# Module 7: Micromechanics Lecture 29: Background of Concentric Cylinder Assemblage Model. Introduction. The Lecture Contains

Save this PDF as:

Size: px
Start display at page:

Download "Module 7: Micromechanics Lecture 29: Background of Concentric Cylinder Assemblage Model. Introduction. The Lecture Contains"

## Transcription

1 Introduction In this lecture we are going to introduce a new micromechanics model to determine the fibrous composite effective properties in terms of properties of its individual phases. In this model a composite is represented as an assemblage of concentric cylinders. The core of this cylinder is a fibre and surrounding annulus is a matrix material. This model is called concentric cylinder assemblage (CCA) model. In this lecture we give the introduction and back ground of this model. The Lecture Contains Concentric Cylinder Assemblage (CCA) Model Background of CCA Model Analysis of Concentric Cylinders Home Work References file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture29/29_1.htm[8/18/2014 3:57:06 PM]

2 Concentric Cylinder Assemblage (CCA) Model As we know, the unidirectional fibrous composite has fibres embedded in matrix material. The fibres are, in general, cylindrical in nature. Thus, Hashin and Rosen [1] introduced a micromechanical model in which the composite is represented as an assemblage of concentric cylinders. The inner cylinder represents the fiber and outer annulus is matrix. The fibres are considered to be infinitely long cylinders and matrix is considered to be continuous. The model is shown in Figure 7.10(a). For each individual fibre of radius, there is associated an annulus of matrix material of inner radius and outer radius. The individual cylinder, thus formed, is called as a composite cylinder. This is shown in Figure 7.10 (b). It should be noted that the all cylinders do not have the same radii. The radii of each cylinder vary in a way such that they completely fill the composite volume. However, the ratio of the fiber cylinder to the outer radius of matrix cylinder is same for all cylinders. This leads to the fact that all composite cylinders have the same volume fractions. Further, the resulting material is transversely isotropic in nature. The advantage of this model is that analysis of one composite cylinder is sufficient to determine the four out of five effective elastic moduli of a transversely isotropic material. Figure 7.10: (a) Concentric cylinder assemblage model (b) composite cylinder and (c) homogeneous single cylinder file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture29/29_2.htm[8/18/2014 3:57:06 PM]

3 Background of CCA Model Here, we will relate five effective independent stiffness coefficients with the measurable effective engineering constants. In the following, for a transversely isotropic material we derive relations between the stiffness coefficients and engineering constants. The unidirectional fibrous composite is transversely isotropic in nature in plane perpendicular to fibre direction (or in plane perpendicular to the plane in which fibres are placed together). The stress strain relations for the transversely isotropic material in 23 plane is written as (7.148) Thus, there are five constants, and are independent constants. These constants define the effective properties of the composite. Note that in above relations tensorial shear strains are used. The relation between these independent constants and effective engineering constants can be given as follows: Consider an uniaxial stress state such that and.. Putting this in Equation (7.148) we can solve for the normal strains. The normal strains in terms of and are given as (7.149) From the first of the above equation, we can write (7.150) We define the effective axial modulus through following equation as (7.151) Comparing this equation with Equation (7.150) we can write for as file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture29/29_3.htm[8/18/2014 3:57:06 PM]

4 (7.152) file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture29/29_3.htm[8/18/2014 3:57:06 PM]

5 Similarly, we define the following the Poisson s ratios and as (7.153) Thus, using Equation (7.149), we get (7.154) The other engineering constants that can be directly related to the effective stiffness coefficients are (7.155) Equations (7.152), (7.154) and (7.155) are four equations with five effective stiffness constants. We need one more equation in effective stiffness constants that relates an effective engineering constant. Then we can solve for and in terms of effective engineering constants. We develop this equation as follows. Let us define the plane strain bulk modulus, to the state of strain corresponding (7.156) For this state of strain, from the constitutive equation in Equation (7.148) the normal stresses are given as (7.157) Let us define where (7.158) is defined as effective plane strain bulk modulus. Now, Equations (7.152), (7.154), (7.155) and (7.158) can be inverted to give (7.159) In the above exercise, the measurable properties are and. However, one can file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture29/29_4.htm[8/18/2014 3:57:06 PM]

