# Introduction to Engineering Materials ENGR2000. Dr. Coates

Size: px
Start display at page:

## Transcription

1 Introduction to Engineering Materials ENGR2 Chapter 6: Mechanical Properties of Metals Dr. Coates

2 6.2 Concepts of Stress and Strain tension compression shear torsion

3 Tension Tests The specimen is deformed to fracture with a gradually increasing tensile load

4 Fracture & Failure Fracture occurs when a structural component separates into two or more pieces. fracture represents failure of the component Failure is the inability of a component to perform its desired function. failure may occur prior to fracture e.g. a car axle that bends when you drive over a pothole

5 Engineering Stress & Engineering Strain Engineering stress : σ = F A Engineering strain : ε = l l = l l l F-instantaneous load applied to specimen cross section A -original cross section area before any load is applied l i -instantaneous length l -original length

6 If you double the cross sectional area, would your load needed to produce a given elongation be the same? Why not just use force F and deformation l to study mechanical behavior?

7 Compression Tests Similar to the tensile tests Force is compressive Specimen contracts along direction of the stress

8 Engineering Stress & Engineering Strain Engineering stress : F σ = A Engineering strain : ε = l l = l l l <

9 Shear stress : τ = F A Shear γ = tanθ θ Shear and Torsional Tests strain (by definition) : ( for small θ ) F-instantaneous load applied // to specimen cross section

10 Shear and Torsional Tests Shear stress due to applied torque : τ = f ( T ) Shear strain due to applied torque : γ = f ( ) φ

11 Stress Transformation A force balance in the y direction yields: A force balance in the tangential direction yields:

12 Deformation All materials undergo changes in dimensions in response to mechanical forces. This phenomenon is called deformation. If the material reverts back to its original size and shape upon removal of the load, the deformation is said to be elastic deformation. If application and removal of the load results in a permanent change in size or shape, the deformation is said to be plastic deformation.

13 Elastic Deformation 6.3 Stress-Strain Behavior Hooke's law : σ = Eε Modulus of E = σ ε Shear modulus : G = τ γ elasticity: ELASTIC DEFORMATION!

14 Modulus of Elasticity Young s modulus Elastic modulus Stiffness Material s resistance to elastic deformation greater the elastic modulus, the stiffer the material or smaller the elastic strain that results from the application of a given stress.

15 Tangent or Secant Modulus Materials with non-linear elastic behavior Gray cast iron, concrete, many polymers

16 Elastic modulus of metals, ceramics & polymers Ceramics high elastic modulus diamond, graphite (covalent bonds) Metals high elastic modulus Polymers low elastic modulus weak secondary bonds between chains Increasing E

17 Elastic Modulus on an Atomic Scale Elastic strain small changes in inter-atomic spacing stretching of inter-atomic bonds Elastic modulus resistance to separation of adjacent atoms inter-atomic bonding forces

18 Review 2.5 Bonding Forces and Energies The net force : FN = FA + FR At equilibrium : F - the centers of the two atoms are r = F F N A + R = is known as the bond length. r apart.

19

20 Elastic Modulus on an Atomic Scale How might E be related to df dr r? Why?

21 Effect of Temperature on the Elastic Modulus

22

23 Example 6.1 A piece of Cu originally 35 mm long is pulled in tension with a stress of 276 Mpa. If the deformation is entirely elastic, what will be the resultant elongation?

24 Example 6.1 Given : l = 35mm σ = 276 MPa Using Table 6.1: E Cu l =? = 11Gpa Using Hooke's law : σ = Eε = E l l l l = σ =.77 mm E

25 6.4 Anelasticity - time dependent elastic behavior Time dependent elastic strain component. Elastic deformation continues after the stress application. Upon load release, finite time is required for complete recovery.

