OF CONTENTS. Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA
Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA TABLE OF CONTENTS 1. INTRODUCTION TO COMPOSITE MATERIALS 1.1 Introduction... 1.2 Classification... 1.2.1
More informationComputational Analysis for Composites
Computational Analysis for Composites Professor Johann Sienz and Dr. Tony Murmu Swansea University July, 011 The topics covered include: OUTLINE Overview of composites and their applications Micromechanics
More informationAspect Ratio Requirements for NanotubeReinforced, PolymerMatrix Composites
Aspect Ratio Requirements for NanotubeReinforced, PolymerMatrix Composites J.A.Nairn Wood Science and Engineering, Oregon State University, Corvallis, OR 97330, USA Abstract A fiber s efficiency in a
More informationPrediction of Elastic Constants on 3D Fourdirectional Braided
Prediction of Elastic Constants on 3D Fourdirectional Braided Composites Prediction of Elastic Constants on 3D Fourdirectional Braided Composites Liang Dao Zhou 1,2,* and Zhuo Zhuang 1 1 School of Aerospace,
More informationASPECTS CONCERNING TO THE MECHANICAL PROPERTIES OF THE GLASS / FLAX / EPOXY COMPOSITE MATERIAL
5 th International Conference Advanced Composite Materials Engineering COMAT 2014 1617 October 2014, Braşov, Romania ASPECTS CONCERNING TO THE MECHANICAL PROPERTIES OF THE GLASS / FLAX / EPOXY COMPOSITE
More informationChapter 7. Highlights:
Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true
More informationPrediction of Micromechanical Behaviour of Elliptical Frp Composites
Prediction of Micromechanical Behaviour of Elliptical Frp Composites Kiranmayee.Nerusu Dept. of Mechanical Engg. P. V. P. Siddhartha Institute of Technology, Vijayawada 520 007, A.P, India. P. Phani Prasanthi
More informationLaboratory 4 Bending Test of Materials
Department of Materials and Metallurgical Engineering Bangladesh University of Engineering Technology, Dhaka MME 222 Materials Testing Sessional.50 Credits Laboratory 4 Bending Test of Materials. Objective
More informationNumerical Modeling and Experiments on the Role of StrandtoStrand Interface Quality on the Properties of Oriented Strand Board
Numerical Modeling and Experiments on the Role of StrandtoStrand Interface Quality on the Properties of Oriented Strand Board John A. Nairn (Professor) and Edward Le (PhD Student) Wood Science & Engineering,
More informationModule 7: Micromechanics Lecture 29: Background of Concentric Cylinder Assemblage Model. Introduction. The Lecture Contains
Introduction In this lecture we are going to introduce a new micromechanics model to determine the fibrous composite effective properties in terms of properties of its individual phases. In this model
More informationIntroduction to Engineering Materials ENGR2000. Dr. Coates
Introduction to Engineering Materials ENGR2 Chapter 6: Mechanical Properties of Metals Dr. Coates 6.2 Concepts of Stress and Strain tension compression shear torsion Tension Tests The specimen is deformed
More informationANALYTICAL FRACTURE MECHANICS ANALYSIS OF THE PULLOUT TEST INCLUDING THE EFFECTS OF FRICTION AND THERMAL STRESSES
Advanced Composite Letters, Vol. 9, No. 6, 373383 000 Full Article ANALYTICAL FRACTURE MECHANICS ANALYSIS OF THE PULLOUT TEST INCLUDING THE EFFECTS OF FRICTION AND THERMAL STRESSES John A. Nairn Material
More informationTowards Affordable, ClosedLoop Recyclable Future Low Carbon Vehicles. Supervisors : Dr. L.T. Harper, Dr. M. Johnson, Prof. N.A.
