Mechanical properties 1 Elastic behaviour of materials


 Colin Horn
 1 years ago
 Views:
Transcription
1 MME131: Lecture 13 Mechanical properties 1 Elastic behaviour of materials A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Deformation of material under the action of a mechanical force Concept of stress and strain The stressstrain behaviour of materials Elastic behaviour of materials References: 1. Callister. Materials Science and Engineering: An Introduction 2. Askeland. The Science and Engineering of Materials Lec 13, Page 1/15
2 Mechanical properties of materials From an application standpoint, one of the most important topics within Materials and Metallurgical Engineering is the study of how materials respond to external loading or deformation. Most components, even if used primarily for other property (electronic properties, for example) have to fulfill certain mechanical functions as well. Important mechanical properties are: strength, hardness, stiffness and ductility. Laboratory testing to measure mechanical properties attempts to replicate the service conditions. Consistency is accomplished by using standardised test, so people are measuring same thing in the same way American Society for Testing Materials (ASTM) maintains and updates standards for mechanical properties. Several other standards organizations exist, e.g. SAE, ANSI, BS, ISO, JS, DIN... What happens to material when it is loaded with a mechanical force? pulling or stretching squeezing or squashing sliding twisting Material deforms, either elastically or plastically, depending on the magnitude of the force applied. xsectional area reduced due to tensile deformation Lec 13, Page 2/15
3 Elastic deformation Initial state Small load applied Load removed bond stretch return to initial state d F Elastic means reversible!! This happens when strains are small (~0.5%) (except for the case of polymers) F Linear elastic Nonlinear elastic d Plastic deformation At lower temperatures, T < T m /3 1. Initial state 2. Large load load applied 3. Unload Load removed bond stretch and planes sheared planes still stretched F d e+p d p F d e linear elastic d p d e d Plastic means permanent!! Lec 13, Page 3/15
4 The concept of stress and strain The mechanical behaviour of material under applied force may be ascertained by a simple stress strain diagram or, load deformation diagram Stress  Force or load per unit area of crosssection over which the force or load is acting Strain  Change in dimension (elongation) per unit length Stress and strain are considered positive for tensile loads, negative for compressive loads One of the most commonly performed mechanical stressstrain test is known as the tensile test. The machine Two categories of machines are available: Screwdriven: allows selection and control of the strain rate (de/dt) Hydraulically driven: allows selection and control of the loading rate (ds/dt) The sample 505 bar Nickname for the ASTM standard specimen most commonly used in tensile testing; a cylindrical specimen, 0.505" dia. along 2" gauge length (i.e., the length of the straight section between threaded ends). This diameter gives a convenient 0.20 in 2 crosssectional area. Tensile testing Lec 13, Page 4/15
5 The material s response to the applied tensile or compressive load is a change in length. During tension test, instantaneous applied load/force (F) and elongation or deformation (d) data are recorded, and the output of test is given as F d chart We can monitor very precisely the applied load using a load cell and the change in length (d) with an extensometer. F  d characteristics are dependent on the size of specimen For example, for a doubled crosssectional area, to generate the same elongation, the load must be doubled. To minimise these geometric factors, load and elongation parameters are normalised to the respective parameters of engineering stress and engineering strain. Engineering stress Tensile stress, s Shear stress, t s = F t A o original area before loading t = F s A o Stress units: Pa (N/m 2 ) or psi (lb/in 2 ) Lec 13, Page 5/15
6 Engineering strain Tensile strain : e = d L o d/2 w o L o Lateral strain : e L = d L w o d L /2 d/2 d L /2 q/2 Shear strain : g = tan q p/2  q Strain is always dimensionless p/2 q/2 Lec 13, Page 6/15