6 measure the other engineering properties and express the effective stiffness coefficients. Let us consider that a uniaxial tension normal to the fibre direction is applied such that and. Putting this in Equation (7.148) we can solve for the normal strains. The normal strains in terms of and are given as (7.160) From the second of the above equation, we can write (7.161) file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture29/29_4.htm[8/18/2014 3:57:06 PM]

7 Now we define the effective Poisson s ratios and as (7.162) Thus, using Equation (7.149), we get (7.163) and (7.164) Further, from the symmetry consideration we have the following relations (7.165) and from the reciprocal relations (7.166) Thus, we can write the following useful relations as (7.167) Thus, if we know the effective engineering constants and, then we can find the effective stiffness coefficients for transversely isotropic material. Further, the remaining engineering constants can also be determined. The effective stiffness can be determined from the composite cylinder either using the concept of equivalence of strain energy or the basic definitions for each of the engineering property. For the equivalence of strain energy approach the strain energy of the composite cylinder must be equal to the strain energy of the single homogeneous cylinder. The strain energy in a given volume of the cylinder is given as (7.168) file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture29/29_5.htm[8/18/2014 3:57:07 PM]

8 In the case of a composite cylinder, the integral over volume extends over the volume of the core cylinder plus the volume of the annulus and in case of homogeneous cylinder it is over the one cylinder. It should be noted that both cylinder systems are subjected to same deformations. This approach can be complicated in the case of concentric cylinders as it involves both the geometry and elastic properties of two cylinders. In the following sections we derive the effective engineering constants using the CCA model and basic definitions of engineering properties as follows. In this, the concentric cylinders are axially loaded. The composite axial modulus can be defined as axial force divided by axial strain produced by this axial force. Further, in this loading the assumption is that no other stresses are applied and the cylinders are free to deform. file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture29/29_5.htm[8/18/2014 3:57:07 PM]

9 Analysis of Concentric Cylinders When the concentric cylinders are subjected to either an axial load or a uniform radial stress then there are no shear stresses produced. Further, in an infinite cylinder away from the ends, the stresses are independent of. For this state of stress, there will be one equilibrium equation given as (7.169) where, and are radial and circumferential stresses, respectively. For a cylindrical coordinate system with no shear stresses, we can write normal stresses for transversely isotropic material as (7.170) Similarly, for transversely isotropic fibre and isotropic matrix the normal stresses are given as (7.171) Now, we write the strain displacement relations in cylindrical coordinates as (7.172) where, and are axial, circumferential or tangential and radial displacements, respectively. Further, with no shear effects and axisymmetry the tangential displacement is zero. It should be noted that the stresses are not function of. Hence, the strains are independent of. Hence, the displacement can be a function of. However, can be function of and, at most, a linear function of. Hence, in the expression for strain there is partial derivative and not in the expression for. For the expression of we have the full derivative with respect to. Thus, the normal strains for the displacements in this case simplify to When these strain-displacement relations are used in stress-strain relations then the equilibrium equation in Equation (7.169) gives an ordinary differential equation in as file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture29/29_6.htm[8/18/2014 3:57:07 PM]

10 (7.173) file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture29/29_6.htm[8/18/2014 3:57:07 PM]

11 The solution to this equation is (7.174) Thus, the solution for fibre is (7.175) and the solution for the matrix is (7.176) The axial displacement in fibre and matrix can be determined by integrating the first of Equation (7.172) with respect to. In this equation the left hand side is independent of. Thus, (7.177) It should be noted that and are constants and and are the arbitrary constants of integration. The constants and and functions and are unknown. These can be determined from specific boundary conditions. The displacement in fibre as given in Equation (7.175) should be bounded when. This requires the condition that (7.178) Further, the displacements are continuous at the interface of fibre and matrix. This results in (7.179) Using Equation (7.178) and Equation (7.179), the continuity conditions become file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture29/29_7.htm[8/18/2014 3:57:07 PM]