Towards Affordable, ClosedLoop Recyclable Future Low Carbon Vehicles Supervisors : Dr. L.T. Harper, Dr. M. Johnson, Prof. N.A. Warrior Moulding issues with CF/PP Now looking to use CF/PA6 consolidation
More informationFinite element modelling of infinitely wide Angleply FRP. laminates
www.ijaser.com 2012 by the authors Licensee IJASER Under Creative Commons License 3.0 editorial@ijaser.com Research article ISSN 2277 9442 Finite element modelling of infinitely wide Angleply FRP laminates
More informationMATERIALS SCIENCE POLYMERS
POLYMERS 1) Types of Polymer (a) Plastic Possibly the largest number of different polymeric materials come under the plastic classification. Polyethylene, polypropylene, polyvinyl chloride, polystyrene,
More informationNonconventional Glass fiber NCF composites with thermoset and thermoplastic matrices. F Talence, France Le Cheylard, France
20 th International Conference on Composite Materials Copenhagen, 1924th July 2015 Nonconventional Glass fiber NCF composites with thermoset and thermoplastic matrices. Thierry Lorriot 1, Jalal El Yagoubi
More informationIn Situ Ultrasonic NDT of Fracture and Fatigue in Composites
ECNDT 26  Mo.2.6.5 In Situ Ultrasonic NDT of Fracture and Fatigue in Composites I. SOLODOV, K. PFLEIDERER, and G. BUSSE Institute for Polymer Testing and Polymer Science (IKP), Nondestructive Testing
More informationEffects of geometry and properties of fibre and matrix on overall. composite parameters
Int. Journal of Applied Sciences and ngineering Research, ol. 3, Issue 4, 2014 www.ijaser.com 2014 by the authors Licensee IJASR Under Creative Commons License 3.0 editorial@ijaser.com Research article
More informationEffects of Resin and Fabric Structure
Fatigue of Wind Blade Laminates: Effects of Resin and Fabric Structure Details David Miller, Daniel D. Samborsky and John F. Mandell Montana State t University it MCARE 2012 Outline Overview of MSU Fatigue
More informationEvaluation Axisymmetric Analysis of Thermal Stress Residual Near Fiber/Epoxy Interface
Materials Research, Vol. 12, No. 2, 133137, 2009 2009 Evaluation Axisymmetric Analysis of Thermal Stress Residual Near Fiber/Epoxy Interface Aboubakar Seddik Bouchikhi Department of Mechanical Engineering,
More informationThe stress transfer efficiency of a singlewalled carbon nanotube in epoxy matrix
JOURNAL OF MATERIALS SCIENCE 39 (2 004)4481 4486 The stress transfer efficiency of a singlewalled carbon nanotube in epoxy matrix K. Q. XIAO, L. C. ZHANG School of Aerospace, Mechanical and Mechatronic
More informationEnhancing Prediction Accuracy In Sift Theory
18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS Enhancing Prediction Accuracy In Sift Theory J. Wang 1 *, W. K. Chiu 1 Defence Science and Technology Organisation, Fishermans Bend, Australia, Department
More informationINTRODUCTION TO STRAIN
SIMPLE STRAIN INTRODUCTION TO STRAIN In general terms, Strain is a geometric quantity that measures the deformation of a body. There are two types of strain: normal strain: characterizes dimensional changes,
More informationComposite models 30 and 131: Ply types 0 and 8 calibration
Model calibration Composite BiPhase models 30 and 3 for elastic, damage and failure PAMCRASH material model 30 is for solid and 3 for multilayered shell elements. Within these models different ply types
More informationModelling the nonlinear shear stressstrain response of glass fibrereinforced composites. Part II: Model development and finite element simulations
Modelling the nonlinear shear stressstrain response of glass fibrereinforced composites. Part II: Model development and finite element simulations W. Van Paepegem *, I. De Baere and J. Degrieck Ghent
More informationTensile Properties of ThermoplasticLaminated Composites Based on a Polypropylene Matrix Reinforced with Continuous Twaron Fibers
Tensile Properties of ThermoplasticLaminated Composites Based on a Polypropylene Matrix Reinforced with Continuous Twaron Fibers J. L. MENATUN, P. I. GONZALEZCHI Centro de Investigación Científica de
More informationA Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials
Dublin, October 2010 A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials FracMan Technology Group Dr Mark Cottrell Presentation Outline Some Physical