7 stress, s The stress strain behaviour s uts s y s p s p proportional limit max. stress in linear region s y yield strength, or proof stress stress that initiate permanent deformation or results in a specific amount ( 0.2 or 0.35%) of permanent strain Slope = E e f s uts ultimate tensile strength max. engineering stress on curve e f elongation or strain to failure total strain at break 0.2 % strain, e E modulus of elasticity slope of curve in linear region the stressstrain curve for an aluminum alloy Lec 13, Page 7/15
8 Tensile stressstrain curves for different materials. Note that these are qualitative. Properties obtained from the tensile test Elastic limit Tensile strength, Necking Hooke s law Poisson s ratio Modulus of resilience Tensile toughness Ductility Lec 13, Page 8/15
9 In the elastic region Initially, stress and strain are directly proportional to each other atoms can be thought of as masses connected to each other through a network of springs In tensile test, if the deformation is elastic, the stressstrain relationship follows the Hooke s law: s = E e E is known as the Young s modulus, the modulus of elasticity, or simply the modulus E has the same unit as those of stress, MPa or psi, although GPa (10 9 Pa) is commonly used. E is a measure of : bond strength (on the atomic level) intrinsic stiffness of material Very stiff materials : Ceramics, steels, W. Medium stiff materials : Cu, Al,. Low stiff materials : Plastics,. E is decreased with increasing T Young s modulus of elasticity For single phase (or, nearly single phase) materials, E is insensitive to : degree of plastic deformation microstructure (i.e., grain size, inclusion) Hooke s law applied for only a small value of e (typically < ~ %) ceramic materials follow Hooke s law up to fracture In the elastic region, E does not vary with the applied stress, i.e., E E(s) Lec 13, Page 9/15
10 In atomic scale, the microscopic elastic strain can be related to the small changes in the interatomic spacing and the stretching of interatomic bonds. Magnitude of modulus of elasticity is a measure of the resistance of separation of adjacent atoms. This is proportional to the slope of interatomic force separation curve at the equilibrium spacing, r 0, i.e., E df dr r 0 Lec 13, Page 10/15
11 Comparison of Young s modulus of elasticity Ceramics > Metals >> Polymers Example Design of a Suspension Rod An aluminum rod is to withstand an applied force of 45,000 pounds. To assure a sufficient safety, the maximum allowable stress on the rod is limited to 25,000 psi. The rod must be at least 150 in. long but must deform elastically no more than 0.25 in. when the force is applied. Design an appropriate rod. SOLUTION Using the definition of engineering stress, the required crosssectional area of the rod F A 0 = = (45000 lbs) / (25000 psi) = 1.8 in s 2 p d A 0 = 2 = 1.8 in 2 or d = 1.51 in 4 Lec 13, Page 11/15
12 Stress, s However, the minimum length or rod is specified as 150 in. To produce a longer rod, we might make the crosssectional area of the rod larger. The minimum strain allowed for the 150 in rod is Dl 0.25 in e = = = in/in 150 in l 0 Now, using the Hook s law s = E e = (10x10 6 psi) ( in/in) = psi Then, the area required to withstand this stress F lbs A 0 = = = 2.70 in 2 s psi Thus, in order to satisfy both the maximum stress and the minimum elongation requirements, crosssectional area of the rod must be at least 2.7 in 2, or a minimum diameter of 1.85 in. Nonlinear elastic stressstrain behaviour The stressstrain curve does not follow linear relation in the elastic limit Ds De Tangent modulus (at any stress s 2 ) Common materials showing such behaviour: grey cast iron concrete polymers In such cases, instead of Young s modulus, either a Tangent modulus or a Secant modulus is used. s 2 s 1 Ds De Secant modulus (between origin and any stress s 1 ) Strain, e Lec 13, Page 12/15