26 Polymers Anelasticity of metals, ceramics & polymers Visco-elastic behavior Metals Increasing anelasticity

27 6.5 Elastic Properties of Materials

28 Poisson s Ratio Poisson's ratio (a material constant) : ε x υ = ε υ > υ υ z theoretical max =.25 υ ε y = ε = = For most metals: z ( no net volume change).35.25

29 Elastic Properties of Materials Elastic constants (material properties) : E, G, υ For isotropic materials (same properties in all directions) : E G = 2 1+υ ( )

30 Example 6.2 A tensile stress is to be applied along the long axis of a cylindrical brass rod that has a diameter of 1 mm. Determine the magnitude of the load required to produce a 2.5 x 1-3 mm change in diameter if the deformation is entirely elastic.

31 Given : d d = 1mm = mm Using Table 6.1: E υ brass brass F =? = 97Gpa =.34

32 Compute the strain : ε x = d d = Using the Poisson's ratio : ε x ε z = = υ Using Hooke's law : σ = ε ze = 71.3MPa Compute the force : 2 d F = σ π 4 = 4 56 N

33 Plastic Deformation Elastic deformation Up to strains of.5 Plastic deformation Hooke s law is no longer valid Non-recoverable or permanent deformation Phenomenon of yielding

34 σ ε σ ys yp uts yield strength yield point strain ultimate tensile strength 6.6 Tensile Properties ( stress corresponding to the elastic limit) ε u uniform strain σ f fracture strength (stress at fracture) strain at fracture ε f ( maximum engineering stress)

35 Yielding and Yield Strength Gradual elastic-plastic transition Proportional limit (P) Initial departure from linearity Point of yielding Yield strength Determined using a.2 strain offset method

36 Yielding and Yield Strength Steels & other materials Yield point phenomenon Yield strength Average stress associated with the lower yield point

37 Elastic deformation, plastic deformation, necking & fracture necking

38 Example 6.3 From the tensile stress-strain behavior for the brass specimen shown, determine the following The modulus of elasticity The yield strength at a strain offset of.2 The maximum load that can be sustained by a cylindrical specimen having an original diameter of 12.8 mm The change in length of a specimen originally 25 mm long that is subjected to a tensile stress of 345 Mpa.

39

40 Elastic modulus : σ E = ε 15 =.16 = 93.8GPa Yield strength : σ ys = 25 MPa

41 Given : d F max = 12.8mm =? Using the tensile strength : σ F uts = 45 MPa πd 4 2 max = σ uts = 57,9 N

42 Given : l = 25 mm σ = 345 MPa l =? Determine the strain (point A) : ε.6 Compute the elongation : l = εl 15mm =

43 Ductility Measure of the degree of plastic deformation that has been sustained at fracture. Brittle materials Little or no plastic deformation prior to fracture Ductile materials Significant plastic deformation prior to fracture

44 Percent elongation : l f l % EL = 1 = ε f 1 l % RA = where and where l is the original length and l is the length at fracture. f Percent reduction in area : A f A A A A f 1 Ductility is the original cross - sectional area is the final cross - sectional area of the necked region.

45 Ductility Why do we need to know the ductility of materials? The degree to which a structure will deform plastically prior to fracture (design & safety measures) The degree of allowable deformation during fabrication

46

47 Mechanical properties of metals Depend on prior deformation, presence of impurities heat treatments

48 Engineering stress-strain behavior for Fe at different temperatures brittle ductile

49 Resilience Capacity of a material to absorb energy when it is deformed elastically and then, upon unloading, to have this energy recovered. Modulus of resilience Strain energy per unit volume required to stress a material from an unloaded state up to the point of yielding.

50 Modulus of resilience: U r U r ε y = σdε Resilience Assuming a linear elastic region : 1 = σ yε y σ y σ y = σ y = 2 E 2E

51 Resilience Materials used in spring applications High resilience High yield strength Low elastic modulus

52 Toughness Measure of the ability of a material to absorb energy up to fracture. Area under the stress-strain curve up to the point of fracture.

53 Toughness Toughness : U = ε f σdε

54 Toughness Ductile materials Brittle materials Increasing toughness

55 Example Which material has the highest elastic modulus? Which material has the highest ductility? Which material has the highest toughness? Which material does not exhibit any significant plastic deformation prior to fracture?

56 6.7 True Stress and Strain Decline in stress necessary to continue deformation past the maximum point M. Is the material getting weaker?

