MATERIAL MECHANICS, SE2126 COMPUTER LAB 4 MICRO MECHANICS. E E v E E E E E v E E + + = m f f. f f


 Benjamin Doyle
 1 years ago
 Views:
Transcription
1 MATRIAL MCHANICS, S226 COMPUTR LAB 4 MICRO MCHANICS f m f f m T m f m f f m v v + + = +
2 PART A SPHRICAL PARTICL INCLUSION Consider a solid granular material, a so called particle composite, shown in Figure. One common example of such a material is concrete, which is a mix of construction aggregate (stone or sand) in a cement matrix. This lab will deal with a little more exotic material than that. You will do calculations on a glass bead/epoxy particle composite with constituent properties given below. ν Glass poxy Glass = 70 GPa = 5GPa = ν = 0.3 poxy Figure. An example of a particle composite. One can not without great difficulty analyse this material in its complete configuration, analytically or with the aid of finite element calculations. This difficulty is of course attributed to the particles and the fact that they give rise to an inhomogeneous material. A way around this problem is to determine some effective properties and model the composite as a homogeneous solid with the effective properties instead. The effective mechanical properties of the homogenized material are a kind of mix, or weighted average, of the constituents mechanical properties. There are several analytical techniques suggested to find these effective properties, more or less accurate. This homogenization can also be performed using a finite element approach and the volume average equations from micro mechanics shown below.
3 Ω Ω To be able to perform the analysis one need to define a representative volume element (RV) that is a model of the material on the microscale. The RV will be inhomogeneous and needs to give a good representation of the micro structure, but it will also need to be able to represent the material on the macroscale in an average sense. It needs to be space filling, and have the same constituent orientation and volume fraction as the whole structure it represents. Figure 2 shows the RV for a material with spherical inclusions. Figure 2. Cut out of spherical inclusion in matrix  RV The finite element approach adopted in this lab is summarized in the following steps:. Apply prescribed displacements on the boundary of the RV. The displacements should correspond to homogeneous strain fields within th e RV. 2. Calculate the volume average of stresses and strains, and. 3. The volume averages can be thought of as the homogenized macroscopic stresses and strain and will give the effective properties using Hooke s law.
4 The relation between average strains and displacements on the boundary of the RV reads, where one needs to remember that shear strains like γ ij is equal to 2ε ij etc. For the particular case of a prescribed strain we then set, 0 on the boundary of the RV. Solving the boundary value problem gives the stresses σ k ij and strains ε k ij in each element k. Since the volume of each element V k is known, the average stresses and strains can be approximated by a discrete sum over all N elements where denotes the average stress in element k. The homogenized effective properties and ν can be found from Hooke s law. Here shown for macroscopic strain in the xdirection, but similar in the y and zdirections. This theory session sets the scene for the lab, now lets get started!
5 Start ANSYS via the ANSYS Product Launcher as usual, i.e. make sure you are working on the C: hard drive. You need to download the input files from the course web page. There are three files for this part of the lab. First the preprocessor file, and then one for axial strain loading in the xdirection and one for shear strain loading in the xzplane. Open up the preprocessor file in a text file editor. Look for the value for the parameter Rp. This is the radius of the particle inclusion. You should set it to a value between 3 and 8 mm. Based on Rp the volume fraction v f of particles should be calculated. How does the radius of the inclusion and the radius of the whole RV (Rm) relate to the volume fraction? Rp = v f = When you have changed the value for the radius (don t change Rm, just Rp!) save the file, and open it up in ANSYS via File > Read Input from Since the geometry is symmetric with respect to all the coordinate axes one could think that modelling only one eight (/8) would be enough, but this would unnecessarily complicate the formulation of boundary conditions. Here, half of the sphere is modelled. You will investigate two things in this part of the lab. First you will look at the response from a pure axial strain state at the boundary to determine the effective Young s modulus and Poisson s ratio of the RV. Secondly you will apply a shear strain to the boundary and determine the effective Shear modulus of the RV. The axial strain loading will be given, as described above, as a controlled displacement on the outer boundary, i.e. the curved boundary. To start the solver just read the file PartA_AxialStrainX.txt into ANSYS. When the solution is done, feel free to have a look at the results in the usual way, if you like. You will not use the graphical post
6 processing ability in this lab, but it is a good way to check if your finite element solver has done what you wanted it to do. To get some meaningful results you will need to work with something that is called lement Tables, which is just a tabular form of the results for each element. There will only be one result for each element and field variable, which might be a little surprising since the elements used in this analysis are 20 node brick elements and therefore should contain more than one value for each field variable (depends on the number of integration points in the element). What ANSYS does is that it averages the results in each element so you only get one unique element result for each field variable. A slight loss of accuracy, but we will have to live with that. If we know the volume average strains in two directions and the volume average stresses we can calculate the effective properties using Hooke s law. Verify these equations by considering Hooke s law with 0. To find the volume average results needed in the equations above go to ANSYS Main Menu > General Postproc > lement Table > Define Table to bring up the lement Table Data screen. Here you will need to Add the results you want to average. By highlighting one result set at a time from the list and clicking on apply you will create an element table for each of these results. Don t forget to add a table for the element volumes. When you are done adding results just close the lement Table Data screen. Now you will need to multiply each element result with the volume of that particular element. To do this, click on General Postproc > lement Table > Multiply to bring up