More information1. Demonstrate that the minimum cationtoanion radius ratio for a coordination number of 8 is
1. Demonstrate that the minimum cationtoanion radius ratio for a coordination number of 8 is 0.732. This problem asks us to show that the minimum cationtoanion radius ratio for a coordination number
More informationBen W. Kim 1 and John A. Nairn 2
J. Materials Science, submitted (2002) Author prepared reprint Experimental Verification of the Effects of Friction and Residual Stress on the Analysis of Interfacial Debonding and Toughness in Single
More informationKINK BAND FORMATION OF FIBER REINFORCED POLYMER (FRP)
KINK BAND FORMATION OF FIBER REINFORCED POLYMER (FRP) 1 University of Science & Technology Beijing, China, niukm@ustb.edu.cn 2 Tsinghua University, Department of Engineering Mechanics, Beijing, China,
More informationMESH MODELING OF ANGLEPLY LAMINATED COMPOSITE PLATES FOR DNS AND IPSAP
16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS MESH MODELING OF ANGLEPLY LAMINATED COMPOSITE PLATES FOR DNS AND IPSAP Wanil Byun*, Seung Jo Kim*, Joris Wismans** *Seoul National University, Republic
More informationOutline. TensileTest Specimen and Machine. StressStrain Curve. Review of Mechanical Properties. Mechanical Behaviour
TensileTest Specimen and Machine Review of Mechanical Properties Outline Tensile test True stress  true strain (flow curve) mechanical properties:  Resilience  Ductility  Toughness  Hardness A standard
More informationDepartment of Mechanical Engineering, National Institute of Technology Rourkela, Rourkela , India
Composites, Article ID 629175, 12 pages http://dx.doi.org/10.1155/2014/629175 Research Article Effect of Fiber Geometry and Representative Volume Element on Elastic and Thermal Properties of Unidirectional
More informationTHE ROLE OF DELAMINATION IN NOTCHED AND UNNOTCHED TENSILE STRENGTH
THE ROLE OF DELAMINATION IN NOTCHED AND UNNOTCHED TENSILE STRENGTH M. R. Wisnom University of Bristol Advanced Composites Centre for Innovation and Science University Walk, Bristol BS8 1TR, UK M.Wisnom@bristol.ac.uk
More informationThe science of elasticity
The science of elasticity In 1676 Hooke realized that 1.Every kind of solid changes shape when a mechanical force acts on it. 2.It is this change of shape which enables the solid to supply the reaction
More informationNORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.
NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric
More informationFailure process of carbon fiber composites. *Alexander Tesar 1)
Failure process of carbon fiber composites *Alexander Tesar 1) 1) Institute of Construction and Architecture, Slovak Academy of Sciences, Dubravska cesta, 845 03 Bratislava, Slovak Republic 1) alexander.tesar@gmail.com
More information, to obtain a way to calculate stress from the energy function U(r).
BIOEN 36 014 LECTURE : MOLECULAR BASIS OF ELASTICITY Estimating Young s Modulus from Bond Energies and Structures First we consider solids, which include mostly nonbiological materials, such as metals,
More informationMECE 3321 MECHANICS OF SOLIDS CHAPTER 3
MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.
More informationMechanical Properties of Materials
Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of
More informationMicromechanics of recycled composites
Monday, 21 st August 2011 Micromechanics of recycled composites for material optimisation and ecodesign Soraia Pimenta soraia.pimenta07@imperial.ac.uk S T Pinho, P Robinson Motivation Introduction recycled
More informationModelling of multiaxial ultimate elastic wall stress (UEWS) test for glass fibre reinforced epoxy (GRE) composite pipes
pplied Mechanics and Materials Vol. 367 (013) pp 113117 Online available since 013/ug/16 at www.scientific.net (013) Trans Tech Publications, Switzerland doi:10.408/www.scientific.net/mm.367.113 Modelling
More informationTENSILE FATIGUE BEHAVIOR OF SINGLE FIBRES AND FIBRE BUNDLES
TENSILE FATIGUE BEHAVIOR OF SINGLE FIBRES AND FIBRE BUNDLES C. Qian 1 *, R. P. L. Nijssen 1, D. D. Samborsky 2, C.Kassapoglou 3, Z. Gürdal 3, G. Q. Zhang 4 1 Knowledge Centre Wind turbine Materials and
More informationNumerical Evaluation of Fracture in Woven Composites by Using Properties of Unidirectional Type for modelling