12 (7.180) On equating the terms in and in the second of Equation (7.180), we get (7.181) This means that the strains in -direction in fibre and matrix are given by same function of. Further, the unknown constant in fibre and matrix is same. This constant, in fact, is the axial strain. Therefore, it is denoted as. file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture29/29_7.htm[8/18/2014 3:57:07 PM]

13 The third continuity condition required is the continuity of the stress component normal to the interface between the fibre and matrix, that is, (7.182) Using, Equation (7.171) and the unknown constants in above condition, we get (7.183) The unknown constants and (7.183) can be determined from the first of Equation (7.180) and Equation (7.183) along with additional equations that will result due to the application of specific load or deformation, which in turn will depend upon which of the engineering property is to be determined. Let us write the strain displacement relations for fibre and matrix using Equation (7.172) and Equation (7.175) through Equation (7.177). (7.184) Note that the strains in the fibre are spatially uniform. Using above relation in Equation (7.171) we get the stresses in fibre and matrix as (7.185) From the above equation, it is easy to see that like strains, the stresses are also spatially uniform in the fibre. Further, the radial and hoop/transverse stresses are identical for this case. file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture29/29_8.htm[8/18/2014 3:57:07 PM]

14 Home Work: 1. What is a CCA model? 2. Give a brief description of the background for CCA model. file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture29/29_9.html[8/18/2014 3:57:07 PM]

15 References: Z Hashin, BW Rosen. The elastic moduli of fibre-reinforced materials. J. Appl. Mech. 1964, Vol. 31, pp Z Hashin. Analysis of properties of fiber composites with anisotropic constituents. J. Appl. Mech. 1979, Vol. 46, pp RM Christensen. Mechanics of Composite Materials. Krieger Publishing Company, Florida, Z. Hashin: On elastic behaviour of fibre reinforced materials of arbitrary transverse phase geometry. J. Mech. Phys. Solids, 1965, Vol. 13, pp Z. Hashin: Analysis of composite materials-a survey. J. Mech. Phys. Solids, 1983, Vol. 50, pp YC Fung. Foundations of Solid Mechanics. Prentice Hall International, Inc., CT Herakovich. Mechanics of Fibrous Composites, John Wiley & Sons, Inc. New York, MW Hyer, AM Waas. Micromechanics of linear elastic continuous fibre composites, in Comprehensive Composite Materials. Vol. 1: Fiber Reinforcements and General Theory of Composites, Eds. A Kelly, C Zweben. Elsevier, JC Halpin Affdl, JL Kardos. The Halpin-Tsai equations: A review. 1976, Vol. 16(5), pp Z Hashin, S Shtrikman. A variational approach to the theory of elastic behaviour of multiphase materials. J. Mech. Phys. Solids, 1963, Vol. 11, pp file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture29/29_10.html[8/18/2014 3:57:08 PM]

### Module 5: Laminate Theory Lecture 19: Hygro -thermal Laminate Theory. Introduction: The Lecture Contains: Laminate Theory with Thermal Effects

Module 5: Laminate Theory Lecture 19: Hygro -thermal Laminate Theory Introduction: In this lecture we are going to develop the laminate theory with thermal and hygral effects. Then we will develop the

### Analysis of high loss viscoelastic composites

Analysis of high loss viscoelastic composites by C. P. Chen, Ph.D. and R. S. Lakes, Ph.D. Department of Engineering Physics Engineering Mechanics Program; Biomedical Engineering Department Materials Science

### Chapter 3. Load and Stress Analysis

Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

### MATERIAL MECHANICS, SE2126 COMPUTER LAB 4 MICRO MECHANICS. E E v E E E E E v E E + + = m f f. f f

MATRIAL MCHANICS, S226 COMPUTR LAB 4 MICRO MCHANICS 2 2 2 f m f f m T m f m f f m v v + + = + PART A SPHRICAL PARTICL INCLUSION Consider a solid granular material, a so called particle composite, shown