13 Poisson s ratio When pulled in tension (along zdirection), a sample gets longer (along zdirection) and thinner (contraction along x and ydirection). If compressed, sample gets fatter. Poisson s ratio defines how much strain occurs in the lateral x and ydirections when strained in the zdirection. e n =  x e =  z e y e z Theoretical value for isotropic material: 0.25 Maximum value: 0.50, Typical value: Metals: ~ 0.33, Ceramics: ~ 0.25, Polymers: ~ 0.40 Many materials are elastically anisotropic. y z d 0 d i x Problem A tensile stress is to be applied along the long axis of a cylindrical brass rod that has a diameter of 10 mm. Determine the magnitude of the load required to produce a 2.5x103 mm change in diameter if the deformation is entirely elastic. Data for brass: n = 0.34, E = 97 Gpa. z e x = Dd d 02.5x103 mm = =  2.5x10 10 mm 4 x d 0 = 10 mm Dd = 2.5x103 mm e z =  e x n s = e z E 2.5x104 =  = 7.35x = (7.35x104 ) (97x10 3 MPa) = 71.3 MPa Lec 13, Page 13/15
14 Other elastic properties Anelasticity The anelastic deformation is time dependent. Upon release of load, strain is not totally recovered. the time dependent microscopic and atomistic process occur during this stage For most metals, anelastic behaviour is negligible. For some polymers, its magnitude is significant, and this behaviour is then called viscoelastic behaviour. Lec 13, Page 14/15
15 Next Class MME131: Lecture 14 Mechanical properties 2 Plastic behaviour of materials Lec 13, Page 15/15
12/8/2009. Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka
Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Introduction and classes of properties Case studies showing selection of the right material for the job Deformation of material under the action of a
More informationIntroduction to Engineering Materials ENGR2000. Dr. Coates
Introduction to Engineering Materials ENGR2 Chapter 6: Mechanical Properties of Metals Dr. Coates 6.2 Concepts of Stress and Strain tension compression shear torsion Tension Tests The specimen is deformed
More informationSTANDARD SAMPLE. Reduced section " Diameter. Diameter. 2" Gauge length. Radius
MATERIAL PROPERTIES TENSILE MEASUREMENT F l l 0 A 0 F STANDARD SAMPLE Reduced section 2 " 1 4 0.505" Diameter 3 4 " Diameter 2" Gauge length 3 8 " Radius TYPICAL APPARATUS Load cell Extensometer Specimen
More informationMECE 3321 MECHANICS OF SOLIDS CHAPTER 3
MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.
More informationME 243. Mechanics of Solids
ME 243 Mechanics of Solids Lecture 2: Stress and Strain Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET Email: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil
More informationStressStrain Behavior
StressStrain Behavior 6.3 A specimen of aluminum having a rectangular cross section 10 mm 1.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.
More informationTensile stress strain curves for different materials. Shows in figure below
Tensile stress strain curves for different materials. Shows in figure below Furthermore, the modulus of elasticity of several materials effected by increasing temperature, as is shown in Figure Asst. Lecturer
More informationME 2570 MECHANICS OF MATERIALS
ME 2570 MECHANICS OF MATERIALS Chapter III. Mechanical Properties of Materials 1 Tension and Compression Test The strength of a material depends on its ability to sustain a load without undue deformation
More informationOutline. TensileTest Specimen and Machine. StressStrain Curve. Review of Mechanical Properties. Mechanical Behaviour
TensileTest Specimen and Machine Review of Mechanical Properties Outline Tensile test True stress  true strain (flow curve) mechanical properties:  Resilience  Ductility  Toughness  Hardness A standard
More informationChapter 6: Mechanical Properties of Metals. Dr. Feras Fraige
Chapter 6: Mechanical Properties of Metals Dr. Feras Fraige Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility Toughness
More informationThe science of elasticity
The science of elasticity In 1676 Hooke realized that 1.Every kind of solid changes shape when a mechanical force acts on it. 2.It is this change of shape which enables the solid to supply the reaction
More informationfive Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture
ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS
More informationfive Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture
ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS
More informationNORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.
NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric
More informationCHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS
CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS Concepts of Stress and Strain 6.1 Using mechanics of materials principles (i.e., equations of mechanical equilibrium applied to a freebody diagram),
More information6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and
6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile
More informationChapter 7. Highlights:
Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true
More informationMATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS
MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS 3 rd Edition Michael S. Mamlouk Arizona State University John P. Zaniewski West Virginia University Solution Manual FOREWORD This solution manual includes
More informationStress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus. Case study
Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus Case study 2 In field of Physics, it explains how an object deforms under an applied force Real rigid bodies are elastic we can
More informationMechanical Properties of Materials
Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of
More informationSolid Mechanics Chapter 1: Tension, Compression and Shear
Solid Mechanics Chapter 1: Tension, Compression and Shear Dr. Imran Latif Department of Civil and Environmental Engineering College of Engineering University of Nizwa (UoN) 1 Why do we study Mechanics
More informationSolid Mechanics Homework Answers
Name: Date: Solid Mechanics Homework nswers Please show all of your work, including which equations you are using, and circle your final answer. Be sure to include the units in your answers. 1. The yield
More informationHigh Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there?
High Tech High Top Hat Technicians An Introduction to Solid Mechanics Or Is that supposed to bend there? Why don't we fall through the floor? The power of any Spring is in the same proportion with the
More informationA concrete cylinder having a a diameter of of in. mm and elasticity. Stress and Strain: Stress and Strain: 0.
2011 earson Education, Inc., Upper Saddle River, NJ. ll rights reserved. This material is protected under all copyright laws as they currently 8 1. 3 1. concrete cylinder having a a diameter of of 6.00
More informationUNIT I SIMPLE STRESSES AND STRAINS
Subject with Code : SM1(15A01303) Year & Sem: IIB.Tech & ISem SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) UNIT I SIMPLE STRESSES
More informationTINIUS OLSEN Testing Machine Co., Inc.
Interpretation of StressStrain Curves and Mechanical Properties of Materials Tinius Olsen has prepared this general introduction to the interpretation of stressstrain curves for the benefit of those
More information[5] Stress and Strain
[5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law
More informationModule4. Mechanical Properties of Metals
Module4 Mechanical Properties of Metals Contents ) Elastic deformation and Plastic deformation ) Interpretation of tensile stressstrain curves 3) Yielding under multiaxial stress, Yield criteria, Macroscopic
More informationThe objective of this experiment is to investigate the behavior of steel specimen under a tensile test and to determine it's properties.
Objective: The objective of this experiment is to investigate the behavior of steel specimen under a tensile test and to determine it's properties. Introduction: Mechanical testing plays an important role
More informationME 207 Material Science I
ME 207 Material Science I Chapter 3 Properties in Tension and Compression Dr. İbrahim H. Yılmaz http://web.adanabtu.edu.tr/iyilmaz Automotive Engineering Adana Science and Technology University Introduction
More informationSamantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2
Samantha Ramirez, MSE Stress The intensity of the internal force acting on a specific plane (area) passing through a point. Δ ΔA Δ z Δ 1 2 ΔA Δ x Δ y ΔA is an infinitesimal size area with a uniform force
More informationMechanics of Materials Primer
Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus
More informationSTRESS, STRAIN AND DEFORMATION OF SOLIDS
VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY, MADURAI 625009 DEPARTMENT OF CIVIL ENGINEERING CE8301 STRENGTH OF MATERIALS I 
More information4.MECHANICAL PROPERTIES OF MATERIALS
4.MECHANICAL PROPERTIES OF MATERIALS The diagram representing the relation between stress and strain in a given material is an important characteristic of the material. To obtain the stressstrain diagram
More informationTheory at a Glance (for IES, GATE, PSU)
1. Stress and Strain Theory at a Glance (for IES, GATE, PSU) 1.1 Stress () When a material is subjected to an external force, a resisting force is set up within the component. The internal resistance force
More informationMechanics of Materials
Mechanics of Materials Notation: a = acceleration = area (net = with holes, bearing = in contact, etc...) SD = allowable stress design d = diameter of a hole = calculus symbol for differentiation e = change
More informationN = Shear stress / Shear strain
UNIT  I 1. What is meant by factor of safety? [A/M15] It is the ratio between ultimate stress to the working stress. Factor of safety = Ultimate stress Permissible stress 2. Define Resilience. [A/M15]
More informationMATERIALS. Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle?