7 the Multiply lement Table Items screen. Multiply all your result tables with the volume table. This will create a new table that you will need to give a unique name so you know which results it contains. See picture below for explanation. Here the element table results for shear stress SXZ is being multiplied with the volume table VOLU. Notice the user label for the new table! When you have all your results multiplied with the volume you will need to sum them all up (this operation represents the integral over the volume). This is done by clicking on Sum of ach Item. Now you will need to divide each sum with the summed total volume, thus finalizing the volume average operation. You can use the result sheet at the end to record your values and to calculate the effective properties. For the second part just clear the model and reload the geometry using the preprocessor file again. This time you will solve the same model but with a shear strain loaded boundary instead. This is done by reading in the solver file PartA_ShearStrainXZ.txt that applies the following displacement field to the outer boundary. 2 2
8 In the same manner as the previous part you will now need to find the effective shear modulus. Hooke s law for the shear modulus is a lot simpler, so you will only need two results to determine it. In linear isotropic elasticity there is a well known relation between the Young s modulus, the Poisson s ratio and the shear modulus. Check if this still applies between your effective properties? 2 Finally you will have a look at the Reuss bound for compliance and Voigt s bound for stiffness. These bounds define maximum and minimum values for the effective shear modulus and bulk modulus. You will only look at the bounds for the shear modulus here. The Reuss bound is; and the Voigt s bound is: Ω Ω Can you figure out how to calculate these bounds given what you know of the volume fractions of particles and the shear modulus of the particle and the matrix? A hint is that the equations are quite simple, and are similar in style to the Rule of mixtures equations. Did your previously calculated effective shear modulus fall with in the bounds? It should have
9 PART B HXAGONAL R.V.. Consider a unidirectional fibre composite with the fibres arranged in a hexagonal pattern, as shown in Figure 3a below. The representative volume element would, as it might be easy to guess, have a hexagonal shape with the fibre in the middle. A schematic figure of what the RV would look like is shown in Figure 3b. y x z Figure 3. a) The hexagonal pattern of the fibre composite. b) The representative volume element. Once again your task is to find the effective properties of this composite by using the micro mechanics approach. This time it will be much harder to do this from an analytical formula like the one derived from Hooke s law in part A. Why is that do you think? What is the major difference between the directional dependence of the RV in part A and in this part? The composite is a carbon fibre reinforced epoxy with properties given below. ν Carbon poxy Carbon = 250 GPa = 5GPa = ν = 0.3 poxy First you will need to get 7 files from the course home page. The preprocessor file contains the geometry and the mesh, as usual. The other 6 files correspond to the 6 possible strain loadings, all according to the name of the file. Before you read in the geometry into ANSYS you should open up that file in a text editor and change the value
10 of the parameter r, the radius of the fibre. Pick any value between 3 and 7 mm (you might get a warning about bad shapes of some elements ignore that). r = v f = Now save the file and read in the geometry in ANSYS in the usual way. Consider the following matrix equation for the volume averages of the stresses and strains. So if you apply each strain component one at a time you can look at the resulting stress components, and in that way calculate the corresponding column in the stiffness matrix. Since the definition and multiplication of the element results tables are somewhat time consuming those operations has been included in the solver text files for simplicity. All you will have to do after each solution is to click on Sum of ach Item to bring up the numerical results. Now solve the model by applying strain in the xdirection to the boundary, i.e. read in the solver file PartB_X.txt in ANSYS. Look at the summed results. For each solution you do, 5 of the 6 strain results are very close to zero, and from an analytical point of view they are exactly zero, and that is what you will assume them to be.
11 So, for example, for strain loading on the boundary in the zdirectio, the matrix equation above would reduce to the following: Thus, by some easily performed calculations you have the entire third column of the stiffness matrix. The stresses multiplied by the element volumes are named according to; S_X_V for the stresses in the xdirection and S_YZ_V for the shear stress in the yzplane. Similarly for the strains multiplied with the element volumes you will have; PS_X_V, and PS_YZ_V for the corresponding axial and shear strains. The height, or the length, of the RV along the zaxis will have an effect on the results. This is not really what you would want for an accurate model, but it can be good to have seen this behaviour. You will for example be able to see effects of this when you look at the longitudinal stresses after prescribing a longitudinal displacement on the boundary. Look at the edge between the fibre and the matrix, and you should see a ringlike stress gradient. Preferably, that should not be there. But to avoid this effect all together you would need to change the boundary conditions to something called periodic boundary conditions, and they are a little bit tricky to apply and more than we have time to do here. Now solve for all the different load cases, one at a time, and start to fill out the stiffness matrix with you calculated values. It will be sufficient if you record the values in GPa with only one decimal place (the program will give you the stresses measured in MPa). After a few solutions, can you see a pattern emerging in the stiffness matrix? What kind of symmetries would you expect given the geometry of the RV?