J. Basic. Appl. Sci. Res., 2(12)1320213209, 2012 2012, TextRoad Publication ISSN 20904304 Journal of Basic and Applied Scientific Research www.textroad.com Numerical Evaluation of Fracture in Woven Composites
More informationCHAPTER 4 MODELING OF MECHANICAL PROPERTIES OF POLYMER COMPOSITES
CHAPTER 4 MODELING OF MECHANICAL PROPERTIES OF POLYMER COMPOSITES 4. Introduction Fillers added to polymer matrices as additives are generally intended for decreasing the cost (by increase in bulk) of
More informationMulti Disciplinary Delamination Studies In Frp Composites Using 3d Finite Element Analysis Mohan Rentala
Multi Disciplinary Delamination Studies In Frp Composites Using 3d Finite Element Analysis Mohan Rentala Abstract: FRP laminated composites have been extensively used in Aerospace and allied industries
More informationDepartment of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
5 th Australasian Congress on Applied Mechanics, ACAM 2007 1012 December 2007, Brisbane, Australia Toughening mechanisms in novel nanosilica epoxy polymers A.J. Kinloch 1, B.B. Johnsen 1, R.D. Mohammed
More informationCoupling of plasticity and damage in glass fibre reinforced polymer composites
EPJ Web of Conferences 6, 48 1) DOI: 1.151/epjconf/1648 c Owned by the authors, published by EDP Sciences, 1 Coupling of plasticity and damage in glass fibre reinforced polymer composites R. Kvale Joki
More informationMechanical Properties
Mechanical Properties Elastic deformation Plastic deformation Fracture I. Elastic Deformation S s u s y e u e T I II III e For a typical ductile metal: I. Elastic deformation II. Stable plastic deformation
More informationModelling Tension and Torque Properties of Fibre Ropes and splices
Proceedings of the Third (1993) International Offshore and Polar Engineering Conference Singapore, 611 June 1993 Modelling Tension and Torque Properties of Fibre Ropes and splices C M Leech, Reader in
More informationDEVELOPMENT OF A MICROMECHANICAL MODEL IN INTERACTION WITH PARAMETERS RELATED TO THE MICROSTRUCTURE OF CARBON/EPOXY COMPOSITES
ECCM1616 TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 2226 June 2014 DEVELOPMENT OF A MICROMECHANICAL MODEL IN INTERACTION WITH PARAMETERS RELATED TO THE MICROSTRUCTURE OF CARBON/EPOXY
More informationAnalysis of high loss viscoelastic composites
Analysis of high loss viscoelastic composites by C. P. Chen, Ph.D. and R. S. Lakes, Ph.D. Department of Engineering Physics Engineering Mechanics Program; Biomedical Engineering Department Materials Science
More informationEffect of fibre shape on transverse thermal conductivity of unidirectional composites
Sādhanā Vol. 4, Part 2, April 25, pp. 53 53. c Indian Academy of Sciences Effect of fibre shape on transverse thermal conductivity of unidirectional composites B RAGHAVA RAO,, V RAMACHANDRA RAJU 2 and
More informationMechanical properties 1 Elastic behaviour of materials
MME131: Lecture 13 Mechanical properties 1 Elastic behaviour of materials A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Deformation of material under the action of a mechanical
More informationME 2570 MECHANICS OF MATERIALS
ME 2570 MECHANICS OF MATERIALS Chapter III. Mechanical Properties of Materials 1 Tension and Compression Test The strength of a material depends on its ability to sustain a load without undue deformation
More informationA Constitutive Model for DYNEEMA UD composites
A Constitutive Model for DYNEEMA UD composites L Iannucci 1, D J Pope 2, M Dalzell 2 1 Imperial College, Department of Aeronautics London, SW7 2AZ l.iannucci@imperial.ac.uk 2 Dstl, Porton Down, Salisbury,
More informationA Fracture Mechanics Approach to the Water Jet Drilling of Composite Materials. Y. AH Mashal* and M. W. Algrafi
A Fracture Mechanics Approach to the Water Jet Drilling of Composite Materials Y. AH Mashal* and M. W. Algrafi Department of Mechanical Engineering, College of Engineering, Taibah University, KSA prof.yosry@gmail.com
More informationFeatures and design of elastomer / textile engineered structures. D Boast, C Eng. F Mech E.
Features and design of elastomer / textile engineered structures D Boast, C Eng. F Mech E. Title of meeting IOM Bla blah Topics Materials: Environmental acids, water, oil, radiation etc. Bonding. Cost.
