Effects of geometry and properties of fibre and matrix on overall. composite parameters

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Effects of geometry and properties of fibre and matrix on overall. composite parameters"

Transcription

1 Int. Journal of Applied Sciences and ngineering Research, ol. 3, Issue 4, by the authors Licensee IJASR- Under Creative Commons License 3.0 Research article ISSN ffects of geometry and properties of fibre and matrix on overall composite parameters Yi Xiao 1, Ri-Song Qin 2, Manchu Mahalingam 1 1 Research School of ngineering, Australian National University, Canberra, ACT 2601, Australia 2 Fujian Port and Waterway Survey and Research Institute, 283 Yangqiao Road, Fuzhou, China DOI: /ijaser Abstract: To determine the overall material properties, 1, 2 and G 12, of a composite lamina, a finite element (F) simulation approach is presented and its results are compared with those from mechanics of materials. To investigate the effect of fibre s geometry on the overall composite properties, three different fibre s geometries are considered, in conjunction with two matrix materials and four fibre materials. Strand 7, the commercial F analysis software, is employed to conduct F simulation. The F results of the overall material properties of the composite, for different matrix s and fibre s geometries, and material properties, are compared with those from mechanics of materials approach. Key words: Composite lamina. Finite element approach, fiber geometry, fiber matrix. 1. Introduction Composite materials are playing an ever increasing role in supplying materials to satisfy the need for more demanding applications. These materials can be tailored to specific loading conditions which make them ideal to today s climate. Composite materials are superior to conventional materials, such as metals, due to their high strength to weight and stiffness to weight ratios. In classical mechanics, at a macro-level, the material properties are always assumed to be homogeneous on an average basis, whereas at micro-level, i.e. inside the representative volume element (R), the material properties are heterogeneous. That is, at a micro-level, the heterogeneous micro-structure is known and physical laws are known. The task of micromechanics is to find homogeneous material properties at a macro-level based on the information of microstructure. These properties are often called overall material properties or effective material properties, and the process is also known as homogenization. Recently, some investigations have been made to the composite array using methods such as the homogenization method (Qin and Yang 2008). Grassi et al (Grassi et al. 2002) numerically examined the effect of fibre volume fraction of the through thickness Young s modulus. They found that an increase of 2% fibre volume fraction of Z-fibres will induce an increase in the through thickness Young s modulus by a factor of 22-35%. Qin et al (Qin 2004a; Qin 2004b; Yang and Qin 2004; Qin 2005) presented several boundary element micromechanics models for predicting effective properties of materials with defects or inclusions. Antoniou et al (Antoniou et al. 2009) developed a F model to predict mechanical behavior of glass/epoxy tubes under static loading. Xu et al (Xu et al. 2008) conducted an experiment on the plate size in determining the effective modulus. Yang and Qin (Yang and Qin 2001; Yang and Qin 2003) used F method to predict effective elasto-plastic properties of composites. To determine the ranges of effective properties using various micromechanics models, the oigt and Reuss Rule (Gasik 1998) presented a *Corresponding author ( 792 Received on June 17, 2014; Accepted on August 19, 2014; Published on August 29, 2014

2 method to find the upper and lower bounds respectively of the stiffness for a composite material with arbitrary fibre-matrix geometry. Micromechanics models were also used to determine effective properties of piezoelectric materials with cracks (Yu and Qin 1996; Qin and Yu 1997; Qin et al. 1998), microvoids (Qin and Yu 1998), and of human dentine materials (Qin and Swain 2004; Wang and Qin 2007; Wang and Qin 2011). Several other researchers have used representative unit cell models to investigate the dependence of component properties on composite materials (Levy and Papazian 1990; Tvergaard 1990; Bao et al. 1991; Zahl and McMeeking 1991; Li et al. 1995; Feng et al. 2003). In this paper, we examine the effect of geometries and properties of fibres on composites through F unit cell model. In particular, the three types of properties, namely 1, the Young s modulus in the fibre direction; 2, the Young s modulus in the transverse fibre direction; and G 12 the in-plane shear modulus, are examined. By varying the shapes and material properties on the basis of mechanical and physical consideration the effect on the overall material properties can be explored. Moreover, the effect of the length in fibre direction on 1 is investigated and the minimum length required for achieving an acceptable converging result of 1 is obtained. 2. Background formulations In this section, two basic approaches for determining effective properties of fibre composites are briefly described in order to establish notations and provide a common source for reference in later sections. Moreover, material properties used in this work are listed in Section Mechanics of materials approach (MMA) The mechanics of materials method provides an accurate technique to calculate effective material properties of the fibre reinforced composites. These overall material properties can be used to predict the material behavior with various interfaces. The mechanics of materials approach determines the overall material properties due to their respective fibre and matrix volume fractions and constituent material properties. It assumes an average of stresses and strains to examine the global response. The first modulus to be determined is that of the composite material in the fibre direction (denoted as 1 axis), where, ε 1 applies to both the fibres and the matrix according to the basic assumption. 1 = f f + mm (1) q (1) is known as the rule of mixtures for the apparent Young s modulus of the composite material in the direction of the fibres. With the mechanics of materials method, the remain three properties can be determined using 2 m f = + m f f m, G12 GmG f = G + G m f f m ν12 = νmm + νf f (3) The rule appeared in q (2) is known as inverse rule of mixtures. 2.2 Finite element analysis (FA) (2) In order to obtain values for the material properties of fibre reinforced composites using a finite element method, the basic formulations are briefly described in this section. These differ to the mechanics of materials method in that they relate to the basic understanding of stress/strain relations and are not directly 793

3 related to the volume fractions as stated in Section ffective Young s modulus in fibre direction 1 and major Poisson ratio ν 12 1 and ν 12 can be determined by considering the loading case shown in Figure 1, where a stress σ 1 is applied in the fibre direction of the composite. The ffective Young s modulus and major Poisson ratio are, then, evaluated by σ σ d / σ d ε d / ε d ε = = =, ν 12 = = = ε1 1 ε1 / ε ε 1 ε1 / ε1 d d d d (4) Figure 1: Composite loaded in fibre direction If the left end is fixed and be defined as L represents the average displacement at the right end, the average strain can ε = L / L (5) Therefore, the major task for F calculation is to determine L and the average stress σ 1. This has been implemented into our F program ffective Transverse Young s modulus 2 Considering the loading case shown in Figure 2, the ffective Transverse Young s modulus 2 is defined as σ d / σ2 2 = = = ε2 ε d / σ d 2 2 ε d 2 2 where ε 2 = W / W. the major task for F calculation is to determine W and the average stress σ 2. (6) 794

4 Figure 2: Composite loaded in transverse direction ffective shear modulus G 12 The in-plane shear modulus of a fibre reinforced composite can be determined by considering the loading case shown in Figure 3, a shear stress is applied over the boundary of the composite. G 12 τd / τ = = = γ γd / τd γd (7) Figure 3: Composite loaded with shear stress Considering the shear strain can be defined as u/y, where u is displacement in fibre direction and y stands for the vertical coordinate originated at the bottom of the composite, the task of F calculation, in this case, is to evaluate shear stress and the displacement u. From these equations, we can determine 1, 2 and G 12, noting that all other stress and strains are taken as zero except for the stress and strain along the direction for the material property being determined. 2.3 Material properties A list of common composite fibre and matrix materials were selected to model the geometries above. Fibres: 1) Carbon Fibre; 2) Kevlar; and 3) -glass, and 4) S-glass) Matrix: 1) poxy Resin; and 2) Polyester Resin Tables 1 and 2 listed the mechanical properties of materials used in FA: 795