57 6.7 True Stress and Strain Short-coming in the engineering stress-strain curve Decreasing cross-sectional area not considered

58 6.7 True Stress and Strain True stress : F = Ai where A σ t True strain : ε t = l l i dl is l l the instantaneous area. l = ln

59 6.7 True Stress and Strain Assuming no volume change : Al i i = A l Prior to necking : ε t = σ = σ t ( + ε ) ( 1+ ε ) ln 1

60 6.7 True Stress and Strain Necking introduces a complex stress state

61 Strain-hardening exponent From the onset of plastic deformation to the point of necking : σ = t K ε n t where n is the strain - hardening exponent and K is the strength coefficient.

62

63 Example 6.4 A cylindrical specimen of steel having an original diameter of 12.8 mm is tensile tested to fracture and found to have an engineering fracture stress of 46 Mpa. If its cross-sectional diameter at fracture is 1.7 mm, determine The ductility in terms of percent reduction in area The true stress at fracture

64 Given : = = = f f mm d MPa mm d σ 3% 1 1 % Ductility : 2 2 = = = d d A A A RA f f?? % 1.7 = = = tf f RA mm d σ 3% 1 2 = = d d d f

65 Engineering stress at fracture: σ F f = 46 MPa = The applied load : tf = σ A f F A f F A = 59,2 N True stress at fracture: σ = = 66 MPa

66 Example 6.5 Compute the strain-hardening exponent n for an alloy in which a true stress of 415 Mpa produces a true strain of.1. Assume a value of 135 Mpa for K.

67 Example 6.5 Given : σ = 415 MPa t ε t =.1 K = 135MPa n =? Strain - hardening exponent : σ = K n t ε K t n =.4

68 6.1 Hardness Measure of a materials resistance to localized plastic deformation (small dent or scratch)

69 Rockwell Hardness Tests A hardness number is determined Difference in depth of penetration from an initial minor load followed by a major load Combinations of indenters & loads are used

70 Hardness Testing Techniques

71 Minor load=1 kg - used for thick specimens

72 Minor load = 3 kg - thin specimens

73 Correlations between hardness & tensile strength Both are measures of resistance to plastic deformation

74 Property Variability & Design/Safety Factors Reading assignment Section 6.11 on variability of material properties Example 6.6

75 6.12 Design/Safety Factors Design stress : σ = d N' σ c σ is the calculated stress (on the basis of c N' > 1 is the design factor. Material selection criteria : σ ys σ d the estimated max load)

76 6.12 Design/Safety Factors Safe stress or working stress : σ w σ ys σ ys = N is the yield strength of the material and N > 1 is the factor of safety. Factor of safety : 1.2 N 4.

77 Design Example 6.1 A tensile-testing apparatus is to be constructed that must withstand a maximum load of 22 kn. The design calls for two cylindrical support posts, each of which is to support half of the max load. Furthermore, plain carbon steel ground and polished shafting rounds are to be used; the minimum yield and tensile strengths of this alloy are 31 Mpa and 565 Mpa respectively. Specify a suitable diameter for these support posts.

78 Given : F max σ ys σ uts d = =? MPa = Assume a N = 5 ( 22kN ) = 565 MPa factor of = 11kN safety : Working stress : ys σ w = σ = 62 MPa N Minimum diameter required : σ w F = π d max ( 2 d / 4) = 47.5mm

### Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour

Tensile-Test Specimen and Machine Review of Mechanical Properties Outline Tensile test True stress - true strain (flow curve) mechanical properties: - Resilience - Ductility - Toughness - Hardness A standard

### ME 2570 MECHANICS OF MATERIALS

ME 2570 MECHANICS OF MATERIALS Chapter III. Mechanical Properties of Materials 1 Tension and Compression Test The strength of a material depends on its ability to sustain a load without undue deformation

### Mechanical properties 1 Elastic behaviour of materials

MME131: Lecture 13 Mechanical properties 1 Elastic behaviour of materials A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Deformation of material under the action of a mechanical

### Chapter 7. Highlights:

Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true

### Chapter 6: Mechanical Properties of Metals. Dr. Feras Fraige

Chapter 6: Mechanical Properties of Metals Dr. Feras Fraige Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility Toughness