12 In chapter 5.4 of Gudmundsons book Material Mechanics several material symmetries are presented. Do any of them seem to fit your results? So what about those effective properties then? How do you find them now? If you consider the compliance matrix of a transversely isotropic material given below you will see that it is quite easy now. Remember that the compliance matrix S is just the inverse of the stiffness matrix C Record your values for the effective properties on the answer sheet at the end. There are several alternatives to performing this kind of analysis to get the effective properties. You will compare your results to two of them. The first is what is called the Rule of mixtures and the second is an empirical set of relations called the HalpinTsai equations. Rule of mixtures gives the following equations for the effective properties:
13 HalpinTsai predicts the same longitudinal stiffness and Poisson s ratio as Rule of mixtures, but for the other two, the equations are as follows: ; ; ; 2 ;
14 PART C DOS LNGTH MATTR? The most common model of a fibre composite is the one where the fibres are as long as the whole structure. The fibres go from end to end so to speak. In many common applications this is usually not true. One example is short fibre glass/polyester composite, that are very common in many applications today. In this part you will look at a unidirectional fibre composite with short fibres embedded in a matrix, see Figure 4 below. ν Glass Polyester Glass = 70 GPa = 2.5 GPa = ν = 0.3 Polyester Figure 4. A short fibre composite. The question you will investigate here is if this has any effect on the effective mechanical properties of the composite? You will only look at the longitudinal stiffness in this part. The model of the representative volume element can be very much simplified by using symmetries. First realize that the geometry is symmetric with respect to the longitudinal axis of the fibre, so an axisymmetric 2D model is applicable. Secondly there is also symmetry with respect to the middle of the fibre, so a symmetry condition can be applied there as well, effectively cutting the model in half. A schematic of the model can be seen in Figure 5.
15 y R L/2 L f /2 x R/2 Figure 5. The model geometry. Rotational symmetry is imposed along the yaxis and ordinary symmetry along the xaxis. Download the single input file from the course webpage. Open up the input file and change the value of Lf, the fibre length, to a value between 20 and 80 mm. Lf = v f = Save the file and open it in ANSYS, this will initiate both the preprocessor and the solver. The loading in this part will be a prescribed displacement on the boundary in the ydirection. If you look at the solution for the stress in the ydirection, you will notice that there is a stress gradient at the end of the fibre. The stresses in the fibre needs some distance to build up, so the fibre is not used in an optimal way.
16 Because of this the estimated effective properties calculated by the Rule of mixtures are quite off. This can be corrected by assuming that there is an ineffective fibre length L i. The approach to estimating this is outlined below: Find the stress in the ydirection at the node located at position (0,0). Provided that the fibre is not too short, this is the stress that should appear in the whole fibre if it was used optimally. To do this, use the List Results > Nodal Solution. The node you are looking for has node number. Record the stress in the ydirection as 0,0 on the answer sheet. Now calculate the volume average of in the whole fibre. To do this use element tables, where you can multiply and sum element results. You will however need to select just the elements of the fibre; otherwise you will average the whole model instead of just the fibre. Type in the command: CMSL,S,FIBR. This will select only the predefined area component corresponding to just the fibre part of the model. Now you need to select all the elements in that area by typing: SLA. This selects the elements from an already selected area. Now calculate the volume average stresses of the fibre in the ydirection. Ω f The difference between the two stresses is essentially a measure of the effective fibre length, where denotes the so called ineffective stress. An average stress that is smaller than 0,0 can be seen as the stress 0,0 acting on the effective fibre length, and a vanishing stress acting on the remaining part of the fibre. Thus, 0,0 Now you solve this for the ineffective fibre length and record it on the answer sheet. What does that length measure actually mean?
17 That was all for this time, and for this course. Thanks for your participation. Good luck on the exam!
18 RSULTS FROM PART A SPHRICAL PARTICL INCLUSION Rp = v f = 2??
19 RSULTS FROM PART B HXAGONAL R.V.. r = v f = [ C] = To invert C you will probably need to use a numerical tool like Matlab or an advanced calculator. FM RoM HalpinTsai L L L T T T ν LT ν LT ν LT G LT G LT G LT
20 RSULTS FROM PART C DOS LNGTH MATTR? Lf = v f = 0,0
MATERIAL MECHANICS, SE2126 COMPUTER LAB 2 PLASTICITY
MATERIAL MECHANICS, SE2126 COMPUTER LAB 2 PLASTICITY PART A INTEGRATED CIRCUIT An integrated circuit can be thought of as a very complex maze of electronic components and metallic connectors. These connectors
More informationMATERIAL MECHANICS, SE2126 COMPUTER LAB 3 VISCOELASTICITY. k a. N t
MATERIAL MECHANICS, SE2126 COMPUTER LAB 3 VISCOELASTICITY N t i Gt () G0 1 i ( 1 e τ = α ) i= 1 k a k b τ PART A RELAXING PLASTIC PAPERCLIP Consider an ordinary paperclip made of plastic, as they more
More informationModule 7: Micromechanics Lecture 29: Background of Concentric Cylinder Assemblage Model. Introduction. The Lecture Contains
Introduction In this lecture we are going to introduce a new micromechanics model to determine the fibrous composite effective properties in terms of properties of its individual phases. In this model
More informationFig. 1. Circular fiber and interphase between the fiber and the matrix.