5 Table 1: Fibre Properties Fibre Material Carbon Fibre Kevlar 49 -glass S-glass Young s Modulus 294GPa 131GPa 78GPa 89GPa Poisson s ratio Table 2: Matrix Properties Matrix Material (Resins) poxy Polyester Young s Modulus (tensile) 2.415GPa 2.467GPa Poisson s ratio Results and discussion To study effects of properties of each component and fibre s geometry on the overall properties of the composite, following 8 cases are considered: 1) carbon fibre with poxy Resin; 2) carbon fibre with Polyester Resin; 3) Kevlar49 with poxy Resin; 4) Kevlar49 with Polyester Resin; 5) -glass with poxy Resin; 6) -glass with Polyester Resin; 7) S-glass with poxy Resin; and 8) S-glass with Polyester Resin. For each case mentioned above, 6 combinations of geometry are involved: a) Rectangular matrix with circular fibres (RMCF); b) Rectangular matrix with hexagonal fibres (RMHF); c) Rectangular matrix with triangular fibres (RMTF); d) Square matrix with circular fibres (SMCF); e) Square matrix with hexagonal fibres (SMHF); and f) Square Matrix with triangular fibres (SMTF). The corresponding fibre volume fraction for each of these is: RMCF= ; RMHF= ; RMTF= ; SMCF= ; SMHF= ; SMTF= Figure 4: Geometry configurations of matrix and fibre (b=2 for RM and b=3 for SM) Figure 4 shows the geometry configuration of the unit cell used. It is obvious from Figure 1 that: a) total area is 6 for RM and 9 for SM; and the fibre s area is πr 2 = for circular fibre, 3 3/2 t 2 /2=3 3/ /2= for hexagonal fibre, and 0.5 for triangular fibre. The fibre volume fraction listed above is obtained based on these data. The finite element meshes used in the calculation are shown in Figure

6 a) SMCF b) SMHF c) SMTF Figure 5: Finite element meshes for square matrix with different fibre geometries The F results obtained are listed in Tables 3-10 and also shown in Figures 6-8. A comparison of the results between FA and MMA for 1 yield quite similar results. The average error between these results is within 3%, for all results, in determination of the 1. It indicates that MMA can provide acceptable accurate results for 1. Figure 6 shows a comparison between the results of varying fibre and matrix geometries. Figures 7 and 8 list the comparison in results between 2 and G 12, respectively, derived through MMA and FA. The difference of these results is within 8%, between all the results collected for 2 and G 12. As revealed by the graph the difference in results is not always constant. The square matrix with circular fibres, for example, has a smaller difference than the other models between MMA and FA results. This highlights the non-linear nature of FA modelling software. Another point to note is that the values obtained for 1 using FA are lower than those from MMA, while the values obtained for 2 and G 12 using FA are higher than those from MMA. This is a result of the model thickness or the length in the fibre direction and will be discussed later in this paper. Table 3: Composites properties for carbon fibre with poxy Resin Properties 1 (GPa) 2 (GPa) G 12 (GPa) Approach MMA FA MMA FA MMA FA RMCF RMHF RMTF SMCF SMHF SMTF Table 4: Composites properties for carbon fibre with Polyester Resin Properties 1 (GPa) 2 (GPa) G 12 (GPa) Approach MMA FA MMA FA MMA FA RMCF RMHF RMTF SMCF SMHF SMTF

7 Properties Table 5: Composites properties for Kevlar49 with poxy Resin 1 (GPa) 2 (GPa) G 12 (GPa) 1(GPa) Approach MMA FA MMA FA MMA FA RMCF RMHF RMTF SMCF SMHF SMTF Table 6: Composites properties for Kevlar49 with Polyester Resin Properties 1 (GPa) 2 (GPa) G 12 (GPa) 1(GPa) Approach MMA FA MMA FA MMA FA RMCF RMHF RMTF SMCF SMHF SMTF Properties Table 7: Composites properties for -glass with poxy Resin 1 (GPa) 2 (GPa) 1(GPa) G 12 (GPa) Approach MMA FA MMA FA MMA FA RMCF RMHF RMTF SMCF SMHF SMTF

8 Properties Table 8: Composites properties for -glass with Polyester Resin 1 (GPa) 2 (GPa) G 12 (GPa) 1(GPa) Approach MMA FA MMA FA MMA FA RMCF RMHF RMTF SMCF SMHF SMTF Properties Table 9: Composites properties for S-glass with poxy Resin 1 (GPa) 2 (GPa) 1(GPa) G 12 (GPa) Approach MMA FA MMA FA MMA FA RMCF RMHF RMTF SMCF SMHF SMTF Properties Table 10: Composites properties for S-glass with Polyester Resin 1 (GPa) 2 (GPa) G 12 (GPa) 1(GPa) Approach MMA FA MMA FA MMA FA RMCF RMHF RMTF SMCF SMHF SMTF

9 Figure 6: Comparison of 1 results from FA with those from MMA for the case of Carbon Fibre/poxy Resin Figure 7: Comparison of 2 results from FA with those from MMA for the case of Carbon Fibre/poxy Resin Figure 8: Comparison of 2 results from FA with those from MMA for the case of Carbon Fibre/poxy Resin 800

10 To study the effect of fibre and matrix materials on the overall material properties, several common matrix and fibre materials were selected for analysis and compared to investigate the effect material properties on the overall composite. It can be seen from Tables 3-10 that the material properties merely translate the corresponding values of 1, 2, and G 12 depending on the material property of components used. For example, polyester resin/matrix has a higher Young s modulus than epoxy resin, so the effect of matrix properties, compared to epoxy, is that it will increase the overall material properties 1 of the composite in a linear manner. Table 11: ariation of 1 due to variation of thickness in the 1 axis (fibre direction) 1-axis thickness (mm) Stress(1-axis) Displacement (1-axis) Strain (GPa) Table 11 lists the 1 values obtained with respect to different thickness values of the model. That is, the thickness of the material in the fibre direction. It can be used to examine the effect of thickness on 1 when using FA. For the F results to converge towards the results obtained through MMA, a large thickness is needed to minimize end effects in the model. As the strain is a function of displacement over the original length, the strain values converge, that is, they become more uniform as the thickness increases. Nonetheless the thickness value also increases towards convergence, having the net effect of increasing the value of the 1. It could be thought that the displacement would decrease in a linear manner to the increase in thickness so that the expression L/L is held constant, this is however not the case. From this discussion it can be concluded that the ratio between thickness (fibre direction length) and the transverse direction length of the model needs to be at least 5:1 to minimize end effects in determination of the 1. For the 2 the converse ratio applies. The greater the ratio is, the more accurate the results obtained through FA are. 4. Conclusions From the analysis conducted, it can be seen that FA provides a sufficient means to calculate the overall material properties of the composite material and achieves results with acceptable accuracy. In the case of varying fibre geometries, triangular fibres exist in practice but are not common. Hexagonal fibres, not to be confused with a hexagonal array, are even less common. Nonetheless, FA also provides a method in which manufacturing of the constituent lamina of a composite is not necessary in order to begin initial testing and can therefore predict geometries that even do not exist in practice. Laboratory testing is still required before the final manufacture of composite materials, due to the inclusion of voids and matrix- fibre interface. While FA provides a powerful tool to obtain pre-manufacturing analysis in order to determine if the manufacture of composites for specific applications is worthwhile in practice. The error rates, between the results obtained using MMA and FA is within 5% on average, which is an acceptable value. This is due to the fact that the 2 values had an approximate variance of 8% from the MMA values, whereas 1 and G 12 only had a variance of less than 3%. This error could be attributable to the fact that a composite 801