### Lectures on. Constitutive Modelling of Arteries. Ray Ogden

Lectures on Constitutive Modelling of Arteries Ray Ogden University of Aberdeen Xi an Jiaotong University April 2011 Overview of the Ingredients of Continuum Mechanics needed in Soft Tissue Biomechanics

### MATERIAL ELASTIC ANISOTROPIC command

MATERIAL ELASTIC ANISOTROPIC command.. Synopsis The MATERIAL ELASTIC ANISOTROPIC command is used to specify the parameters associated with an anisotropic linear elastic material idealization. Syntax The

### Module 1. Lecture 1. References:

Module 1 Lecture 1 o MF Ashby. Technology of 1990s: Advanced materials and predictive design. Phil. Trans. R. Soc. Lond. A. 1987; Vol. 322, pp. 393-407. o JY Lund, JP Byrne. Leonardo Da Vinci's tensile

### L e c t u r e. D r. S a s s a n M o h a s s e b

The Scaled smteam@gmx.ch Boundary Finite www.erdbebenschutz.ch Element Method Lecture A L e c t u r e A1 D r. S a s s a n M o h a s s e b V i s i t i n g P r o f e s s o r M. I. T. C a m b r i d g e December

### Aspect Ratio Requirements for Nanotube-Reinforced, Polymer-Matrix Composites

Aspect Ratio Requirements for Nanotube-Reinforced, Polymer-Matrix Composites J.A.Nairn Wood Science and Engineering, Oregon State University, Corvallis, OR 97330, USA Abstract A fiber s efficiency in a

### Module 4: Behaviour of a Laminae-II. Learning Unit 1: M1. M4.1 Mechanics of Composites. M4.1.1 Introduction to Mechanics of Composites

Module 4: Behaviour of a Laminae-II Learning Unit 1: M1 M4.1 Mechanics of Composites M4.1.1 Introduction to Mechanics of Composites The relation between ply uniaxial strengths and constituent properties

### A simple plane-strain solution for functionally graded multilayered isotropic cylinders

Structural Engineering and Mechanics, Vol. 24, o. 6 (2006) 000-000 1 A simple plane-strain solution for functionally graded multilayered isotropic cylinders E. Pan Department of Civil Engineering, The

### ME 582 Advanced Materials Science. Chapter 2 Macromechanical Analysis of a Lamina (Part 2)

ME 582 Advanced Materials Science Chapter 2 Macromechanical Analysis of a Lamina (Part 2) Laboratory for Composite Materials Research Department of Mechanical Engineering University of South Alabama, Mobile,

### Fracture Mechanics of Composites with Residual Thermal Stresses

J. A. Nairn Material Science & Engineering, University of Utah, Salt Lake City, Utah 84 Fracture Mechanics of Composites with Residual Thermal Stresses The problem of calculating the energy release rate

### USING A HOMOGENIZATION PROCEDURE FOR PREDICTION OF MATERIAL PROPERTIES AND THE IMPACT RESPONSE OF UNIDIRECTIONAL COMPOSITE

Volume II: Fatigue, Fracture and Ceramic Matrix Composites USING A HOMOGENIZATION PROCEDURE FOR PREDICTION OF MATERIAL PROPERTIES AND THE IMPACT RESPONSE OF UNIDIRECTIONAL COMPOSITE A. D. Resnyansky and

### TRESS - STRAIN RELATIONS

TRESS - STRAIN RELATIONS Stress Strain Relations: Hook's law, states that within the elastic limits the stress is proportional to t is impossible to describe the entire stress strain curve with simple

### Example-3. Title. Description. Cylindrical Hole in an Infinite Mohr-Coulomb Medium

Example-3 Title Cylindrical Hole in an Infinite Mohr-Coulomb Medium Description The problem concerns the determination of stresses and displacements for the case of a cylindrical hole in an infinite elasto-plastic