Finite element unit cell model based on ABAQUS for fiber reinforced composites Tian Tang Composites Manufacturing & Simulation Center, Purdue University West Lafayette, IN 47906 1. Problem Statement In
More informationModule 7: Micromechanics Lecture 34: Self Consistent, Mori Tanaka and Halpin Tsai Models. Introduction. The Lecture Contains. Self Consistent Method
Introduction In this lecture we will introduce some more micromechanical methods to predict the effective properties of the composite. Here we will introduce expressions for the effective properties without
More informationComposite FEM Labwork
Composite FEM Labwork You may perform these exercises in groups of max 2 persons. You may also between exercise 5 and 6. Be critical on the results obtained! Exercise 1. Open the file exercise1.inp in
More informationComposite models 30 and 131: Ply types 0 and 8 calibration
Model calibration Composite BiPhase models 30 and 3 for elastic, damage and failure PAMCRASH material model 30 is for solid and 3 for multilayered shell elements. Within these models different ply types
More informationMost of the material in this package is based on a recently published book. This is:
Mechanics of Composite Materials Version 2.1 Bill Clyne, University of Cambridge Boban Tanovic, MATTER Assumed Preknowledge It is assumed that the student is familiar with simple concepts of mechanical
More informationDEVELOPMENT OF A MICROMECHANICAL MODEL IN INTERACTION WITH PARAMETERS RELATED TO THE MICROSTRUCTURE OF CARBON/EPOXY COMPOSITES
ECCM1616 TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 2226 June 2014 DEVELOPMENT OF A MICROMECHANICAL MODEL IN INTERACTION WITH PARAMETERS RELATED TO THE MICROSTRUCTURE OF CARBON/EPOXY
More informationModule 2: Thermal Stresses in a 1D Beam Fixed at Both Ends
Module 2: Thermal Stresses in a 1D Beam Fixed at Both Ends Table of Contents Problem Description 2 Theory 2 Preprocessor 3 Scalar Parameters 3 Real Constants and Material Properties 4 Geometry 6 Meshing
More informationMicromechanical analysis of FRP hybrid composite lamina for inplane transverse loading
Indian Journal of Engineering & Materials Sciences Vol. 15, October 2008, pp. 382390 Micromechanical analysis of FRP hybrid composite lamina for inplane transverse loading K Sivaji Babu a *, K Mohana
More informationUNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich
UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS For Marker s Use Only LAST NAME (printed): FIRST
More informationNonlinear and timedependent material models in Mentat & MARC. Tutorial with Background and Exercises
Nonlinear and timedependent material models in Mentat & MARC Tutorial with Background and Exercises Eindhoven University of Technology Department of Mechanical Engineering Piet Schreurs July 7, 2009
More informationMicroplane Model formulation ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary
Microplane Model formulation 2010 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Table of Content Engineering relevance Theory Material model input in ANSYS Difference with current concrete
More informationAN EFFECTIVE SOLUTION OF THE COMPOSITE (FGM S) BEAM STRUCTURES
Engineering MECHANICS, Vol. 15, 2008, No. 2, p. 115 132 115 AN EFFECTIVE SOLUTION OF THE COMPOSITE (FGM S) BEAM STRUCTURES Justín Murín, Vladimír Kutiš* The additive mixture rules have been extended for
More informationEffects of geometry and properties of fibre and matrix on overall. composite parameters
Int. Journal of Applied Sciences and ngineering Research, ol. 3, Issue 4, 2014 www.ijaser.com 2014 by the authors Licensee IJASR Under Creative Commons License 3.0 editorial@ijaser.com Research article
More informationDYNAMIC RESPONSE OF SYNTACTIC FOAM CORE SANDWICH USING A MULTIPLE SCALES BASED ASYMPTOTIC METHOD
ECCM66 TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 6 June 4 DYNAMIC RESPONSE OF SYNTACTIC FOAM CORE SANDWICH USING A MULTIPLE SCALES BASED ASYMPTOTIC METHOD K. V. Nagendra Gopal a*,
More informationMechanical Properties of Fiber Reinforced Composites Using Buckminster Fullerene Reinforcement
IJRMET Vo l. 4, Is s u e Sp l  1, No v 2013 Ap r i l 2014 ISSN : 22495762 (Online ISSN : 22495770 (Print Mechanical Properties of Fiber Reinforced Composites Using Buckminster Fullerene Reinforcement
More informationMechanical and Thermal Properties of Coir Fiber Reinforced Epoxy Composites Using a Micromechanical Approach
Mechanical and Thermal Properties of Coir Fiber Reinforced Epoxy Composites Using a Micromechanical Approach Sandhyarani Biswas Department of Mechanical Engineering, N.I.T Rourkela, INDIA Abstract: Nowadays,
More information3D Elasticity Theory
3D lasticity Theory Many structural analysis problems are analysed using the theory of elasticity in which Hooke s law is used to enforce proportionality between stress and strain at any deformation level.
More informationISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 4, July 2013
Delamination Studies in FibreReinforced Polymer Composites K.Kantha Rao, Dr P. Shailesh, K. Vijay Kumar 1 Associate Professor, Narasimha Reddy Engineering College Hyderabad. 2 Professor, St. Peter s Engineering
More informationENGN 2340 Final Project Report. Optimization of Mechanical Isotropy of Soft Network Material
ENGN 2340 Final Project Report Optimization of Mechanical Isotropy of Soft Network Material Enrui Zhang 12/15/2017 1. Introduction of the Problem This project deals with the stressstrain response of a
More informationModule III  Macromechanics of Lamina. Lecture 23. MacroMechanics of Lamina
Module III  Macromechanics of Lamina Lecture 23 MacroMechanics of Lamina For better understanding of the macromechanics of lamina, the knowledge of the material properties in essential. Therefore, the
More informationViscoelastic Damping Characteristics of IndiumTin/SiC Particulate Composites
Viscoelastic Damping Characteristics of IndiumTin/SiC Particulate Composites HyungJoo Kim, Colby C. Swan Ctr. for ComputerAided Design, Univ. of Iowa Roderic Lakes Engineering Physics, Univ. of Wisconsin
More informationExercise: concepts from chapter 8
Reading: Fundamentals of Structural Geology, Ch 8 1) The following exercises explore elementary concepts associated with a linear elastic material that is isotropic and homogeneous with respect to elastic
More informationFinite Element Method in Geotechnical Engineering
Finite Element Method in Geotechnical Engineering Short Course on + Dynamics Boulder, Colorado January 58, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder Contents Steps
More informationMicromeso draping modelling of noncrimp fabrics
Micromeso draping modelling of noncrimp fabrics Oleksandr Vorobiov 1, Dr. Th. Bischoff 1, Dr. A. Tulke 1 1 FTA Forschungsgesellschaft für Textiltechnik mbh 1 Introduction Noncrimp fabrics (NCFs) are
More informationUnderstand basic stressstrain response of engineering materials.