11 thickness of 10mm was used in contrast to the length of the model being 60mm. As discussed earlier in the results, the thickness has a direct effect on the overall material properties until convergence occurs. The ratio of thickness to length (see Table 11) needs to be considered to reduce end effects, and thus produce more accurate results. For convergence to occur with the 2, quite possibly a lesser thickness of 1-2mm could have been taken, or a greater length of material taken, or a combination of both to reduce the ratio of thickness to length, whereas with 1 the converse applies. It was found that the hexagonal fibres yielded the greatest results in overall material properties of the composite lamina. It is also noted that the hexagonal fibres had the highest fibre volume fraction of the varying geometries. It can therefore be stated from the results of this paper that the overall material properties are mainly dependant on the fibre and matrix volume fractions and are not dependant on geometry. Geometry will only define how the internal stresses and strains are dispersed within the material but, as the average strain was determined, this has no net effect on the overall material properties. In practice, however, the internal stresses due to varying the fibre-matrix geometries will have an impact on the fibre-matrix interface and will invariably affect the overall material properties and should not be overlooked. 5. References 1. Antoniou, A.., Kensche, C. and Philippidis, T. P., Mechanical behavior of glass/epoxy tubes under combined static loading. Part II: alidation of FA progressive damage model. Composites Science and Technology, 69(13), pp Bao, G., Hutchinson, J. W. and McMeeking, R. M., Particle reinforcement of ductile matrices against plastic-flow and creep. Acta Metallurgica t Materialia, 39(8), pp Feng, X. Q., Mai, Y. W. and Qin, Q. H., A micromechanical model for interpenetrating multiphase composites. Computational Materials Science, 28(3), pp Gasik, M. M., Micromechanical modelling of functionally graded materials. Computational Materials Science, 13(1-3), pp Grassi, M., Zhang, X. and Meo, M., Prediction of stiffness and stresses in z-fibre reinforced composite laminates. Composites Part a-applied Science and Manufacturing, 33(12), pp Levy, A. and Papazian, J. M., Tensile properties of short fiber-reinforced sic/al composites.2. Finite-element analysis. Metallurgical Transactions a-physical Metallurgy and Materials Science, 21(2), pp Li, Z. H., Schmauder, S., Wanner, A. and Dong, M., xpressions to characterize the flow behavior of particle-reinforced composites based on axisymmetrical unit-cell models. Scripta Metallurgica t Materialia, 33(8), pp Qin, Q. H., 2004a. Material properties of piezoelectric composites by BM and homogenization method. Composite structures, 66(1), pp Qin, Q. H., 2004b. Micromechanics-B solution for properties of piezoelectric materials with defects. ngineering analysis with boundary elements, 28(7), pp Qin, Q. H., Micromechanics-BM Analysis for Piezoelectric Composites. Tsinghua Science & Technology, 10(1), pp

12 11. Qin, Q. H., Mai, Y. W. and Yu, S. W., ffective moduli for thermopiezoelectric materials with microcracks. International Journal of Fracture, 91(4), pp Qin, Q. H. and Swain, M.., A micro-mechanics model of dentin mechanical properties. Biomaterials, 25(20), pp Qin, Q. H. and Yang, Q. S. (2008). Macro-Micro Theory on Multifield Coupling Behaivor of Hetereogenous Materials. Beijing, Higher ducation Press and Springer. 14. Qin, Q. H. and Yu, S. W. (1997). Using Mori-Tanaka method for effective moduli of cracked thermopiezoelectric materials. ICF 9-Sydney, Australia Qin, Q. H. and Yu, S. W., ffective moduli of piezoelectric material with microcavities. International Journal of Solids and Structures, 35(36), pp Tvergaard,., Analysis of tensile properties for a whisker-reinforced metal matrix composite. Acta Metallurgica t Materialia, 38(2), pp Wang, Y. and Qin, Q. H., A generalized self consistent model for effective elastic moduli of human dentine. Composites science and technology, 67(7), pp Wang, Y. and Qin, Q. H., Micromechanics for determining effective material properties of dentine composites. Advances in ngineering Mechanics, 1, pp Xu, L. M., Li, C., Fan, H. and Wang, B., lastic property prediction by finite element analysis with random distribution of materials for tungsten/silver composite. Journal of Materials Science, 43(17), pp Yang, Q. S. and Qin, Q. H., Fiber interactions and effective elasto-plastic properties of short-fiber composites. Composite structures, 54(4), pp Yang, Q. S. and Qin, Q. H., Modelling the effective elasto-plastic properties of unidirectional composites reinforced by fibre bundles under transverse tension and shear loading. Materials Science and ngineering: A, 344(1), pp Yang, Q. S. and Qin, Q. H., Micro-mechanical analysis of composite materials by BM. ngineering Analysis with Boundary lements, 28(8), pp Yu, S. W. and Qin, Q. H., Damage analysis of thermopiezoelectric properties: Part II. ffective crack model. Theoretical and Applied Fracture Mechanics, 25(3), pp Zahl, D. B. and McMeeking, R. M., The influence of residual-stress on the yielding of metal matrix composites. Acta Metallurgica t Materialia, 39(6), pp

CHEM-C2410: Materials Science from Microstructures to Properties Composites: basic principles

CHEM-C2410: Materials Science from Microstructures to Properties Composites: basic principles CHEM-C2410: Materials Science from Microstructures to Properties Composites: basic principles Mark Hughes 14 th March 2017 Today s learning outcomes To understand the role of reinforcement, matrix and

More information

QUESTION BANK Composite Materials

QUESTION BANK Composite Materials QUESTION BANK Composite Materials 1. Define composite material. 2. What is the need for composite material? 3. Mention important characterits of composite material 4. Give examples for fiber material 5.

More information

MATERIAL MECHANICS, SE2126 COMPUTER LAB 4 MICRO MECHANICS. E E v E E E E E v E E + + = m f f. f f

MATERIAL MECHANICS, SE2126 COMPUTER LAB 4 MICRO MECHANICS. E E v E E E E E v E E + + = m f f. f f MATRIAL MCHANICS, S226 COMPUTR LAB 4 MICRO MCHANICS 2 2 2 f m f f m T m f m f f m v v + + = + PART A SPHRICAL PARTICL INCLUSION Consider a solid granular material, a so called particle composite, shown

More information

Finite element modelling of infinitely wide Angle-ply FRP. laminates

Finite element modelling of infinitely wide Angle-ply FRP. laminates www.ijaser.com 2012 by the authors Licensee IJASER- Under Creative Commons License 3.0 editorial@ijaser.com Research article ISSN 2277 9442 Finite element modelling of infinitely wide Angle-ply FRP laminates

More information

MESH MODELING OF ANGLE-PLY LAMINATED COMPOSITE PLATES FOR DNS AND IPSAP

MESH MODELING OF ANGLE-PLY LAMINATED COMPOSITE PLATES FOR DNS AND IPSAP 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS MESH MODELING OF ANGLE-PLY LAMINATED COMPOSITE PLATES FOR DNS AND IPSAP Wanil Byun*, Seung Jo Kim*, Joris Wismans** *Seoul National University, Republic

More information

A FINITE ELEMENT MODEL TO PREDICT MULTI- AXIAL STRESS-STRAIN RESPONSE OF CERAMIC MATRIX COMPOSITES WITH STRAIN INDUCED DAMAGE

A FINITE ELEMENT MODEL TO PREDICT MULTI- AXIAL STRESS-STRAIN RESPONSE OF CERAMIC MATRIX COMPOSITES WITH STRAIN INDUCED DAMAGE A FINITE ELEMENT MODEL TO PREDICT MULTI- AXIAL STRESS-STRAIN RESPONSE OF CERAMIC MATRIX COMPOSITES WITH STRAIN INDUCED DAMAGE Daxu Zhang and D. R. Hayhurst School of Mechanical, Aerospace and Civil Engineering,