### MESH MODELING OF ANGLE-PLY LAMINATED COMPOSITE PLATES FOR DNS AND IPSAP

16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS MESH MODELING OF ANGLE-PLY LAMINATED COMPOSITE PLATES FOR DNS AND IPSAP Wanil Byun*, Seung Jo Kim*, Joris Wismans** *Seoul National University, Republic

### Reference material Reference books: Y.C. Fung, "Foundations of Solid Mechanics", Prentice Hall R. Hill, "The mathematical theory of plasticity",

Reference material Reference books: Y.C. Fung, "Foundations of Solid Mechanics", Prentice Hall R. Hill, "The mathematical theory of plasticity", Oxford University Press, Oxford. J. Lubliner, "Plasticity

### CHEM-C2410: Materials Science from Microstructures to Properties Composites: basic principles

CHEM-C2410: Materials Science from Microstructures to Properties Composites: basic principles Mark Hughes 14 th March 2017 Today s learning outcomes To understand the role of reinforcement, matrix and

### QUESTION BANK Composite Materials

QUESTION BANK Composite Materials 1. Define composite material. 2. What is the need for composite material? 3. Mention important characterits of composite material 4. Give examples for fiber material 5.

### Effects of Random Cross-Sectioned Distributions, Fiber Misalignment and Interphases in Three- Dimensional Composite Models on Transverse Shear Modulus

University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School January 2012 Effects of Random Cross-Sectioned Distributions, Fiber Misalignment and Interphases in Three-

### Predicting Elastic Properties of Unidirectional SU8/ZnO Nanocomposites using COMSOL Multiphysics

Predicting Elastic Properties of Unidirectional SU8/ZnO Nanocomposites using COMSOL Multiphysics Neelam Mishra 1, and Kaushik Das *1 1 School of Minerals Metallurgical and Materials Engineering, Indian

### Multiscale Approach to Damage Analysis of Laminated Composite Structures

Multiscale Approach to Damage Analysis of Laminated Composite Structures D. Ivančević and I. Smojver Department of Aeronautical Engineering, Faculty of Mechanical Engineering and Naval Architecture, University

### Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE

1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & Free-Body Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for

### Enhancing Prediction Accuracy In Sift Theory

18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS Enhancing Prediction Accuracy In Sift Theory J. Wang 1 *, W. K. Chiu 1 Defence Science and Technology Organisation, Fishermans Bend, Australia, Department

### Buckling Behavior of 3D Randomly Oriented CNT Reinforced Nanocomposite Plate

Buckling Behavior of 3D Randomly Oriented CNT Reinforced Nanocomposite Plate Outline Introduction Representative Volume Element (RVE) Periodic Boundary Conditions on RVE Homogenization Method Analytical

### Understand basic stress-strain response of engineering materials.

Module 3 Constitutive quations Learning Objectives Understand basic stress-strain response of engineering materials. Quantify the linear elastic stress-strain response in terms of tensorial quantities

### Nigerian Journal of Technology, Vol. 26, No. 2, June 2007 Edelugo 37

Nigerian Journal of Technology, Vol. 26, No. 2, June 2007 Edelugo 37 APPLICATION OF THE REISSNERS PLATE THEORY IN THE DELAMINATION ANALYSIS OF A THREE-DIMENSIONAL, TIME- DEPENDENT, NON-LINEAR, UNI-DIRECTIONAL

### Crash and Impact Simulation of Composite Structures by Using CAE Process Chain

Crash and Impact Simulation of Composite Structures by Using CAE Process Chain Madhukar Chatiri 1, Thorsten Schütz 2, Anton Matzenmiller 3, Ulrich Stelzmann 1 1 CADFEM GmbH, Grafing/Munich, Germany, mchatiri@cadfem.de