MATERIALS Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle? What is toughness? strength? brittleness? Elemental material atoms: A. Composition
More informationTENSILE TESTS (ASTM D 638, ISO
MODULE 4 The mechanical properties, among all the properties of plastic materials, are often the most important properties because virtually all service conditions and the majority of enduse applications
More informationIntroduction to Properties and The Elastic Modulus
09 A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Introduction to Properties and The Elastic Modulus Topics to Cover Introduction to properties Introduction to mechanical properties The elastic
More informationJohns Hopkins University What is Engineering? M. Karweit MATERIALS
Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle? What is toughness? strength? brittleness? Elemental material atoms: MATERIALS A. Composition
More informationEMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain  Axial Loading
MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain  Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain  Axial Loading Statics
More informationINTRODUCTION TO STRAIN
SIMPLE STRAIN INTRODUCTION TO STRAIN In general terms, Strain is a geometric quantity that measures the deformation of a body. There are two types of strain: normal strain: characterizes dimensional changes,
More informationThe University of Melbourne Engineering Mechanics
The University of Melbourne 436291 Engineering Mechanics Tutorial Four Poisson s Ratio and Axial Loading Part A (Introductory) 1. (Problem 922 from Hibbeler  Statics and Mechanics of Materials) A short
More informationMechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering
Mechanics Of Solids Suraj kr. Ray (surajjj2445@gmail.com) Department of Civil Engineering 1 Mechanics of Solids is a branch of applied mechanics that deals with the behaviour of solid bodies subjected
More informationElastic Properties of Solid Materials. Notes based on those by James Irvine at
Elastic Properties of Solid Materials Notes based on those by James Irvine at www.antonineeducation.co.uk Key Words Density, Elastic, Plastic, Stress, Strain, Young modulus We study how materials behave
More informationStatics Principles. The laws of motion describe the interaction of forces acting on a body. Newton s First Law of Motion (law of inertia):
Unit 2 Review Statics Statics Principles The laws of motion describe the interaction of forces acting on a body Newton s First Law of Motion (law of inertia): An object in a state of rest or uniform motion
More informationStrength of Material. Shear Strain. Dr. Attaullah Shah
Strength of Material Shear Strain Dr. Attaullah Shah Shear Strain TRIAXIAL DEFORMATION Poisson's Ratio Relationship Between E, G, and ν BIAXIAL DEFORMATION Bulk Modulus of Elasticity or Modulus of Volume
More informationChapter Two: Mechanical Properties of materials
Chapter Two: Mechanical Properties of materials Time : 16 Hours An important consideration in the choice of a material is the way it behave when subjected to force. The mechanical properties of a material
More informationStrength of Materials (15CV 32)
Strength of Materials (15CV 32) Module 1 : Simple Stresses and Strains Dr. H. Ananthan, Professor, VVIET,MYSURU 8/21/2017 Introduction, Definition and concept and of stress and strain. Hooke s law, StressStrain
More informationHow materials work. Compression Tension Bending Torsion
Materials How materials work Compression Tension Bending Torsion Elemental material atoms: A. Composition a) Nucleus: protons (+), neutrons (0) b) Electrons () B. Neutral charge, i.e., # electrons = #
More information6.37 Determine the modulus of resilience for each of the following alloys:
6.37 Determine the modulus of resilience for each of the following alloys: Yield Strength Material MPa psi Steel alloy 550 80,000 Brass alloy 350 50,750 Aluminum alloy 50 36,50 Titanium alloy 800 116,000
More informationStructural Metals Lab 1.2. Torsion Testing of Structural Metals. Standards ASTM E143: Shear Modulus at Room Temperature
Torsion Testing of Structural Metals Standards ASTM E143: Shear Modulus at Room Temperature Purpose To determine the shear modulus of structural metals Equipment TiniusOlsen LoTorq Torsion Machine (figure
More informationLaboratory 4 Bending Test of Materials
Department of Materials and Metallurgical Engineering Bangladesh University of Engineering Technology, Dhaka MME 222 Materials Testing Sessional.50 Credits Laboratory 4 Bending Test of Materials. Objective
More information9 MECHANICAL PROPERTIES OF SOLIDS
9 MECHANICAL PROPERTIES OF SOLIDS Deforming force Deforming force is the force which changes the shape or size of a body. Restoring force Restoring force is the internal force developed inside the body
More informationN = N A Pb A Pb. = ln N Q v kt. = kt ln v N
5. Calculate the energy for vacancy formation in silver, given that the equilibrium number of vacancies at 800 C (1073 K) is 3.6 10 3 m 3. The atomic weight and density (at 800 C) for silver are, respectively,
More informationSTEEL. General Information
General Information General Information TYPICAL STRESSSTRAIN CURVE Below is a typical stressstrain curve. Each material has its own unique stressstrain curve. Tensile Properties Tensile properties indicate
More informationQuestion 9.1: A steel wire of length 4.7 m and crosssectional area 3.0 10 5 m 2 stretches by the same amount as a copper wire of length 3.5 m and crosssectional area of 4.0 10 5 m 2 under a given load.