More informationPrediction of The Ultimate Strength of Composite Laminates Under InPlane Loading Using A Probabilistic Approach
Prediction of the Ultimate Strength of Composite Laminates Under InPlane Loading Prediction of The Ultimate Strength of Composite Laminates Under InPlane Loading Using A Probabilistic Approach Tae Jin
More informationIJSER 1. INTRODUCTION. M.Elhadary
1591 A new failure criterion for GRP composite materials subjected to inphase and outofphase biaxial fatigue loading under different stress ratios M.Elhadary Abstract this studying the fatigue behavior
More informationVALIDATION of CoDA SOFTWARE for COMPOSITES SYNTHESIS AND PRELIMINARY DESIGN (or GETTING COMPOSITES USED  PART 2 )
VALIDATION of CoDA SOFTWARE for COMPOSITES SYNTHESIS AND PRELIMINARY DESIGN (or GETTING COMPOSITES USED  PART 2 ) Graham D Sims and William R Broughton Composites Design Data and Methods, Centre for Materials
More informationMassachusetts Institute of Technology Department of Aeronautics and Astronautics Cambridge, MA Problem Set 14
Massachusetts Institute of Technology Department of Aeronautics and Astronautics Cambridge, MA 02139 16.01/16.02 Unified Engineering I, II Fall 2003 Problem Set 14 Name: Due Date: 12/9/03 F18 F19 F20 M19
More informationCellular solid structures with unbounded thermal expansion. Roderic Lakes. Journal of Materials Science Letters, 15, (1996).
1 Cellular solid structures with unbounded thermal expansion Roderic Lakes Journal of Materials Science Letters, 15, 475477 (1996). Abstract Material microstructures are presented which can exhibit coefficients
More informationFlexural properties of polymers
A2 _EN BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS FACULTY OF MECHANICAL ENGINEERING DEPARTMENT OF POLYMER ENGINEERING Flexural properties of polymers BENDING TEST OF CHECK THE VALIDITY OF NOTE ON
More informationAdhesive Joints Theory (and use of innovative joints) ERIK SERRANO STRUCTURAL MECHANICS, LUND UNIVERSITY
Adhesive Joints Theory (and use of innovative joints) ERIK SERRANO STRUCTURAL MECHANICS, LUND UNIVERSITY Wood and Timber Why I m intrigued From this to this! via this Fibre deviation close to knots and
More informationMaterials and Structures. Indian Institute of Technology Kanpur
Introduction to Composite Materials and Structures Nachiketa Tiwari Indian Institute of Technology Kanpur Lecture 16 Behavior of Unidirectional Composites Lecture Overview Mt Material ilaxes in unidirectional
More informationStressstrain response and fracture behaviour of plain weave ceramic matrix composites under uniaxial tension, compression or shear
Xi an 225 th August 217 Stressstrain response and fracture behaviour of plain weave ceramic matrix composites under uniaxial tension compression or shear Heyin Qi 1 Mingming Chen 2 Yonghong Duan 3 Daxu
More informationMATERIAL MECHANICS, SE2126 COMPUTER LAB 4 MICRO MECHANICS. E E v E E E E E v E E + + = m f f. f f
MATRIAL MCHANICS, S226 COMPUTR LAB 4 MICRO MCHANICS 2 2 2 f m f f m T m f m f f m v v + + = + PART A SPHRICAL PARTICL INCLUSION Consider a solid granular material, a so called particle composite, shown
More information12/8/2009. Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka
Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Introduction and classes of properties Case studies showing selection of the right material for the job Deformation of material under the action of a
More informationDAMAGE MECHANICS MODEL FOR OFFAXIS FATIGUE BEHAVIOR OF UNIDIRECTIONAL CARBON FIBERREINFORCED COMPOSITES AT ROOM AND HIGH TEMPERATURES
DAMAGE MECHANICS MODEL FOR OFFAXIS FATIGUE BEHAVIOR OF UNIDIRECTIONAL CARBON FIBERREINFORCED COMPOSITES AT ROOM AND HIGH TEMPERATURES M. Kawai Institute of Engineering Mechanics University of Tsukuba,
More information2 Experiment of GFRP bolt
16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS FATIGUE LIFE EVALUATION OF BOLT MADE OF WOVEN FABRIC FRP Takeshi INOUE*, Hiroaki NAKAI**, Tetsusei KURASHIKI**, Masaru ZAKO**, Yuji KOMETANI*** *Graduate
More informationOpenhole compressive strength prediction of CFRP composite laminates