More information

Enhancing Prediction Accuracy In Sift Theory

Enhancing Prediction Accuracy In Sift Theory 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS Enhancing Prediction Accuracy In Sift Theory J. Wang 1 *, W. K. Chiu 1 Defence Science and Technology Organisation, Fishermans Bend, Australia, Department

More information

USING A HOMOGENIZATION PROCEDURE FOR PREDICTION OF MATERIAL PROPERTIES AND THE IMPACT RESPONSE OF UNIDIRECTIONAL COMPOSITE

USING A HOMOGENIZATION PROCEDURE FOR PREDICTION OF MATERIAL PROPERTIES AND THE IMPACT RESPONSE OF UNIDIRECTIONAL COMPOSITE Volume II: Fatigue, Fracture and Ceramic Matrix Composites USING A HOMOGENIZATION PROCEDURE FOR PREDICTION OF MATERIAL PROPERTIES AND THE IMPACT RESPONSE OF UNIDIRECTIONAL COMPOSITE A. D. Resnyansky and

More information

Non-conventional Glass fiber NCF composites with thermoset and thermoplastic matrices. F Talence, France Le Cheylard, France

Non-conventional Glass fiber NCF composites with thermoset and thermoplastic matrices. F Talence, France Le Cheylard, France 20 th International Conference on Composite Materials Copenhagen, 19-24th July 2015 Non-conventional Glass fiber NCF composites with thermoset and thermoplastic matrices. Thierry Lorriot 1, Jalal El Yagoubi

More information

Analysis of high loss viscoelastic composites

Analysis of high loss viscoelastic composites Analysis of high loss viscoelastic composites by C. P. Chen, Ph.D. and R. S. Lakes, Ph.D. Department of Engineering Physics Engineering Mechanics Program; Biomedical Engineering Department Materials Science

More information

SOME RESEARCH ON FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS

SOME RESEARCH ON FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS Mechanical Testing and Diagnosis ISSN 2247 9635, 2012 (II), Volume 3, 79-85 SOME RESEARCH ON FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS Valeriu DULGHERU, Viorel BOSTAN, Marin GUŢU Technical University

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 4, July 2013

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 4, July 2013 Delamination Studies in Fibre-Reinforced Polymer Composites K.Kantha Rao, Dr P. Shailesh, K. Vijay Kumar 1 Associate Professor, Narasimha Reddy Engineering College Hyderabad. 2 Professor, St. Peter s Engineering

More information

*Corresponding author: Keywords: Finite-element analysis; Multiscale modelling; Onset theory; Dilatational strain invariant.

*Corresponding author: Keywords: Finite-element analysis; Multiscale modelling; Onset theory; Dilatational strain invariant. 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS MICROMECHANICAL MODELLING OF TEST SPECIMENS FOR ONSET OF DILATATIONAL DAMAGE OF POLYMER MATRIX IN COMPOSITE MATERIALS T. D. Tran 1, D. Kelly 1*, G.

More information

A simple plane-strain solution for functionally graded multilayered isotropic cylinders

A simple plane-strain solution for functionally graded multilayered isotropic cylinders Structural Engineering and Mechanics, Vol. 24, o. 6 (2006) 000-000 1 A simple plane-strain solution for functionally graded multilayered isotropic cylinders E. Pan Department of Civil Engineering, The

More information

Size Effect of Clay Filler Particles on Mechanical Properties of Pultruded Polymer Composites Under Shear Loading

Size Effect of Clay Filler Particles on Mechanical Properties of Pultruded Polymer Composites Under Shear Loading Minnesota State University, Mankato Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato All Theses, Dissertations, and Other Capstone Projects Theses, Dissertations,

More information

Module 7: Micromechanics Lecture 29: Background of Concentric Cylinder Assemblage Model. Introduction. The Lecture Contains

Module 7: Micromechanics Lecture 29: Background of Concentric Cylinder Assemblage Model. Introduction. The Lecture Contains Introduction In this lecture we are going to introduce a new micromechanics model to determine the fibrous composite effective properties in terms of properties of its individual phases. In this model

More information

Fracture Mechanics of Composites with Residual Thermal Stresses

Fracture Mechanics of Composites with Residual Thermal Stresses J. A. Nairn Material Science & Engineering, University of Utah, Salt Lake City, Utah 84 Fracture Mechanics of Composites with Residual Thermal Stresses The problem of calculating the energy release rate

More information

VALIDATION of CoDA SOFTWARE for COMPOSITES SYNTHESIS AND PRELIMINARY DESIGN (or GETTING COMPOSITES USED - PART 2 )

VALIDATION of CoDA SOFTWARE for COMPOSITES SYNTHESIS AND PRELIMINARY DESIGN (or GETTING COMPOSITES USED - PART 2 ) VALIDATION of CoDA SOFTWARE for COMPOSITES SYNTHESIS AND PRELIMINARY DESIGN (or GETTING COMPOSITES USED - PART 2 ) Graham D Sims and William R Broughton Composites Design Data and Methods, Centre for Materials

More information

Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA

Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA What programs are in PROMAL? Master Menu The master menu screen with five separate applications from

More information

The Influence of Discontinuities on Elastic and Mechanical Properties of Composite Materials Reinforced with Woven Carbon, Carbon-kevlar and Kevlar

The Influence of Discontinuities on Elastic and Mechanical Properties of Composite Materials Reinforced with Woven Carbon, Carbon-kevlar and Kevlar The Influence of Discontinuities on Elastic and Mechanical Properties of Composite Materials Reinforced with Woven Carbon, Carbon-kevlar and Kevlar DUMITRU BOLCU 1 *, MIHAELA SAVA 2, ALIN DINITA 3, COSMIN

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:

More information

BIAXIAL STRENGTH INVESTIGATION OF CFRP COMPOSITE LAMINATES BY USING CRUCIFORM SPECIMENS

BIAXIAL STRENGTH INVESTIGATION OF CFRP COMPOSITE LAMINATES BY USING CRUCIFORM SPECIMENS BIAXIAL STRENGTH INVESTIGATION OF CFRP COMPOSITE LAMINATES BY USING CRUCIFORM SPECIMENS H. Kumazawa and T. Takatoya Airframes and Structures Group, Japan Aerospace Exploration Agency 6-13-1, Ohsawa, Mitaka,

More information

Thermo-Mechanical Response of Functionally Graded Materials for Extreme Environments

Thermo-Mechanical Response of Functionally Graded Materials for Extreme Environments Thermo-Mechanical Response of Functionally Graded Materials for Extreme Environments Introduction In recent years, functionally graded materials (FGMs) have attracted much interest in a wide range of engineering

More information

Stress-Strain Behavior

Stress-Strain Behavior Stress-Strain Behavior 6.3 A specimen of aluminum having a rectangular cross section 10 mm 1.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.