Module 3 Constitutive quations Learning Objectives Understand basic stressstrain response of engineering materials. Quantify the linear elastic stressstrain response in terms of tensorial quantities
More informationModule 7: Micromechanics Lecture 25: Strength of Materials Approach. Introduction. The Lecture Contains. Effective Transverse Modulus
Introduction In the previous lecture we have introduced the concept of Representative Volume Element or Unit Cell. This is the basic building block in a micromechanical study. Further, we explained the
More informationPROMAL2012 SOFTWARE PACKAGE A USER GUIDE
PROMAL2012 SOFTWARE PACKAGE A USER GUIDE 1. This manual is only for VISTA, WINDOWS 7 and WINDOWS 8 users. The PROMAL2012 software and manual are available at http://www.eng.usf.edu/~kaw/promal2012/ 2.
More informationModule 10: Free Vibration of an Undampened 1D Cantilever Beam
Module 10: Free Vibration of an Undampened 1D Cantilever Beam Table of Contents Page Number Problem Description Theory Geometry 4 Preprocessor 6 Element Type 6 Real Constants and Material Properties 7
More information3D and Planar Constitutive Relations
3D and Planar Constitutive Relations A School on Mechanics of Fibre Reinforced Polymer Composites Knowledge Incubation for TEQIP Indian Institute of Technology Kanpur PM Mohite Department of Aerospace
More informationA coupled field finite element model to predict actuation properties of piezoelectrically actuated bistable composites.
A coupled field finite element model to predict actuation properties of piezoelectrically actuated bistable composites. P.F.Giddings, C.R.Bowen, H.A.Kim University of Bath, UK Dept. Mech. ng, University
More informationDepartment of Mechanical Engineering, National Institute of Technology Rourkela, Rourkela , India
Composites, Article ID 629175, 12 pages http://dx.doi.org/10.1155/2014/629175 Research Article Effect of Fiber Geometry and Representative Volume Element on Elastic and Thermal Properties of Unidirectional
More informationMICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING
MICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING N. Krishna Vihari 1, P. Phani Prasanthi 1, V. Bala Krishna Murthy 2* and A. Srihari Prasad 3 1 Mech. Engg. Dept., P. V. P. Siddhartha
More informationNumerical Properties of Spherical and Cubical Representative Volume Elements with Different Boundary Conditions
TECHNISCHE MECHANIK, 33, 2, (2013), 97 103 submitted: December 11, 2012 Numerical Properties of Spherical and Cubical Representative Volume Elements with Different Boundary Conditions R. Glüge, M. Weber
More informationDevelopment of a code to generate randomly distributed short fiber composites to estimate mechanical properties using FEM
International Journal of Theoretical and Applied Mechanics. ISSN 09736085 Volume 12, Number 4 (2017) pp. 863872 Research India Publications http://www.ripublication.com Development of a code to generate
More information1 332 Laboratories 1. 2 Computational Exercises 1 FEA of a Cantilever Beam... 1 Experimental Laboratory: Tensile Testing of Materials...
1 332 Laboratories Contents 1 332 Laboratories 1 2 Computational Exercises 1 FEA of a Cantilever Beam.......................................... 1 Experimental Laboratory: Tensile Testing of Materials..........................
More informationDESIGN OF LAMINATES FOR INPLANE LOADING
DESIGN OF LAMINATES FOR INPLANOADING G. VERCHERY ISMANS 44 avenue F.A. Bartholdi, 72000 Le Mans, France Georges.Verchery@m4x.org SUMMARY This work relates to the design of laminated structures primarily
More informationPost Graduate Diploma in Mechanical Engineering Computational mechanics using finite element method
9210220 Post Graduate Diploma in Mechanical Engineering Computational mechanics using finite element method You should have the following for this examination one answer book scientific calculator No
More informationDue Monday, September 14 th, 12:00 midnight
Due Monday, September 14 th, 1: midnight This homework is considering the analysis of plane and space (3D) trusses as discussed in class. A list of MatLab programs that were discussed in class is provided
More informationEffect of Specimen Dimensions on Flexural Modulus in a 3Point Bending Test
Effect of Specimen Dimensions on Flexural Modulus in a 3Point Bending Test M. Praveen Kumar 1 and V. Balakrishna Murthy 2* 1 Mechanical Engineering Department, P.V.P. Siddhartha Institute of Technology,
More informationLab Exercise #5: Tension and Bending with Strain Gages
Lab Exercise #5: Tension and Bending with Strain Gages Prelab assignment: Yes No Goals: 1. To evaluate tension and bending stress models and Hooke s Law. a. σ = Mc/I and σ = P/A 2. To determine material
More informationComposite Structural Mechanics using MATLAB
Session 2520 Composite Structural Mechanics using MATLAB Oscar Barton, Jr., Jacob B. Wallace United States Naval Academy Annapolis, Md 21402 Abstract In this paper MATLAB is adopted as the programming
More informationUsing the Timoshenko Beam Bond Model: Example Problem
Using the Timoshenko Beam Bond Model: Example Problem Authors: Nick J. BROWN John P. MORRISSEY Jin Y. OOI School of Engineering, University of Edinburgh JianFei CHEN School of Planning, Architecture and
More informationMacroscopic theory Rock as 'elastic continuum'
Elasticity and Seismic Waves Macroscopic theory Rock as 'elastic continuum' Elastic body is deformed in response to stress Two types of deformation: Change in volume and shape Equations of motion Wave
More information6. Bending CHAPTER OBJECTIVES