### STANDARD SAMPLE. Reduced section " Diameter. Diameter. 2" Gauge length. Radius

MATERIAL PROPERTIES TENSILE MEASUREMENT F l l 0 A 0 F STANDARD SAMPLE Reduced section 2 " 1 4 0.505" Diameter 3 4 " Diameter 2" Gauge length 3 8 " Radius TYPICAL APPARATUS Load cell Extensometer Specimen

### Module-4. Mechanical Properties of Metals

Module-4 Mechanical Properties of Metals Contents ) Elastic deformation and Plastic deformation ) Interpretation of tensile stress-strain curves 3) Yielding under multi-axial stress, Yield criteria, Macroscopic

### MECE 3321 MECHANICS OF SOLIDS CHAPTER 3

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.

### CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS

CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS Concepts of Stress and Strain 6.1 Using mechanics of materials principles (i.e., equations of mechanical equilibrium applied to a free-body diagram),

### Tensile stress strain curves for different materials. Shows in figure below

Tensile stress strain curves for different materials. Shows in figure below Furthermore, the modulus of elasticity of several materials effected by increasing temperature, as is shown in Figure Asst. Lecturer

### Mechanical Properties of Materials

Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of

### Stress-Strain Behavior

Stress-Strain Behavior 6.3 A specimen of aluminum having a rectangular cross section 10 mm 1.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.

### ME 243. Mechanics of Solids

ME 243 Mechanics of Solids Lecture 2: Stress and Strain Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil

### NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

### Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus. Case study

Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus Case study 2 In field of Physics, it explains how an object deforms under an applied force Real rigid bodies are elastic we can

### 12/8/2009. Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka

Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Introduction and classes of properties Case studies showing selection of the right material for the job Deformation of material under the action of a

### ME 207 Material Science I

ME 207 Material Science I Chapter 3 Properties in Tension and Compression Dr. İbrahim H. Yılmaz http://web.adanabtu.edu.tr/iyilmaz Automotive Engineering Adana Science and Technology University Introduction

### CHAPTER 7 MECHANICAL PROPERTIES PROBLEM SOLUTIONS

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has

### Theory at a Glance (for IES, GATE, PSU)

1. Stress and Strain Theory at a Glance (for IES, GATE, PSU) 1.1 Stress () When a material is subjected to an external force, a resisting force is set up within the component. The internal resistance force

### MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS

MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS 3 rd Edition Michael S. Mamlouk Arizona State University John P. Zaniewski West Virginia University Solution Manual FOREWORD This solution manual includes

### INTRODUCTION TO STRAIN

SIMPLE STRAIN INTRODUCTION TO STRAIN In general terms, Strain is a geometric quantity that measures the deformation of a body. There are two types of strain: normal strain: characterizes dimensional changes,

### 6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile

### MATERIALS. Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle?

MATERIALS Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle? What is toughness? strength? brittleness? Elemental material atoms: A. Composition

### The objective of this experiment is to investigate the behavior of steel specimen under a tensile test and to determine it's properties.

Objective: The objective of this experiment is to investigate the behavior of steel specimen under a tensile test and to determine it's properties. Introduction: Mechanical testing plays an important role

### Johns Hopkins University What is Engineering? M. Karweit MATERIALS

Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle? What is toughness? strength? brittleness? Elemental material atoms: MATERIALS A. Composition

### 13 Solid materials Exam practice questions

Pages 206-209 Exam practice questions 1 a) The toughest material has the largest area beneath the curve the answer is C. b) The strongest material has the greatest breaking stress the answer is B. c) A

### Solid Mechanics Chapter 1: Tension, Compression and Shear

Solid Mechanics Chapter 1: Tension, Compression and Shear Dr. Imran Latif Department of Civil and Environmental Engineering College of Engineering University of Nizwa (UoN) 1 Why do we study Mechanics

### five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS

### Strength of Materials (15CV 32)

Strength of Materials (15CV 32) Module 1 : Simple Stresses and Strains Dr. H. Ananthan, Professor, VVIET,MYSURU 8/21/2017 Introduction, Definition and concept and of stress and strain. Hooke s law, Stress-Strain