More information(1) Brass, an alloy of copper and zinc, consists of 70% by volume of copper and 30% by volume of zinc.
PhysicsAndMathsTutor.com 1 Q1. (a) Define the density of a material....... (1) (b) Brass, an alloy of copper and zinc, consists of 70% by volume of copper and 30% by volume of zinc. density of copper =
More informationMedical Biomaterials Prof. Mukesh Doble Department of Biotechnology Indian Institute of Technology, Madras. Lecture  04 Properties (Mechanical)
Medical Biomaterials Prof. Mukesh Doble Department of Biotechnology Indian Institute of Technology, Madras Lecture  04 Properties (Mechanical) Welcome to the course on medical biomaterials. Today we are
More information, to obtain a way to calculate stress from the energy function U(r).
BIOEN 36 014 LECTURE : MOLECULAR BASIS OF ELASTICITY Estimating Young s Modulus from Bond Energies and Structures First we consider solids, which include mostly nonbiological materials, such as metals,
More informationELASTICITY (MDM 10203)
ELASTICITY () Lecture Module 3: Fundamental Stress and Strain University Tun Hussein Onn Malaysia Normal Stress inconstant stress distribution σ= dp da P = da A dimensional Area of σ and A σ A 3 dimensional
More informationMECHANICS OF MATERIALS
Third CHTR Stress MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University and Strain xial oading Contents Stress & Strain: xial oading Normal
More informationCHAPTER 7 MECHANICAL PROPERTIES PROBLEM SOLUTIONS
Excerpts from this work may be reproduced by instructors for distribution on a notforprofit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has
More informationSTRENGTH OF MATERIALSI. Unit1. Simple stresses and strains
STRENGTH OF MATERIALSI Unit1 Simple stresses and strains 1. What is the Principle of surveying 2. Define Magnetic, True & Arbitrary Meridians. 3. Mention different types of chains 4. Differentiate between
More informationStatic Equilibrium; Elasticity & Fracture
Static Equilibrium; Elasticity & Fracture The Conditions for Equilibrium Statics is concerned with the calculation of the forces acting on and within structures that are in equilibrium. An object with
More informationCOURSE TITLE : THEORY OF STRUCTURES I COURSE CODE : 3013 COURSE CATEGORY : B PERIODS/WEEK : 6 PERIODS/SEMESTER: 90 CREDITS : 6
COURSE TITLE : THEORY OF STRUCTURES I COURSE CODE : 0 COURSE CATEGORY : B PERIODS/WEEK : 6 PERIODS/SEMESTER: 90 CREDITS : 6 TIME SCHEDULE Module Topics Period Moment of forces Support reactions Centre
More informationMECHANICS OF MATERIALS
CHATR Stress MCHANICS OF MATRIALS and Strain Axial Loading Stress & Strain: Axial Loading Suitability of a structure or machine may depend on the deformations in the structure as well as the stresses induced
More informationfive mechanics of materials Mechanics of Materials Mechanics of Materials Knowledge Required MECHANICS MATERIALS
RCHITECTUR STRUCTURES: FORM, BEHVIOR, ND DESIGN DR. NNE NICHOS SUMMER 2014 Mechanics o Materials MECHNICS MTERIS lecture ive mechanics o materials www.carttalk.com Mechanics o Materials 1 rchitectural
More informationStructural Analysis I Chapter 4  Torsion TORSION
ORSION orsional stress results from the action of torsional or twisting moments acting about the longitudinal axis of a shaft. he effect of the application of a torsional moment, combined with appropriate
More informationSean Carey Tafe No Lab Report: Hounsfield Tension Test
Sean Carey Tafe No. 366851615 Lab Report: Hounsfield Tension Test August 2012 The Hounsfield Tester The Hounsfield Tester can do a variety of tests on a small testpiece. It is mostly used for tensile