CHAPTER OBJECTIVES Determine stress in members caused by bending Discuss how to establish shear and moment diagrams for a beam or shaft Determine largest shear and moment in a member, and specify where
More informationGetting Started with Communications Engineering
1 Linear algebra is the algebra of linear equations: the term linear being used in the same sense as in linear functions, such as: which is the equation of a straight line. y ax c (0.1) Of course, if we
More informationEffect of fibre shape on transverse thermal conductivity of unidirectional composites
Sādhanā Vol. 4, Part 2, April 25, pp. 53 53. c Indian Academy of Sciences Effect of fibre shape on transverse thermal conductivity of unidirectional composites B RAGHAVA RAO,, V RAMACHANDRA RAJU 2 and
More informationCHEMC2410: Materials Science from Microstructures to Properties Composites: basic principles
CHEMC2410: Materials Science from Microstructures to Properties Composites: basic principles Mark Hughes 14 th March 2017 Today s learning outcomes To understand the role of reinforcement, matrix and
More informationModule 4: Behaviour of a LaminaeII. Learning Unit 1: M1. M4.1 Mechanics of Composites. M4.1.1 Introduction to Mechanics of Composites
Module 4: Behaviour of a LaminaeII Learning Unit 1: M1 M4.1 Mechanics of Composites M4.1.1 Introduction to Mechanics of Composites The relation between ply uniaxial strengths and constituent properties
More informationFINITE ELEMENT ANALYSIS OF ARKANSAS TEST SERIES PILE #2 USING OPENSEES (WITH LPILE COMPARISON)
FINITE ELEMENT ANALYSIS OF ARKANSAS TEST SERIES PILE #2 USING OPENSEES (WITH LPILE COMPARISON) Ahmed Elgamal and Jinchi Lu October 07 Introduction In this study, we conduct a finite element simulation
More informationINTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 4, No 1, 2013
INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 4, No 1, 2013 Copyright by the authors  Licensee IPA Under Creative Commons license 3.0 Research article ISSN 0976 4399 Nanoindentation
More informationA FINITE ELEMENT MODEL TO PREDICT MULTI AXIAL STRESSSTRAIN RESPONSE OF CERAMIC MATRIX COMPOSITES WITH STRAIN INDUCED DAMAGE
A FINITE ELEMENT MODEL TO PREDICT MULTI AXIAL STRESSSTRAIN RESPONSE OF CERAMIC MATRIX COMPOSITES WITH STRAIN INDUCED DAMAGE Daxu Zhang and D. R. Hayhurst School of Mechanical, Aerospace and Civil Engineering,
More informationEFFECTS OF THERMAL STRESSES AND BOUNDARY CONDITIONS ON THE RESPONSE OF A RECTANGULAR ELASTIC BODY MADE OF FGM
Proceedings of the International Conference on Mechanical Engineering 2007 (ICME2007) 2931 December 2007, Dhaka, Bangladesh ICME2007AM76 EFFECTS OF THERMAL STRESSES AND BOUNDARY CONDITIONS ON THE RESPONSE
More informationMechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA
Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA What programs are in PROMAL? Master Menu The master menu screen with five separate applications from
More informationConstitutive Equations
Constitutive quations David Roylance Department of Materials Science and ngineering Massachusetts Institute of Technology Cambridge, MA 0239 October 4, 2000 Introduction The modules on kinematics (Module
More informationFINITE ELEMENT AND EXPERIMENTAL STUDY OF NOVEL CONCEPT OF 3D FIBRE CELL STRUCTURE
FINITE ELEMENT AND EXPERIMENTAL STUDY OF NOVEL CONCEPT OF 3D FIBRE CELL STRUCTURE M. Růžička, V. Kulíšek 2, J. Had, O. Prejzek Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical
More informationComputational Analysis for Composites
Computational Analysis for Composites Professor Johann Sienz and Dr. Tony Murmu Swansea University July, 011 The topics covered include: OUTLINE Overview of composites and their applications Micromechanics
More informationDue Tuesday, September 21 st, 12:00 midnight
Due Tuesday, September 21 st, 12:00 midnight The first problem discusses a plane truss with inclined supports. You will need to modify the MatLab software from homework 1. The next 4 problems consider
More informationA Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials
Dublin, October 2010 A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials FracMan Technology Group Dr Mark Cottrell Presentation Outline Some Physical
More informationStresses Analysis of Petroleum Pipe Finite Element under Internal Pressure
ISSN : 4896, Vol. 6, Issue 8, ( Part 4 August 06, pp.338 RESEARCH ARTICLE Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure Dr.Ragbe.M.Abdusslam Eng. Khaled.S.Bagar ABSTRACT
More informationComputational Inelasticity FHLN05. Assignment A nonlinear elastoplastic problem
Computational Inelasticity FHLN05 Assignment 2018 A nonlinear elastoplastic problem General instructions A written report should be submitted to the Division of Solid Mechanics no later than November
More informationStress, Strain Stress strain relationships for different types of materials Stress strain relationships for a unidirectional/bidirectional lamina
Chapter 2 Macromechanical Analysis of a Lamina Stress, Strain Stress strain relationships for different types of materials Stress strain relationships for a unidirectional/bidirectional lamina Islamic
More informationComparison of Plywise StressStrain results for graphite/epoxy laminated plate subjected to inplane normal loads using CLT and ANSYS ACP PrepPost
Comparison of Plywise StressStrain results for graphite/epoxy laminated plate subjected to inplane normal loads using CLT and ANSYS ACP PrepPost 1 Mihir A. Mehta, 2 Satyen D. Ramani 1 PG Student, Department