### UNIT I SIMPLE STRESSES AND STRAINS

Subject with Code : SM-1(15A01303) Year & Sem: II-B.Tech & I-Sem SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) UNIT I SIMPLE STRESSES

### 4.MECHANICAL PROPERTIES OF MATERIALS

4.MECHANICAL PROPERTIES OF MATERIALS The diagram representing the relation between stress and strain in a given material is an important characteristic of the material. To obtain the stress-strain diagram

### High Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there?

High Tech High Top Hat Technicians An Introduction to Solid Mechanics Or Is that supposed to bend there? Why don't we fall through the floor? The power of any Spring is in the same proportion with the

### , to obtain a way to calculate stress from the energy function U(r).

BIOEN 36 014 LECTURE : MOLECULAR BASIS OF ELASTICITY Estimating Young s Modulus from Bond Energies and Structures First we consider solids, which include mostly nonbiological materials, such as metals,

### How materials work. Compression Tension Bending Torsion

Materials How materials work Compression Tension Bending Torsion Elemental material atoms: A. Composition a) Nucleus: protons (+), neutrons (0) b) Electrons (-) B. Neutral charge, i.e., # electrons = #

### N = Shear stress / Shear strain

UNIT - I 1. What is meant by factor of safety? [A/M-15] It is the ratio between ultimate stress to the working stress. Factor of safety = Ultimate stress Permissible stress 2. Define Resilience. [A/M-15]

### The science of elasticity

The science of elasticity In 1676 Hooke realized that 1.Every kind of solid changes shape when a mechanical force acts on it. 2.It is this change of shape which enables the solid to supply the reaction

### Mechanics of Materials Primer

Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus

### There are three main types of structure - mass, framed and shells.

STRUCTURES There are three main types of structure - mass, framed and shells. Mass structures perform due to their own weight. An example would be a dam. Frame structures resist loads due to the arrangement

### ENG1001 Engineering Design 1

ENG1001 Engineering Design 1 Structure & Loads Determine forces that act on structures causing it to deform, bend, and stretch Forces push/pull on objects Structures are loaded by: > Dead loads permanent

### INTRODUCTION (Cont..)

INTRODUCTION Name : Mohamad Redhwan Abd Aziz Post : Lecturer @ DEAN CENTER OF HND STUDIES Subject : Solid Mechanics Code : BME 2033 Room : CENTER OF HND STUDIES OFFICE H/P No. : 019-2579663 W/SITE : Http://tatiuc.edu.my/redhwan

### Elastic Properties of Solid Materials. Notes based on those by James Irvine at

Elastic Properties of Solid Materials Notes based on those by James Irvine at www.antonine-education.co.uk Key Words Density, Elastic, Plastic, Stress, Strain, Young modulus We study how materials behave

### Simple Stresses in Machine Parts

Simple Stresses in Machine Parts 87 C H A P T E R 4 Simple Stresses in Machine Parts 1. Introduction.. Load. 3. Stress. 4. Strain. 5. Tensile Stress and Strain. 6. Compressive Stress and Strain. 7. Young's

### EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading

MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain - Axial Loading Statics

### Chapter Two: Mechanical Properties of materials

Chapter Two: Mechanical Properties of materials Time : 16 Hours An important consideration in the choice of a material is the way it behave when subjected to force. The mechanical properties of a material

### 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?

IDE 110 S08 Test 1 Name: 1. Determine the internal axial forces in segments (1), (2) and (3). (a) N 1 = kn (b) N 2 = kn (c) N 3 = kn 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at

### Mechanical Properties

Mechanical Properties Elastic deformation Plastic deformation Fracture I. Elastic Deformation S s u s y e u e T I II III e For a typical ductile metal: I. Elastic deformation II. Stable plastic deformation

### D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

### CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS

CHAPTER THE EFFECTS OF FORCES ON MATERIALS EXERCISE 1, Page 50 1. A rectangular bar having a cross-sectional area of 80 mm has a tensile force of 0 kn applied to it. Determine the stress in the bar. Stress