### MECHANICAL CHARACTERISTICS OF CARBON FIBER YACHT MASTS

MECHANICAL CHARACTERISTICS OF CARBON FIBER YACHT MASTS This paper provides a preliminary stress analysis of a carbon reinforced layered cylinder such as would be found in a yacht mast. The cylinder is

### LAMINATION THEORY FOR THE STRENGTH OF FIBER COMPOSITE MATERIALS

XXII. LAMINATION THEORY FOR THE STRENGTH OF FIBER COMPOSITE MATERIALS Introduction The lamination theory for the elastic stiffness of fiber composite materials is the backbone of the entire field, it holds

### SIMULATION OF PROGRESSIVE FAILURE PREDICTION OF FILAMENT WOUND COMPOSITE TUBES SUBJECTED TO MULTIPLE LOADING WITH MEMBRANE-FLEXION COUPLING EFFECTS

VOL. 5, NO. 4, APRIL 010 ISSN 1819-6608 006-010 Asian Research Publishing Network (ARPN). All rights reserved. SIMULATION OF PROGRESSIVE FAILURE PREDICTION OF FILAMENT WOUND COMPOSITE TUBES SUBJECTED TO

### Graduate School of Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto, Japan.

On relationship between contact surface rigidity and harmonic generation behavior in composite materials with mechanical nonlinearity at fiber-matrix interface (Singapore November 2017) N. Matsuda, K.

### Bending of Simply Supported Isotropic and Composite Laminate Plates

Bending of Simply Supported Isotropic and Composite Laminate Plates Ernesto Gutierrez-Miravete 1 Isotropic Plates Consider simply a supported rectangular plate of isotropic material (length a, width b,

### Cellular solid structures with unbounded thermal expansion. Roderic Lakes. Journal of Materials Science Letters, 15, (1996).

1 Cellular solid structures with unbounded thermal expansion Roderic Lakes Journal of Materials Science Letters, 15, 475-477 (1996). Abstract Material microstructures are presented which can exhibit coefficients

### Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA

Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA What programs are in PROMAL? Master Menu The master menu screen with five separate applications from

### Stresses and Strains in flexible Pavements

Stresses and Strains in flexible Pavements Multi Layered Elastic System Assumptions in Multi Layered Elastic Systems The material properties of each layer are homogeneous property at point A i is the same

### Sound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur

Sound Propagation through Media Nachiketa Tiwari Indian Institute of Technology Kanpur LECTURE-13 WAVE PROPAGATION IN SOLIDS Longitudinal Vibrations In Thin Plates Unlike 3-D solids, thin plates have surfaces

### Exact and Numerical Solution of Pure Torsional Shaft

Australian Journal of Basic and Applied Sciences, 4(8): 3043-3052, 2010 ISSN 1991-8178 Exact and Numerical Solution of Pure Torsional Shaft 1 Irsyadi Yani, 2 M.A Hannan, 1 Hassan Basri, and 2 E. Scavino

DESIGN OF LAMINATES FOR IN-PLANOADING G. VERCHERY ISMANS 44 avenue F.A. Bartholdi, 72000 Le Mans, France Georges.Verchery@m4x.org SUMMARY This work relates to the design of laminated structures primarily

### Semi-Membrane and Effective Length Theory of Hybrid Anisotropic Materials

International Journal of Composite Materials 2017, 7(3): 103-114 DOI: 10.5923/j.cmaterials.20170703.03 Semi-Membrane and Effective Length Theory of Hybrid Anisotropic Materials S. W. Chung 1,*, G. S. Ju

### PLY LEVEL UNCERTAINTY EFFECTS ON FAILURE OF COMPOSITE

7th European Workshop on Structural Health Monitoring July 8-11, 2014. La Cité, Nantes, France More Info at Open Access Database www.ndt.net/?id=17206 PLY LEVEL UNCERTAINTY EFFECTS ON FAILURE OF COMPOSITE