More informationInternational Journal of Engineering Science
International Journal of Engineering Science 49 (2011) 322 332 Contents lists available at ScienceDirect International Journal of Engineering Science ournal homepage: www.elsevier.com/locate/iengsci On
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139
MASSACHUSTTS INSTITUT OF TCHNOLOGY DPARTMNT OF MATRIALS SCINC AND NGINRING CAMBRIDG, MASSACHUSTTS 0239 322 MCHANICAL PROPRTIS OF MATRIALS PROBLM ST 4 SOLUTIONS Consider a 500 nm thick aluminum ilm on a
More informationPlane and axisymmetric models in Mentat & MARC. Tutorial with some Background
Plane and axisymmetric models in Mentat & MARC Tutorial with some Background Eindhoven University of Technology Department of Mechanical Engineering Piet J.G. Schreurs Lambèrt C.A. van Breemen March 6,
More informationCOURSE STE6289 Modern Materials and Computations (Moderne materialer og beregninger 7.5 stp.)
Narvik University College (Høgskolen i Narvik) EXAMINATION TASK COURSE STE6289 Modern Materials and Computations (Moderne materialer og beregninger 7.5 stp.) CLASS: Master students in Engineering Design
More informationEXPERIMENT 4: AN ELECTRICALTHERMAL ACTUATOR
EXPERIMENT 4: AN ELECTRICALTHERMAL ACTUATOR 1. OBJECTIVE: 1.1 To analyze an electricalthermal actuator used in a microelectromechanical system (MEMS). 2. INTRODUCTION 2.1 Introduction to Thermal Actuator
More informationCMU CS 462/662 (INTRO TO COMPUTER GRAPHICS) HOMEWORK 0.0 MATH REVIEW/PREVIEW LINEAR ALGEBRA
CMU CS 462/662 (INTRO TO COMPUTER GRAPHICS) HOMEWORK 0.0 MATH REVIEW/PREVIEW LINEAR ALGEBRA Andrew ID: ljelenak August 25, 2018 This assignment reviews basic mathematical tools you will use throughout
More informationEMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain  Axial Loading
MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain  Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain  Axial Loading Statics
More informationComposite Structures. Indian Institute of Technology Kanpur
Mechanics of Laminated Composite Structures Nachiketa Tiwari Indian Institute of Technology Kanpur Lecture 23 Analysis of an Orthotropic Ply Lecture Overview Introduction Engineering constants for an 2
More informationON THE NUMERICAL ANALYSIS OF COMPOSITE MATERIAL
The 4th International Conference Advanced Composite Materials Engineering COMAT 8 October, Brasov, Romania O THE UMERICAL AALYSIS OF COMPOSITE MATERIAL D.D. icoara Transilvania University, City Brasov,
More informationWorkshop 8. Lateral Buckling
Workshop 8 Lateral Buckling cross section A transversely loaded member that is bent about its major axis may buckle sideways if its compression flange is not laterally supported. The reason buckling occurs
More information2D Liquefaction Analysis for Bridge Abutment
D Liquefaction Analysis for Bridge Abutment Tutorial by Angel Francisco Martinez Integrated Solver Optimized for the next generation 64bit platform Finite Element Solutions for Geotechnical Engineering
More informationLoss Amplification Effect in Multiphase Materials with Viscoelastic Interfaces
Loss Amplification Effect in Multiphase Materials with Viscoelastic Interfaces Andrei A. Gusev Institute of Polymers, Department of Materials, ETHZürich, Switzerland Outlook Lamellar morphology systems
More informationLab Exercise #3: Torsion
Lab Exercise #3: Prelab assignment: Yes No Goals: 1. To evaluate the equations of angular displacement, shear stress, and shear strain for a shaft undergoing torsional stress. Principles: testing of round
More informationMechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002
student personal identification (ID) number on each sheet. Do not write your name on any sheet. #1. A homogeneous, isotropic, linear elastic bar has rectangular cross sectional area A, modulus of elasticity
More informationResponse Spectrum Analysis Shock and Seismic. FEMAP & NX Nastran
Response Spectrum Analysis Shock and Seismic FEMAP & NX Nastran Table of Contents 1. INTRODUCTION... 3 2. THE ACCELEROGRAM... 4 3. CREATING A RESPONSE SPECTRUM... 5 4. NX NASTRAN METHOD... 8 5. RESPONSE
More informationCHEME2200: Polymer blends and composites Fibre architecture and principles of reinforcement
CHEME2200: Polymer blends and composites Fibre architecture and principles of reinforcement Mark Hughes 19 th September 2016 Outline Fibre architecture Volume fraction and the rule of mixtures Principle
More informationPrediction of Micromechanical Behaviour of Elliptical Frp Composites
Prediction of Micromechanical Behaviour of Elliptical Frp Composites Kiranmayee.Nerusu Dept. of Mechanical Engg. P. V. P. Siddhartha Institute of Technology, Vijayawada 520 007, A.P, India. P. Phani Prasanthi
More informationASSESSMENT OF MIXED UNIFORM BOUNDARY CONDITIONS FOR PREDICTING THE MACROSCOPIC MECHANICAL BEHAVIOR OF COMPOSITE MATERIALS
ASSESSMENT OF MIXED UNIFORM BOUNDARY CONDITIONS FOR PREDICTING THE MACROSCOPIC MECHANICAL BEHAVIOR OF COMPOSITE MATERIALS Dieter H. Pahr and Helmut J. Böhm Institute of Lightweight Design and Structural
More informationLAMINATION THEORY FOR THE STRENGTH OF FIBER COMPOSITE MATERIALS
XXII. LAMINATION THEORY FOR THE STRENGTH OF FIBER COMPOSITE MATERIALS Introduction The lamination theory for the elastic stiffness of fiber composite materials is the backbone of the entire field, it holds
More informationQUESTION BANK Composite Materials
QUESTION BANK Composite Materials 1. Define composite material. 2. What is the need for composite material? 3. Mention important characterits of composite material 4. Give examples for fiber material 5.