### Module 5: Theories of Failure

Module 5: Theories of Failure Objectives: The objectives/outcomes of this lecture on Theories of Failure is to enable students for 1. Recognize loading on Structural Members/Machine elements and allowable

### QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,

### 6.37 Determine the modulus of resilience for each of the following alloys:

6.37 Determine the modulus of resilience for each of the following alloys: Yield Strength Material MPa psi Steel alloy 550 80,000 Brass alloy 350 50,750 Aluminum alloy 50 36,50 Titanium alloy 800 116,000

### Mechanics of Materials

Mechanics of Materials Notation: a = acceleration = area (net = with holes, bearing = in contact, etc...) SD = allowable stress design d = diameter of a hole = calculus symbol for differentiation e = change

### Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2

Samantha Ramirez, MSE Stress The intensity of the internal force acting on a specific plane (area) passing through a point. Δ ΔA Δ z Δ 1 2 ΔA Δ x Δ y ΔA is an infinitesimal size area with a uniform force

### STRESS, STRAIN AND DEFORMATION OF SOLIDS

VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY, MADURAI 625009 DEPARTMENT OF CIVIL ENGINEERING CE8301 STRENGTH OF MATERIALS I -------------------------------------------------------------------------------------------------------------------------------

### FME461 Engineering Design II

FME461 Engineering Design II Dr.Hussein Jama Hussein.jama@uobi.ac.ke Office 414 Lecture: Mon 8am -10am Tutorial Tue 3pm - 5pm 10/1/2013 1 Semester outline Date Week Topics Reference Reading 9 th Sept 1

### QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

### N = N A Pb A Pb. = ln N Q v kt. = kt ln v N

5. Calculate the energy for vacancy formation in silver, given that the equilibrium number of vacancies at 800 C (1073 K) is 3.6 10 3 m 3. The atomic weight and density (at 800 C) for silver are, respectively,

### Path to static failure of machine components

Pat to static failure of macine components Load Stress Discussed last week (w) Ductile material Yield Strain Brittle material Fracture Fracture Dr. P. Buyung Kosasi,Spring 008 Name some of ductile and

### ISHIK UNIVERSITY DEPARTMENT OF MECHATRONICS ENGINEERING

ISHIK UNIVERSITY DEPARTMENT OF MECHATRONICS ENGINEERING QUESTION BANK FOR THE MECHANICS OF MATERIALS-I 1. A rod 150 cm long and of diameter 2.0 cm is subjected to an axial pull of 20 kn. If the modulus

### ANSYS Mechanical Basic Structural Nonlinearities

Lecture 4 Rate Independent Plasticity ANSYS Mechanical Basic Structural Nonlinearities 1 Chapter Overview The following will be covered in this Chapter: A. Background Elasticity/Plasticity B. Yield Criteria

### Revision Guide for Chapter 4

Revision Guide for Chapter 4 Contents Student s Checklist Revision Notes Materials: properties and uses... 5 Materials selection charts... 5 Refraction... 8 Total internal reflection... 9 Conductors and

### A concrete cylinder having a a diameter of of in. mm and elasticity. Stress and Strain: Stress and Strain: 0.

2011 earson Education, Inc., Upper Saddle River, NJ. ll rights reserved. This material is protected under all copyright laws as they currently 8 1. 3 1. concrete cylinder having a a diameter of of 6.00

### Static Equilibrium; Elasticity & Fracture

Static Equilibrium; Elasticity & Fracture The Conditions for Equilibrium Statics is concerned with the calculation of the forces acting on and within structures that are in equilibrium. An object with

### 3.091 Introduction to Solid State Chemistry. Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS

3.091 Introduction to Solid State Chemistry Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS 1. INTRODUCTION Crystals are held together by interatomic or intermolecular bonds. The bonds can be covalent,

### [5] Stress and Strain

[5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law

### MECHANICS OF MATERIALS

Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:

### 22 Which of the following correctly defines the terms stress, strain and Young modulus? stress strain Young modulus

PhysicsndMathsTutor.com Which of the following correctly defines the terms stress, strain and Young modulus? 97/1/M/J/ stress strain Young modulus () x (area) (extension) x (original length) (stress) /

### MECHANICS OF SOLIDS. (For B.E. Mechanical Engineering Students) As per New Revised Syllabus of APJ Abdul Kalam Technological University

MECHANICS OF SOLIDS (For B.E. Mechanical Engineering Students) As per New Revised Syllabus of APJ Abdul Kalam Technological University Dr. S.Ramachandran, M.E., Ph.D., Mr. V.J. George, M.E., Mr. S. Kumaran,

### Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering

Mechanics Of Solids Suraj kr. Ray (surajjj2445@gmail.com) Department of Civil Engineering 1 Mechanics of Solids is a branch of applied mechanics that deals with the behaviour of solid bodies subjected

### PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM - 613 403 - THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Sub : Strength of Materials Year / Sem: II / III Sub Code : MEB 310

### 1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor.

Elasticity Homework Problems 2014 Section 1. The Strain Tensor. 1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor. 2. Given a steel bar compressed with a deformation

### Chapter 12. Static Equilibrium and Elasticity

Chapter 12 Static Equilibrium and Elasticity Static Equilibrium Equilibrium implies that the object moves with both constant velocity and constant angular velocity relative to an observer in an inertial

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS

EDEXCEL NATIONAL CERTIICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQ LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS 1. Be able to determine the effects of loading in static engineering

### MECHANICS OF MATERIALS

GE SI CHAPTER 3 MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Torsion Lecture Notes: J. Walt Oler Texas Tech University Torsional Loads on Circular Shafts

### BTECH MECHANICAL PRINCIPLES AND APPLICATIONS. Level 3 Unit 5

BTECH MECHANICAL PRINCIPLES AND APPLICATIONS Level 3 Unit 5 FORCES AS VECTORS Vectors have a magnitude (amount) and a direction. Forces are vectors FORCES AS VECTORS (2 FORCES) Forces F1 and F2 are in

### Fundamentals of the Mechanical Behavior of Materials

Chapter Fundamentals of the Mechanical Behavior of Materials Questions.1 Can you calculate the percent elongation of materials based only on the information given in Fig..6? Explain. Recall that the percent

### Constitutive Equations (Linear Elasticity)

Constitutive quations (Linear lasticity) quations that characterize the physical properties of the material of a system are called constitutive equations. It is possible to find the applied stresses knowing

### FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering

FCP Short Course Ductile and Brittle Fracture Stephen D. Downing Mechanical Science and Engineering 001-015 University of Illinois Board of Trustees, All Rights Reserved Agenda Limit theorems Plane Stress

### CHAPTER 2 Failure/Fracture Criterion

(11) CHAPTER 2 Failure/Fracture Criterion (12) Failure (Yield) Criteria for Ductile Materials under Plane Stress Designer engineer: 1- Analysis of loading (for simple geometry using what you learn here

### Structural Analysis I Chapter 4 - Torsion TORSION

ORSION orsional stress results from the action of torsional or twisting moments acting about the longitudinal axis of a shaft. he effect of the application of a torsional moment, combined with appropriate

### Unit I Stress and Strain

Unit I Stress and Strain Stress and strain at a point Tension, Compression, Shear Stress Hooke s Law Relationship among elastic constants Stress Strain Diagram for Mild Steel, TOR steel, Concrete Ultimate

### THEME IS FIRST OCCURANCE OF YIELDING THE LIMIT?

CIE309 : PLASTICITY THEME IS FIRST OCCURANCE OF YIELDING THE LIMIT? M M - N N + + σ = σ = + f f BENDING EXTENSION Ir J.W. Welleman page nr 0 kn Normal conditions during the life time WHAT HAPPENS DUE TO

### Strength of Material. Shear Strain. Dr. Attaullah Shah

Strength of Material Shear Strain Dr. Attaullah Shah Shear Strain TRIAXIAL DEFORMATION Poisson's Ratio Relationship Between E, G, and ν BIAXIAL DEFORMATION Bulk Modulus of Elasticity or Modulus of Volume