More information

MODELING AND ANALYSIS OF HEXAGONAL UNIT CELL FOR THE PREDICTION OF EFFECTIVE THERMAL CONDUCTIVITY

MODELING AND ANALYSIS OF HEXAGONAL UNIT CELL FOR THE PREDICTION OF EFFECTIVE THERMAL CONDUCTIVITY International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 5, May 2017, pp. 651 655, Article ID: IJMET_08_05_071 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=5

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain - Axial Loading Statics

More information

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and 6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile

More information

THE ROLE OF DELAMINATION IN NOTCHED AND UNNOTCHED TENSILE STRENGTH

THE ROLE OF DELAMINATION IN NOTCHED AND UNNOTCHED TENSILE STRENGTH THE ROLE OF DELAMINATION IN NOTCHED AND UNNOTCHED TENSILE STRENGTH M. R. Wisnom University of Bristol Advanced Composites Centre for Innovation and Science University Walk, Bristol BS8 1TR, UK M.Wisnom@bristol.ac.uk

More information

EVALUATION OF DAMAGE DEVELOPMENT FOR NCF COMPOSITES WITH A CIRCULAR HOLE BASED ON MULTI-SCALE ANALYSIS

EVALUATION OF DAMAGE DEVELOPMENT FOR NCF COMPOSITES WITH A CIRCULAR HOLE BASED ON MULTI-SCALE ANALYSIS THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS EVALUATION OF DAMAGE DEVELOPMENT FOR NCF COMPOSITES WITH A CIRCULAR HOLE BASED ON MULTI-SCALE ANALYSIS T. Kurashiki 1 *, Y. Matsushima 1, Y. Nakayasu

More information

U.S. South America Workshop. Mechanics and Advanced Materials Research and Education. Rio de Janeiro, Brazil. August 2 6, Steven L.

U.S. South America Workshop. Mechanics and Advanced Materials Research and Education. Rio de Janeiro, Brazil. August 2 6, Steven L. Computational Modeling of Composite and Functionally Graded Materials U.S. South America Workshop Mechanics and Advanced Materials Research and Education Rio de Janeiro, Brazil August 2 6, 2002 Steven

More information

FINITE ELEMENT ANALYSIS OF A LAYERED COMPOSITE CYLINDER USING THE CONNECTION BETWEEN THE MACRO- AND MICROSTRUCTURE

FINITE ELEMENT ANALYSIS OF A LAYERED COMPOSITE CYLINDER USING THE CONNECTION BETWEEN THE MACRO- AND MICROSTRUCTURE FINITE ELEMENT ANALYI OF A LAYERED COMPOITE CYLINDER UING THE CONNECTION BETWEEN THE MACRO- AND MICROTRUCTURE A. zekrényes Research Assistant, Department of Applied Mechanics, Budapest University of Technology

More information

EFFECT OF LAMINATION ANGLE AND THICKNESS ON ANALYSIS OF COMPOSITE PLATE UNDER THERMO MECHANICAL LOADING

EFFECT OF LAMINATION ANGLE AND THICKNESS ON ANALYSIS OF COMPOSITE PLATE UNDER THERMO MECHANICAL LOADING Journal of MECHANICAL ENGINEERING Strojnícky časopis, VOL 67 (217), NO 1, 5-22 EFFECT OF LAMINATION ANGLE AND THICKNESS ON ANALYSIS OF COMPOSITE PLATE UNDER THERMO MECHANICAL LOADING Arnab Choudhury 1,

More information

3D Compression Molding

3D Compression Molding Autodesk Simulation Moldflow Insight 2014 3D Compression Molding Executive summary In this work, the simulation results from a program developed for the three-dimensional analysis of compression molding

More information

Mechanical Behavior of Fullerene Reinforced Fiber Composites with Interface Defects through Homogenization Approach and Finite Element Method

Mechanical Behavior of Fullerene Reinforced Fiber Composites with Interface Defects through Homogenization Approach and Finite Element Method , pp.67-82 http://dx.doi.org/1.14257/ijast.215.78.6 Mechanical Behavior of Fullerene Reinforced Fiber Composites with Interface Defects through Homogenization Approach and Finite Element Method P. Prasanthi

More information

PRELIMINARY PREDICTION OF SPECIMEN PROPERTIES CLT and 1 st order FEM analyses

PRELIMINARY PREDICTION OF SPECIMEN PROPERTIES CLT and 1 st order FEM analyses OPTIMAT BLADES Page 1 of 24 PRELIMINARY PREDICTION OF SPECIMEN PROPERTIES CLT and 1 st order FEM analyses first issue Peter Joosse CHANGE RECORD Issue/revision date pages Summary of changes draft 24-10-02

More information

Stress and Displacement Analysis of a Rectangular Plate with Central Elliptical Hole

Stress and Displacement Analysis of a Rectangular Plate with Central Elliptical Hole Stress and Displacement Analysis of a Rectangular Plate with Central Elliptical Hole Dheeraj Gunwant, J. P. Singh mailto.dheerajgunwant@gmail.com, jitenderpal2007@gmail.com, AIT, Rampur Abstract- A static

More information

International Conference on Mechanics and Civil Engineering (ICMCE 2014)

International Conference on Mechanics and Civil Engineering (ICMCE 2014) International Conference on Mechanics and Civil Engineering (ICMCE 2014) Parametric Design and Experimental Study for Weak Area Structure of Circle Composite Fragile Cover Ran CAO 1,a, Guang-Ming ZHOU

More information

A synergistic damage mechanics approach to mechanical response of composite laminates with ply cracks

A synergistic damage mechanics approach to mechanical response of composite laminates with ply cracks Article A synergistic damage mechanics approach to mechanical response of composite laminates with ply cracks JOURNAL OF COMPOSITE MATERIALS Journal of Composite Materials 0(0) 7! The Author(s) 0 Reprints

More information

Composite Laminate Modeling

Composite Laminate Modeling omposite Laminate Modeling White Paper for Femap and NX Nastran Users Venkata Bheemreddy, Ph.D., Senior Staff Mechanical Engineer Adrian Jensen, PE, Senior Staff Mechanical Engineer WHAT THIS WHITE PAPER

More information

Chapter 7. Highlights:

Chapter 7. Highlights: Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true

More information

Available online at ScienceDirect. Procedia IUTAM 10 (2014 )

Available online at  ScienceDirect. Procedia IUTAM 10 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia IUTAM 10 (2014 ) 285 293 23rd International Congress of Theoretical and Applied Mechanics Nano-Mechanics foundations and experimental methodologies

More information

DESIGN OF LAMINATES FOR IN-PLANE LOADING

DESIGN OF LAMINATES FOR IN-PLANE LOADING DESIGN OF LAMINATES FOR IN-PLANOADING G. VERCHERY ISMANS 44 avenue F.A. Bartholdi, 72000 Le Mans, France Georges.Verchery@m4x.org SUMMARY This work relates to the design of laminated structures primarily

More information

CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS

CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS CHAPTER THE EFFECTS OF FORCES ON MATERIALS EXERCISE 1, Page 50 1. A rectangular bar having a cross-sectional area of 80 mm has a tensile force of 0 kn applied to it. Determine the stress in the bar. Stress

More information

S. Srinivasan, Technip Offshore, Inc., Houston, TX

S. Srinivasan, Technip Offshore, Inc., Houston, TX 9 th ASCE Specialty Conerence on Probabilistic Mechanics and Structural Reliability PROBABILISTIC FAILURE PREDICTION OF FILAMENT-WOUND GLASS-FIBER Abstract REINFORCED COMPOSITE TUBES UNDER BIAXIAL LOADING

More information

Stresses and Displacements in Functionally Graded Materials of Semi-Infinite Extent Induced by Rectangular Loadings

Stresses and Displacements in Functionally Graded Materials of Semi-Infinite Extent Induced by Rectangular Loadings Materials 2012, 5, 210-226; doi:10.3390/ma5020210 Article OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Stresses and Displacements in Functionally Graded Materials of Semi-Infinite

More information

The stiffness tailoring of megawatt wind turbine

The stiffness tailoring of megawatt wind turbine IOP Conference Series: Materials Science and Engineering OPEN ACCESS The stiffness tailoring of megawatt wind turbine To cite this article: Z M Li et al 2013 IOP Conf. Ser.: Mater. Sci. Eng. 52 052008