More informationMechanical Design in Optical Engineering. For a prismatic bar of length L in tension by axial forces P we have determined:
Deformation of Axial Members For a prismatic bar of length L in tension by axial forces P we have determined: σ = P A δ ε = L It is important to recall that the load P must act on the centroid of the cross
More informationMECHANICS OF MATERIALS Sample Problem 4.2
Sample Problem 4. SOLUTON: Based on the cross section geometry, calculate the location of the section centroid and moment of inertia. ya ( + Y Ad ) A A castiron machine part is acted upon by a knm couple.
More informationMECHANICS OF MATERIALS
Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:
More informationClass XI Physics. Ch. 9: Mechanical Properties of solids. NCERT Solutions
Downloaded from Class XI Physics Ch. 9: Mechanical Properties of solids NCERT Solutions Page 242 Question 9.1: A steel wire of length 4.7 m and crosssectional area 3.0 10 5 m 2 stretches by the same amount
More informationLab Exercise #5: Tension and Bending with Strain Gages
Lab Exercise #5: Tension and Bending with Strain Gages Prelab assignment: Yes No Goals: 1. To evaluate tension and bending stress models and Hooke s Law. a. σ = Mc/I and σ = P/A 2. To determine material
More informationMathematics and Science in Schools in SubSaharan Africa
Mathematics and Science in Schools in SubSaharan Africa MATERIAL SCIENCE Introduction to Material Properties What Material Scientists Do Physical Properties Melting & Boiling Points Magnetism Color Physical
More informationPERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR  VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK
PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR  VALLAM  613 403  THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Sub : Strength of Materials Year / Sem: II / III Sub Code : MEB 310
More informationChapter 12. Static Equilibrium and Elasticity
Chapter 12 Static Equilibrium and Elasticity Static Equilibrium Equilibrium implies that the object moves with both constant velocity and constant angular velocity relative to an observer in an inertial
More information1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor.
Elasticity Homework Problems 2014 Section 1. The Strain Tensor. 1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor. 2. Given a steel bar compressed with a deformation
More informationSimple Stresses in Machine Parts
Simple Stresses in Machine Parts 87 C H A P T E R 4 Simple Stresses in Machine Parts 1. Introduction.. Load. 3. Stress. 4. Strain. 5. Tensile Stress and Strain. 6. Compressive Stress and Strain. 7. Young's
More informationUNIVERSITY PHYSICS I. Professor Meade Brooks, Collin College. Chapter 12: STATIC EQUILIBRIUM AND ELASTICITY
UNIVERSITY PHYSICS I Professor Meade Brooks, Collin College Chapter 12: STATIC EQUILIBRIUM AND ELASTICITY Two stilt walkers in standing position. All forces acting on each stilt walker balance out; neither
More informationGeology 2112 Principles and Applications of Geophysical Methods WEEK 1. Lecture Notes Week 1
Lecture Notes Week 1 A Review of the basic properties and mechanics of materials Suggested Reading: Relevant sections from any basic physics or engineering text. Objectives: Review some basic properties
More informationMechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection
Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts
More informationFatigue Problems Solution
Fatigue Problems Solution Problem 1. (a) Given the values of σ m (7 MPa) and σ a (1 MPa) we are asked t o compute σ max and σ min. From Equation 1 Or, σ m σ max + σ min 7 MPa σ max + σ min 14 MPa Furthermore,
More informationPurpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on Exam 3.