Openhole compressive strength prediction of CFRP composite laminates O. İnal 1, A. Ataş 2,* 1 Department of Mechanical Engineering, Balikesir University, Balikesir, 10145, Turkey, inal@balikesir.edu.tr
More informationME 243. Mechanics of Solids
ME 243 Mechanics of Solids Lecture 2: Stress and Strain Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET Email: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil
More informationGB/T / ISO 5271:1993
Translated English of Chinese Standard: GB/T1040.12006 www.chinesestandard.net Sales@ChineseStandard.net GB NATIONAL STANDARD OF THE PEOPLE S REPUBLIC OF CHINA ICS 83.080.01 G 31 GB/T 1040.12006 / ISO
More informationTHE TRANSVERSE OFFAXIS STIFFNESS AND STRENGTH OF SOFTWOODS. Abstract
THE TRANSVERSE OFFAXIS STIFFNESS AND STRENGTH OF SOFTWOODS Carl S. Moden 1, Jessica Polycarpe 1 and Lars A. Berglund 2 1 Dept. of Aeronautical and Vehicle Engineering The Royal Institute of Technology
More informationModule4. Mechanical Properties of Metals
Module4 Mechanical Properties of Metals Contents ) Elastic deformation and Plastic deformation ) Interpretation of tensile stressstrain curves 3) Yielding under multiaxial stress, Yield criteria, Macroscopic
More informationDRAPING SIMULATION. Recent achievements and future trends. Dr. Sylvain Bel LGCIE University Lyon 1
DRAPING SIMULATION Recent achievements and future trends 1 Dr. Sylvain Bel LGCIE University Lyon 1 2 DRAPING SIMULATION Why? How? What? DRAPING SIMULATION WHY? Clamps Punch Fabric Die 1 2 Resin 3 4 Fig.
More information4.MECHANICAL PROPERTIES OF MATERIALS
4.MECHANICAL PROPERTIES OF MATERIALS The diagram representing the relation between stress and strain in a given material is an important characteristic of the material. To obtain the stressstrain diagram
More informationDiscrete Element Modelling of a Reinforced Concrete Structure
Discrete Element Modelling of a Reinforced Concrete Structure S. Hentz, L. Daudeville, F.V. Donzé Laboratoire Sols, Solides, Structures, Domaine Universitaire, BP 38041 Grenoble Cedex 9 France sebastian.hentz@inpg.fr
More informationInfluence of fibre proportion and position on the machinability of GFRP composites An FEA model
Indian Journal of Engineering & Materials Sciences Vol. 12, October 2005, pp. 443450 Influence of fibre proportion and position on the machinability of GFRP composites An FEA model D Abdul Budan* Department
More informationFracture Behaviour of FRP CrossPly Laminate With Embedded Delamination Subjected To Transverse Load
Fracture Behaviour of FRP CrossPly Laminate With Embedded Delamination Subjected To Transverse Load Sriram Chintapalli 1, S.Srilakshmi 1 1 Dept. of Mech. Engg., P. V. P. Siddhartha Institute of Technology.
More informationModule 7: Micromechanics Lecture 25: Strength of Materials Approach. Introduction. The Lecture Contains. Effective Transverse Modulus
Introduction In the previous lecture we have introduced the concept of Representative Volume Element or Unit Cell. This is the basic building block in a micromechanical study. Further, we explained the
More informationComposite Structures. Indian Institute of Technology Kanpur
Mechanics of Laminated Composite Structures Nachiketa Tiwari Indian Institute of Technology Kanpur Lecture 21 Behavior of Ribbon Fiber Composites Ribbon Reinforced Composites: Introduction Quite often,
More informationAnisotropy in Natural Fibres and its Influence on Composite Performance. Jim Thomason
Anisotropy in Natural Fibres and its Influence on Composite Performance Jim Thomason Thermoplastic Composites Growth Strong continuing growth Attractive & Improving Performance to Price Ratio Clean processing
More informationSHEAR CAPACITY OF REINFORCED CONCRETE COLUMNS RETROFITTED WITH VERY FLEXIBLE FIBER REINFORCED POLYMER WITH VERY LOW YOUNG S MODULUS
SHEAR CAPACITY OF REINFORCED CONCRETE COLUMNS RETROFITTED WITH VERY FLEXILE FIER REINFORCED POLYMER WITH VERY LOW YOUNG S MODULUS Hu Shaoqing Supervisor: Susumu KONO ** MEE8165 ASTRACT FRP with low Young
More informationEffective Properties of Randomly Oriented Kenaf Short Fiber Reinforced Epoxy Composite
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 52015 Effective Properties of Randomly Oriented Kenaf Short Fiber Reinforced Epoxy Composite Dayakar Naik
More information