More information

Materials and Structures. Indian Institute of Technology Kanpur

Materials and Structures. Indian Institute of Technology Kanpur Introduction to Composite Materials and Structures Nachiketa Tiwari Indian Institute of Technology Kanpur Lecture 16 Behavior of Unidirectional Composites Lecture Overview Mt Material ilaxes in unidirectional

More information

UNIT I SIMPLE STRESSES AND STRAINS

UNIT I SIMPLE STRESSES AND STRAINS Subject with Code : SM-1(15A01303) Year & Sem: II-B.Tech & I-Sem SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) UNIT I SIMPLE STRESSES

More information

Nigerian Journal of Technology, Vol. 26, No. 2, June 2007 Edelugo 37

Nigerian Journal of Technology, Vol. 26, No. 2, June 2007 Edelugo 37 Nigerian Journal of Technology, Vol. 26, No. 2, June 2007 Edelugo 37 APPLICATION OF THE REISSNERS PLATE THEORY IN THE DELAMINATION ANALYSIS OF A THREE-DIMENSIONAL, TIME- DEPENDENT, NON-LINEAR, UNI-DIRECTIONAL

More information

ELECTROMECHANICAL RESPONSE OF PIEZOELECTRIC FOAMS

ELECTROMECHANICAL RESPONSE OF PIEZOELECTRIC FOAMS 18 TH INTRNATIONAL CONFRNC ON COMPOSIT MATRIALS LCTROMCHANICAL RSPONS OF PIZOLCTRIC FOAMS K.S. Challagulla 1 *, T.A. Venkatesh 1 School of ngineering, Laurentian University, Sudbury, Canada, Department

More information

Chapter 2 A Continuum Damage Model Based on Experiments and Numerical Simulations A Review

Chapter 2 A Continuum Damage Model Based on Experiments and Numerical Simulations A Review Chapter 2 A Continuum Damage Model Based on Experiments and Numerical Simulations A Review Michael Brünig Abstract The paper summarizes the author s activities in the field of damage mechanics. In this

More information

Tensile behaviour of anti-symmetric CFRP composite

Tensile behaviour of anti-symmetric CFRP composite Available online at www.sciencedirect.com Procedia Engineering 1 (211) 1865 187 ICM11 Tensile behaviour of anti-symmetric CFRP composite K. J. Wong a,b, *, X. J. Gong a, S. Aivazzadeh a, M. N. Tamin b

More information

A multiscale approach for composite materials as multifield continua

A multiscale approach for composite materials as multifield continua Materials Science Forum Vols. 539-543 (27) pp. 2551-2556 online at http://www.scientific.net (27) Trans Tech Publications, Switzerland A multiscale approach for composite materials as multifield continua

More information

APPLICATION OF A SCALAR STRAIN-BASED DAMAGE ONSET THEORY TO THE FAILURE OF A COMPLEX COMPOSITE SPECIMEN

APPLICATION OF A SCALAR STRAIN-BASED DAMAGE ONSET THEORY TO THE FAILURE OF A COMPLEX COMPOSITE SPECIMEN 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES APPLICATION OF A SCALAR STRAIN-BASED DAMAGE ONSET THEORY TO THE FAILURE OF A COMPLEX COMPOSITE SPECIMEN Tuyen Tran*, Dan Simkins**, Shen Hin Lim*,

More information

Modeling of Interphases in Fiber-Reinforced Composites Under Transverse Loading Using the Boundary Element Method

Modeling of Interphases in Fiber-Reinforced Composites Under Transverse Loading Using the Boundary Element Method Y. J. Liu 1 Assistant Professor, e-mail: Yijun.Liu@uc.edu Mem. ASME N. Xu Graduate Student Department of Mechanical, Industrial, and Nuclear Engineering, P.O. Box 210072, University of Cincinnati, Cincinnati,

More information

Laboratory 4 Bending Test of Materials

Laboratory 4 Bending Test of Materials Department of Materials and Metallurgical Engineering Bangladesh University of Engineering Technology, Dhaka MME 222 Materials Testing Sessional.50 Credits Laboratory 4 Bending Test of Materials. Objective

More information

Numerical modelling of induced tensile stresses in rock in response to impact loading

Numerical modelling of induced tensile stresses in rock in response to impact loading Numerical modelling of induced tensile stresses in rock in response to impact loading M.T. Mnisi, D.P. Roberts and J.S. Kuijpers Council for Scientific and Industrial Research (CSIR): Natural Resources

More information

EXPERIMENTAL AND NUMERICAL STUDY OF THE ENERGY ABSORPTION CAPACITY OF PULTRUDED COMPOSITE TUBES

EXPERIMENTAL AND NUMERICAL STUDY OF THE ENERGY ABSORPTION CAPACITY OF PULTRUDED COMPOSITE TUBES EXPERIMENTAL AND NUMERICAL STUDY OF THE ENERGY ABSORPTION CAPACITY OF PULTRUDED COMPOSITE TUBES D. Kakogiannis 1, D. Van Hemelrijck 1, J. Wastiels 1, S. Palanivelu 2, W. Van Paepegem 2, K. De Wolf 3, J.

More information

Studies of Bimaterial Interface Fracture with Peridynamics Fang Wang 1, Lisheng Liu 2, *, Qiwen Liu 1, Zhenyu Zhang 1, Lin Su 1 & Dan Xue 1

Studies of Bimaterial Interface Fracture with Peridynamics Fang Wang 1, Lisheng Liu 2, *, Qiwen Liu 1, Zhenyu Zhang 1, Lin Su 1 & Dan Xue 1 International Power, Electronics and Materials Engineering Conference (IPEMEC 2015) Studies of Bimaterial Interface Fracture with Peridynamics Fang Wang 1, Lisheng Liu 2, *, Qiwen Liu 1, Zhenyu Zhang 1,

More information

Frequency Response of Composite Laminates at Various Boundary Conditions

Frequency Response of Composite Laminates at Various Boundary Conditions International Journal of Engineering Science Invention (IJESI) ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 www.ijesi.org ǁ PP.11-15 Frequency Response of Composite Laminates at Various Boundary Conditions

More information

The Accuracy of Characteristic Length Method on Failure Load Prediction of Composite Pinned Joints

The Accuracy of Characteristic Length Method on Failure Load Prediction of Composite Pinned Joints , June 30 - July 2, 2010, London, U.K. The Accuracy of Characteristic Length Method on Failure Load Prediction of Composite Pinned Joints O. Aluko, and Q. Mazumder Abstract An analytical model was developed

More information

LAMINATED COMPOSITE PLATES

LAMINATED COMPOSITE PLATES LAMINATED COMPOSITE PLATES David Roylance Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, MA 02139 February 10, 2000 Introduction This document is intended

More information

Micro-meso draping modelling of non-crimp fabrics

Micro-meso draping modelling of non-crimp fabrics Micro-meso draping modelling of non-crimp fabrics Oleksandr Vorobiov 1, Dr. Th. Bischoff 1, Dr. A. Tulke 1 1 FTA Forschungsgesellschaft für Textiltechnik mbh 1 Introduction Non-crimp fabrics (NCFs) are

More information

ME 582 Advanced Materials Science. Chapter 2 Macromechanical Analysis of a Lamina (Part 2)

ME 582 Advanced Materials Science. Chapter 2 Macromechanical Analysis of a Lamina (Part 2) ME 582 Advanced Materials Science Chapter 2 Macromechanical Analysis of a Lamina (Part 2) Laboratory for Composite Materials Research Department of Mechanical Engineering University of South Alabama, Mobile,