More informationPractice Final Examination. Please initial the statement below to show that you have read it
EN175: Advanced Mechanics of Solids Practice Final Examination School of Engineering Brown University NAME: General Instructions No collaboration of any kind is permitted on this examination. You may use
More informationDiscrete Element Modelling of a Reinforced Concrete Structure
Discrete Element Modelling of a Reinforced Concrete Structure S. Hentz, L. Daudeville, F.V. Donzé Laboratoire Sols, Solides, Structures, Domaine Universitaire, BP 38041 Grenoble Cedex 9 France sebastian.hentz@inpg.fr
More informationINTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011
Interlaminar failure analysis of FRP cross ply laminate with elliptical cutout Venkateswara Rao.S 1, Sd. Abdul Kalam 1, Srilakshmi.S 1, Bala Krishna Murthy.V 2 1 Mechanical Engineering Department, P. V.
More informationArbitrary Normal and Tangential Loading Sequences for Circular Hertzian Contact
Arbitrary Normal and Tangential Loading Sequences for Circular Hertzian Contact Philip P. Garland 1 and Robert J. Rogers 2 1 School of Biomedical Engineering, Dalhousie University, Canada 2 Department
More informationOpenhole compressive strength prediction of CFRP composite laminates
Openhole compressive strength prediction of CFRP composite laminates O. İnal 1, A. Ataş 2,* 1 Department of Mechanical Engineering, Balikesir University, Balikesir, 10145, Turkey, inal@balikesir.edu.tr
More informationComputational Materials Modeling FHLN05 Computer lab
Motivation Computational Materials Modeling FHLN05 Computer lab In the basic Finite Element (FE) course, the analysis is restricted to materials where the relationship between stress and strain is linear.
More informationσ = F/A ε = L/L σ ε a σ = Eε
Material and Property Information This chapter includes material from the book Practical Finite Element Analysis. It also has been reviewed and has additional material added by Sascha Beuermann. Hooke
More informationCHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES
CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES * Governing equations in beam and plate bending ** Solution by superposition 1.1 From Beam Bending to Plate Bending 1.2 Governing Equations For Symmetric
More information6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and
6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile
More informationAxisymmetric Modeling. This tutorial gives an overview of axisymmetric modeling. Learn how to:
Axisymmetric Modeling IDEAS Tutorials: Simulation Projects This tutorial gives an overview of axisymmetric modeling. Learn how to: sketch on the XZ plane apply boundary conditions mesh axisymmetric elements
More informationChapter 2  Macromechanical Analysis of a Lamina. Exercise Set. 2.1 The number of independent elastic constants in three dimensions are: 2.
Chapter  Macromechanical Analysis of a Lamina Exercise Set. The number of independent elastic constants in three dimensions are: Anisotropic Monoclinic 3 Orthotropic 9 Transversely Orthotropic 5 Isotropic.
More informationPredicting Elastic Properties of Unidirectional SU8/ZnO Nanocomposites using COMSOL Multiphysics
Predicting Elastic Properties of Unidirectional SU8/ZnO Nanocomposites using COMSOL Multiphysics Neelam Mishra 1, and Kaushik Das *1 1 School of Minerals Metallurgical and Materials Engineering, Indian
More informationMechanics PhD Preliminary Spring 2017
Mechanics PhD Preliminary Spring 2017 1. (10 points) Consider a body Ω that is assembled by gluing together two separate bodies along a flat interface. The normal vector to the interface is given by n
More informationA FULLY COUPLED MULTISCALE SHELL FORMULATION FOR THE MODELLING OF FIBRE REINFORCED LAMINATES
ECCM6 TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 2226 June 24 A FULLY COUPLED MULTISCALE SHELL FORMULATION FOR THE MODELLING OF FIBRE REINFORCED LAMINATES J. Främby, J. Brouzoulis,
More informationHomogenization on MultiMaterials Elements: Application to Printed Circuit Boards and Warpage Analysis
Homogenization on MultiMaterials Elements: Application to Printed Circuit Boards and Warpage Analysis Manuel Araújo 1,a, J. L. Alves 1, Paulo Silva 1 and Pedro Delgado 2 1 MEMS, University of Minho, Dep.
More information