### ELASTICITY (MDM 10203)

ELASTICITY () Lecture Module 3: Fundamental Stress and Strain University Tun Hussein Onn Malaysia Normal Stress inconstant stress distribution σ= dp da P = da A dimensional Area of σ and A σ A 3 dimensional

### X has a higher value of the Young modulus. Y has a lower maximum tensile stress than X

Bulk Properties of Solids Old Exam Questions Q1. The diagram shows how the stress varies with strain for metal specimens X and Y which are different. Both specimens were stretched until they broke. Which

### Structural Metals Lab 1.2. Torsion Testing of Structural Metals. Standards ASTM E143: Shear Modulus at Room Temperature

Torsion Testing of Structural Metals Standards ASTM E143: Shear Modulus at Room Temperature Purpose To determine the shear modulus of structural metals Equipment Tinius-Olsen Lo-Torq Torsion Machine (figure

### Sean Carey Tafe No Lab Report: Hounsfield Tension Test

Sean Carey Tafe No. 366851615 Lab Report: Hounsfield Tension Test August 2012 The Hounsfield Tester The Hounsfield Tester can do a variety of tests on a small test-piece. It is mostly used for tensile

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA SCIENCE FOR TECHNICIANS OUTCOME 1 - STATIC AND DYNAMIC FORCES TUTORIAL 3 STRESS AND STRAIN

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA SCIENCE FOR TECHNICIANS OUTCOME 1 - STATIC AND DYNAMIC FORCES TUTORIAL 3 STRESS AND STRAIN 1 Static and dynamic forces Forces: definitions of: matter, mass, weight,

### Lab Exercise #3: Torsion

Lab Exercise #3: Pre-lab assignment: Yes No Goals: 1. To evaluate the equations of angular displacement, shear stress, and shear strain for a shaft undergoing torsional stress. Principles: testing of round

Name: Date: Solid Mechanics Homework nswers Please show all of your work, including which equations you are using, and circle your final answer. Be sure to include the units in your answers. 1. The yield

### (1) Brass, an alloy of copper and zinc, consists of 70% by volume of copper and 30% by volume of zinc.

PhysicsAndMathsTutor.com 1 Q1. (a) Define the density of a material....... (1) (b) Brass, an alloy of copper and zinc, consists of 70% by volume of copper and 30% by volume of zinc. density of copper =

### PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics

Page1 PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [2910601] Introduction, Fundamentals of Statics 1. Differentiate between Scalar and Vector quantity. Write S.I.

### STRENGTH OF MATERIALS-I. Unit-1. Simple stresses and strains

STRENGTH OF MATERIALS-I Unit-1 Simple stresses and strains 1. What is the Principle of surveying 2. Define Magnetic, True & Arbitrary Meridians. 3. Mention different types of chains 4. Differentiate between

### MMJ1133 FATIGUE AND FRACTURE MECHANICS A - INTRODUCTION INTRODUCTION

A - INTRODUCTION INTRODUCTION M.N.Tamin, CSMLab, UTM Course Content: A - INTRODUCTION Mechanical failure modes; Review of load and stress analysis equilibrium equations, complex stresses, stress transformation,

### MECHANICAL PROPERTIES OF SOLIDS

INTRODUCTION A rigid body generally means a hard solid object having a definite shape and size. But in reality, bodies can be stretched, compressed and bent. Even the appreciably rigid steel bar can be

### TENSILE TESTS (ASTM D 638, ISO

MODULE 4 The mechanical properties, among all the properties of plastic materials, are often the most important properties because virtually all service conditions and the majority of end-use applications

### MECHANICS OF MATERIALS

CHATR Stress MCHANICS OF MATRIALS and Strain Axial Loading Stress & Strain: Axial Loading Suitability of a structure or machine may depend on the deformations in the structure as well as the stresses induced

### Geology 229 Engineering Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6)

Geology 229 Engineering Geology Lecture 5 Engineering Properties of Rocks (West, Ch. 6) Common mechanic properties: Density; Elastic properties: - elastic modulii Outline of this Lecture 1. Uniaxial rock