ES230 STRENGTH OF MTERILS Exam 3 Study Guide Exam 3: Wednesday, March 8 th inclass Updated 3/3/17 Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on
More informationClass XI Chapter 9 Mechanical Properties of Solids Physics
Book Name: NCERT Solutions Question : A steel wire of length 4.7 m and crosssectional area 5 3.0 0 m stretches by the same 5 amount as a copper wire of length 3.5 m and crosssectional area of 4.0 0 m
More informationQuestion 9.1: Answer. Length of the steel wire, L 1 = 4.7 m. Area of crosssection of the steel wire, A 1 = m 2
Question 9.1: A steel wire of length 4.7 m and crosssectional area 3.0 10 5 m 2 stretches by the same amount as a copper wire of length 3.5 m and crosssectional area of 4.0 10 5 m 2 under a given load.
More informationChapter 10 Lecture Outline. Copyright The McGrawHill Companies, Inc. Permission required for reproduction or display.
Chapter 10 Lecture Outline Copyright The McGrawHill Companies, Inc. Permission required for reproduction or display. 1 Chapter 10: Elasticity and Oscillations Elastic Deformations Hooke s Law Stress and
More informationChapter 26 Elastic Properties of Materials
Chapter 26 Elastic Properties of Materials 26.1 Introduction... 1 26.2 Stress and Strain in Tension and Compression... 2 26.3 Shear Stress and Strain... 4 Example 26.1: Stretched wire... 5 26.4 Elastic
More informationfour mechanics of materials Mechanics of Materials Mechanics of Materials Knowledge Required MECHANICS MATERIALS
EEMENTS OF RCHITECTUR STRUCTURES: FORM, BEHVIOR, ND DESIGN DR. NNE NICHOS SRING 2016 Mechanics o Materials MECHNICS MTERIS lecture our mechanics o materials www.carttalk.com Mechanics o Materials 1 S2009abn
More informationINTRODUCTION (Cont..)
INTRODUCTION Name : Mohamad Redhwan Abd Aziz Post : Lecturer @ DEAN CENTER OF HND STUDIES Subject : Solid Mechanics Code : BME 2033 Room : CENTER OF HND STUDIES OFFICE H/P No. : 0192579663 W/SITE : Http://tatiuc.edu.my/redhwan
More information3.091 Introduction to Solid State Chemistry. Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS
3.091 Introduction to Solid State Chemistry Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS 1. INTRODUCTION Crystals are held together by interatomic or intermolecular bonds. The bonds can be covalent,
More informationX has a higher value of the Young modulus. Y has a lower maximum tensile stress than X
Bulk Properties of Solids Old Exam Questions Q1. The diagram shows how the stress varies with strain for metal specimens X and Y which are different. Both specimens were stretched until they broke. Which
More informationCHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS
CHAPTER THE EFFECTS OF FORCES ON MATERIALS EXERCISE 1, Page 50 1. A rectangular bar having a crosssectional area of 80 mm has a tensile force of 0 kn applied to it. Determine the stress in the bar. Stress
More informationCPO Science Foundations of Physics. Unit 8, Chapter 27
CPO Science Foundations of Physics Unit 8, Chapter 27 Unit 8: Matter and Energy Chapter 27 The Physical Properties of Matter 27.1 Properties of Solids 27.2 Properties of Liquids and Fluids 27.3 Properties
More informationChapter 13 ELASTIC PROPERTIES OF MATERIALS
Physics Including Human Applications 280 Chapter 13 ELASTIC PROPERTIES OF MATERIALS GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions
More information