More information

Passive Damping Characteristics of Carbon Epoxy Composite Plates

Passive Damping Characteristics of Carbon Epoxy Composite Plates Journal of aterials Science and Engineering A 6 (1-2) (2016) 35-42 doi: 10.17265/2161-6213/2016.1-2.005 D DAVID PUBLISHIG Passive Damping Characteristics of Carbon Epoxy Composite Plates Dileep Kumar K

More information

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering Mechanics Of Solids Suraj kr. Ray (surajjj2445@gmail.com) Department of Civil Engineering 1 Mechanics of Solids is a branch of applied mechanics that deals with the behaviour of solid bodies subjected

More information

Don Robbins, Andrew Morrison, Rick Dalgarno Autodesk, Inc., Laramie, Wyoming. Abstract

Don Robbins, Andrew Morrison, Rick Dalgarno Autodesk, Inc., Laramie, Wyoming. Abstract PROGRESSIVE FAILURE SIMULATION OF AS-MANUFACTURED SHORT FIBER FILLED INJECTION MOLDED PARTS: VALIDATION FOR COMPLEX GEOMETRIES AND COMBINED LOAD CONDITIONS Don Robbins, Andrew Morrison, Rick Dalgarno Autodesk,

More information

Debonding process in composites using BEM

Debonding process in composites using BEM Boundary Elements XXVII 331 Debonding process in composites using BEM P. Prochazka & M. Valek Czech Technical University, Prague, Czech Republic Abstract The paper deals with the debonding fiber-matrix

More information

ID-1160 REAL-TIME DETECTION AND EXPLICIT FINITE ELEMENT SIMULATION OF DELAMINATION IN COMPOSITE LAMINATES UNDER IMPACT LOADING

ID-1160 REAL-TIME DETECTION AND EXPLICIT FINITE ELEMENT SIMULATION OF DELAMINATION IN COMPOSITE LAMINATES UNDER IMPACT LOADING ID-116 REAL-TIME DETECTION AND EXPLICIT FINITE ELEMENT SIMULATION OF DELAMINATION IN COMPOSITE LAMINATES UNDER IMPACT LOADING K. Minnaar and M. Zhou = School of Mechanical Engineering Georgia Institute

More information

Cellular solid structures with unbounded thermal expansion. Roderic Lakes. Journal of Materials Science Letters, 15, (1996).

Cellular solid structures with unbounded thermal expansion. Roderic Lakes. Journal of Materials Science Letters, 15, (1996). 1 Cellular solid structures with unbounded thermal expansion Roderic Lakes Journal of Materials Science Letters, 15, 475-477 (1996). Abstract Material microstructures are presented which can exhibit coefficients

More information

Multiscale modeling of failure in ABS materials

Multiscale modeling of failure in ABS materials Institute of Mechanics Multiscale modeling of failure in ABS materials Martin Helbig, Thomas Seelig 15. International Conference on Deformation, Yield and Fracture of Polymers Kerkrade, April 2012 Institute

More information

EXPERIMENTAL STUDY ON YOUNG S MODULUS E OF A POLYMER COMPOSITE REINFORCED BY NANO TITANIUM DIOXIDE PARTICLES

EXPERIMENTAL STUDY ON YOUNG S MODULUS E OF A POLYMER COMPOSITE REINFORCED BY NANO TITANIUM DIOXIDE PARTICLES Vietnam Journal of Mechanics, VAST, Vol. 34, No. (202), pp. 9 25 EXPERIMENTAL STUDY ON YOUNG S MODULUS E OF A POLYMER COMPOSITE REINFORCED BY NANO TITANIUM DIOXIDE PARTICLES Nguyen Dinh Duc, Dinh Khac

More information

THREE DIMENSIONAL STRESS ANALYSIS OF THE T BOLT JOINT

THREE DIMENSIONAL STRESS ANALYSIS OF THE T BOLT JOINT THREE DIMENSIONAL STRESS ANALYSIS OF THE T BOLT JOINT Víctor Martínez 1, Alfredo Güemes 2, Norbert Blanco 1, Josep Costa 1 1 Escola Politècnica Superior. Universitat de Girona. Girona, Spain (17071) 2

More information

EXPERIMENTAL CHARACTERIZATION AND COHESIVE LAWS FOR DELAMINATION OF OFF-AXIS GFRP LAMINATES

EXPERIMENTAL CHARACTERIZATION AND COHESIVE LAWS FOR DELAMINATION OF OFF-AXIS GFRP LAMINATES 20 th International Conference on Composite Materials Copenhagen, 19-24 th July 2015 EXPERIMENTAL CHARACTERIZATION AND COHESIVE LAWS FOR DELAMINATION OF OFF-AXIS GFRP LAMINATES Esben Lindgaard 1 and Brian

More information

Interlaminar fracture characterization in composite materials by using acoustic emission

Interlaminar fracture characterization in composite materials by using acoustic emission 5th International Symposium on NDT in Aerospace, 13-15th November 2013, Singapore Interlaminar fracture characterization in composite materials by using acoustic emission Ian SILVERSIDES 1, Ahmed MASLOUHI

More information

An investigation of the mechanical behaviour of carbon epoxy cross ply cruciform specimens under biaxial loading

An investigation of the mechanical behaviour of carbon epoxy cross ply cruciform specimens under biaxial loading An investigation of the mechanical behaviour of carbon epoxy cross ply cruciform specimens under biaxial loading A. Makris, C. Ramault, D. Van Hemelrijck Department of Mechanics of Materials and Constructions,

More information

Strain-Based Design Model for FRP-Confined Concrete Columns

Strain-Based Design Model for FRP-Confined Concrete Columns SP-230 57 Strain-Based Design Model for FRP-Confined Concrete Columns by N. Saenz and C.P. Pantelides Synopsis: A constitutive strain-based confinement model is developed herein for circular concrete columns

More information

EVALUATION OF THERMAL TRANSPORT PROPERTIES USING A MICRO-CRACKING MODEL FOR WOVEN COMPOSITE LAMINATES

EVALUATION OF THERMAL TRANSPORT PROPERTIES USING A MICRO-CRACKING MODEL FOR WOVEN COMPOSITE LAMINATES EVALUATION OF THERMAL TRANSPORT PROPERTIES USING A MICRO-CRACKING MODEL FOR WOVEN COMPOSITE LAMINATES C. Luo and P. E. DesJardin* Department of Mechanical and Aerospace Engineering Universit at Buffalo,

More information

COMPUTER AIDED DESIGN IN CASE OF THE LAMINATED COMPOSITE MATERIALS

COMPUTER AIDED DESIGN IN CASE OF THE LAMINATED COMPOSITE MATERIALS 6 th International Conference Computational Mechanics and Virtual Engineering COMEC 15 15-16 October 15, Braşov, Romania COMPUER AIDED DESIGN IN CASE OF HE LAMINAED COMPOSIE MAERIALS Camelia Cerbu ransilvania

More information

Flexible Pavement Stress Analysis

Flexible Pavement Stress Analysis Flexible Pavement Stress Analysis Dr. Antonis Michael Frederick University Notes Courtesy of Dr. Christos Drakos, University of Florida Need to predict & understand stress/strain distribution within the

More information

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour Tensile-Test Specimen and Machine Review of Mechanical Properties Outline Tensile test True stress - true strain (flow curve) mechanical properties: - Resilience - Ductility - Toughness - Hardness A standard

More information

Design of a fastener based on negative Poisson's ratio foam adapted from

Design of a fastener based on negative Poisson's ratio foam adapted from 1 Design of a fastener based on negative Poisson's ratio foam adapted from Choi, J. B. and Lakes, R. S., "Design of a fastener based on negative Poisson's ratio foam", Cellular Polymers, 10, 205-212 (1991).

More information

Generic Strategies to Implement Material Grading in Finite Element Methods for Isotropic and Anisotropic Materials

Generic Strategies to Implement Material Grading in Finite Element Methods for Isotropic and Anisotropic Materials University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Engineering Mechanics Dissertations & Theses Mechanical & Materials Engineering, Department of Winter 12-9-2011 Generic

More information

REPRESENTING MATRIX CRACKS THROUGH DECOMPOSITION OF THE DEFORMATION GRADIENT TENSOR IN CONTINUUM DAMAGE MECHANICS METHODS

REPRESENTING MATRIX CRACKS THROUGH DECOMPOSITION OF THE DEFORMATION GRADIENT TENSOR IN CONTINUUM DAMAGE MECHANICS METHODS 20 th International Conference on Composite Materials Copenhagen, 19-24 th July 2015 REPRESENTING MATRIX CRACKS THROUGH DECOMPOSITION OF THE DEFORMATION GRADIENT TENSOR IN CONTINUUM DAMAGE MECHANICS METHODS

More information

Graduate School of Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto, Japan.

Graduate School of Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto, Japan. On relationship between contact surface rigidity and harmonic generation behavior in composite materials with mechanical nonlinearity at fiber-matrix interface (Singapore November 2017) N. Matsuda, K.

More information

FREE VIBRATION OF THERMALLY PRE/POST-BUCKLED CIRCULAR THIN PLATES EMBEDDED WITH SHAPE MEMORY ALLOY FIBERS

FREE VIBRATION OF THERMALLY PRE/POST-BUCKLED CIRCULAR THIN PLATES EMBEDDED WITH SHAPE MEMORY ALLOY FIBERS Journal of Thermal Stresses, 33: 79 96, 2010 Copyright Taylor & Francis Group, LLC ISSN: 0149-5739 print/1521-074x online DOI: 10.1080/01495730903409235 FREE VIBRATION OF THERMALLY PRE/POST-BUCKLED CIRCULAR

More information

Anisotropic modeling of short fibers reinforced thermoplastics materials with LS-DYNA

Anisotropic modeling of short fibers reinforced thermoplastics materials with LS-DYNA Anisotropic modeling of short fibers reinforced thermoplastics materials with LS-DYNA Alexandre Hatt 1 1 Faurecia Automotive Seating, Simplified Limited Liability Company 1 Abstract / Summary Polymer thermoplastics

More information

Malaysia Phone: ; Fax:

Malaysia Phone: ; Fax: International Conference on Mechanical Engineering Research (ICMER013), 1-3 July 013 Bukit Gambang Resort City, Kuantan, Pahang, Malaysia Organized By Faculty of Mechanical Engineering, Universiti Malaysia

More information

A CRITERION OF TENSILE FAILURE FOR HYPERELASTIC MATERIALS AND ITS APPLICATION TO VISCOELASTIC-VISCOPLASTIC MATERIALS

A CRITERION OF TENSILE FAILURE FOR HYPERELASTIC MATERIALS AND ITS APPLICATION TO VISCOELASTIC-VISCOPLASTIC MATERIALS MTS ADHESIVES PROGRAMME 1996-1999 PERFORMANCE OF ADHESIVE JOINTS Project: PAJ1; Failure Criteria and their Application to Visco-Elastic/Visco-Plastic Materials Report 2 A CRITERION OF TENSILE FAILURE FOR

More information

SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS

SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS de Aguiar, José M., josemaguiar@gmail.com Faculdade de Tecnologia de São Paulo, FATEC-SP Centro Estadual de Educação Tecnológica Paula Souza. CEETEPS

More information

PLAIN WEAVE REINFORCEMENT IN C/C COMPOSITES VISUALISED IN 3D FOR ELASTIC PARAMETRES

PLAIN WEAVE REINFORCEMENT IN C/C COMPOSITES VISUALISED IN 3D FOR ELASTIC PARAMETRES THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS PLAIN WEAVE REINFORCEMENT IN C/C COMPOSITES VISUALISED IN 3D FOR ELASTIC PARAMETRES P. Tesinova Technical University of Liberec, Faculty of Textile

More information

Effect of Machining Parameters on Milled Natural Fiber- Reinforced Plastic Composites

Effect of Machining Parameters on Milled Natural Fiber- Reinforced Plastic Composites Journal of Advanced Mechanical Engineering (2013) doi:10.7726/jame.2013.1001 Research Article Effect of Machining Parameters on Milled Natural Fiber- Reinforced Plastic Composites G Dilli Babu 1*, K. Sivaji

More information

Numerical investigation on the position of holes for reducing stress concentration in composite plates with bolted and riveted joints

Numerical investigation on the position of holes for reducing stress concentration in composite plates with bolted and riveted joints THEORETICAL & APPLIED MECHANICS LETTERS 1, 041005 (2011) Numerical investigation on the position of holes for reducing stress concentration in composite plates with bolted and riveted joints M. R. Khoshravan,

More information

University of Bristol - Explore Bristol Research. Early version, also known as pre-print

University of Bristol - Explore Bristol Research. Early version, also known as pre-print Hallett, S. R., & Wisnom, M. R. (2006). Numerical investigation of progressive damage and the effect of layup in notched tensile tests. Journal of Composite Materials, 40 (14), 1229-1245. DOI: 10.1177/0021998305057432

More information

MECHANICAL CHARACTERISTICS OF CARBON FIBER YACHT MASTS

MECHANICAL CHARACTERISTICS OF CARBON FIBER YACHT MASTS MECHANICAL CHARACTERISTICS OF CARBON FIBER YACHT MASTS This paper provides a preliminary stress analysis of a carbon reinforced layered cylinder such as would be found in a yacht mast. The cylinder is

More information

MAXIMUM ENTROPY-BASED UNCERTAINTY MODELING AT THE FINITE ELEMENT LEVEL. Pengchao Song and Marc P. Mignolet

MAXIMUM ENTROPY-BASED UNCERTAINTY MODELING AT THE FINITE ELEMENT LEVEL. Pengchao Song and Marc P. Mignolet MAXIMUM ENTROPY-BASED UNCERTAINTY MODELING AT THE FINITE ELEMENT LEVEL Pengchao Song and Marc P. Mignolet SEMTE, Faculties of Mechanical and Aerospace Engineering, Arizona State University, 51 E. Tyler

More information

SIMULATION OF PLANE STRAIN FIBER COMPOSITE PLATES IN BENDING THROUGH A BEM/ACA/HM FORMULATION

SIMULATION OF PLANE STRAIN FIBER COMPOSITE PLATES IN BENDING THROUGH A BEM/ACA/HM FORMULATION 8 th GRACM International Congress on Computational Mechanics Volos, 12 July 15 July 2015 SIMULATION OF PLANE STRAIN FIBER COMPOSITE PLATES IN BENDING THROUGH A BEM/ACA/HM FORMULATION Theodore V. Gortsas

More information

Program: Recent Trends

Program: Recent Trends The SNL/MSU/DOE Fatigue Program: Recent Trends John Mandell Montana State University 2012 SNL Blade Workshop May 30 - June 1, 2012 Outline Overview of MSU Fatigue Program on Wind Blade Materials: Testing

More information

Chapter 3. Load and Stress Analysis

Chapter 3. Load and Stress Analysis Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

More information

LAMINATION THEORY FOR THE STRENGTH OF FIBER COMPOSITE MATERIALS

LAMINATION THEORY FOR THE STRENGTH OF FIBER COMPOSITE MATERIALS XXII. LAMINATION THEORY FOR THE STRENGTH OF FIBER COMPOSITE MATERIALS Introduction The lamination theory for the elastic stiffness of fiber composite materials is the backbone of the entire field, it holds

More information