### THEORY OF PLATES AND SHELLS

THEORY OF PLATES AND SHELLS S. TIMOSHENKO Professor Emeritus of Engineering Mechanics Stanford University S. WOINOWSKY-KRIEGER Professor of Engineering Mechanics Laval University SECOND EDITION MCGRAW-HILL

### Influence of the filament winding process variables on the mechanical behavior of a composite pressure vessel

Influence of the filament winding process variables on the mechanical behavior of a composite pressure vessel G. Vargas 1 & A. Miravete 2 1 Universidad Pontificia Bolivariana, Facultad de Ingeniería Mecánica,

### A non-linear elastic/perfectly plastic analysis for plane strain undrained expansion tests

Bolton, M. D. & Whittle, R. W. (999). GeÂotechnique 49, No., 33±4 TECHNICAL NOTE A non-linear elastic/perfectly plastic analysis for plane strain undrained expansion tests M. D. BOLTON and R. W. WHITTLE{

### A Study on the Tube of Integral Propeller Shaft for the Rear-wheel Drive Automobile Using Carbon Composite Fiber

A Study on the Tube of Integral Propeller Shaft for the Rear-wheel Drive Automobile Using Carbon Composite Fiber Kibong Han Mechatronics Department, Jungwon University, 85 Munmu-ro, Goesan-gun, South Korea.

### MECHANICS OF MATERIALS

Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:

### A FINITE ELEMENT MODEL TO PREDICT MULTI- AXIAL STRESS-STRAIN RESPONSE OF CERAMIC MATRIX COMPOSITES WITH STRAIN INDUCED DAMAGE

A FINITE ELEMENT MODEL TO PREDICT MULTI- AXIAL STRESS-STRAIN RESPONSE OF CERAMIC MATRIX COMPOSITES WITH STRAIN INDUCED DAMAGE Daxu Zhang and D. R. Hayhurst School of Mechanical, Aerospace and Civil Engineering,

### STRESS ANALYSIS OF A FILAMENT WOUND COMPOSITE FLYWHEEL DISK

THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS STRESS ANALYSIS OF A FILAMENT WOUND COMPOSITE FLYWHEEL DISK Md. S. Uddin 1*, E. V. Morozov 1 and K. Shankar 1 1 School of Engineering and Information

### Elastic plastic bending of stepped annular plates

Applications of Mathematics and Computer Engineering Elastic plastic bending of stepped annular plates JAAN LELLEP University of Tartu Institute of Mathematics J. Liivi Street, 549 Tartu ESTONIA jaan.lellep@ut.ee

### ELASTICITY (MDM 10203)

LASTICITY (MDM 10203) Lecture Module 5: 3D Constitutive Relations Dr. Waluyo Adi Siswanto University Tun Hussein Onn Malaysia Generalised Hooke's Law In one dimensional system: = (basic Hooke's law) Considering

### The stress transfer efficiency of a single-walled carbon nanotube in epoxy matrix

JOURNAL OF MATERIALS SCIENCE 39 (2 004)4481 4486 The stress transfer efficiency of a single-walled carbon nanotube in epoxy matrix K. Q. XIAO, L. C. ZHANG School of Aerospace, Mechanical and Mechatronic

### Basic Energy Principles in Stiffness Analysis

Basic Energy Principles in Stiffness Analysis Stress-Strain Relations The application of any theory requires knowledge of the physical properties of the material(s) comprising the structure. We are limiting

### Pressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials

Pressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials Pressure Vessels: In the previous lectures we have discussed elements subjected

### Analysis of asymmetric radial deformation in pipe with local wall thinning under internal pressure using strain energy method

Analysis of asymmetric radial deformation in pipe with local wall thinning under internal pressure using strain energy method V.M.F. Nascimento Departameto de ngenharia Mecânica TM, UFF, Rio de Janeiro

### Plane and axisymmetric models in Mentat & MARC. Tutorial with some Background

Plane and axisymmetric models in Mentat & MARC Tutorial with some Background Eindhoven University of Technology Department of Mechanical Engineering Piet J.G. Schreurs Lambèrt C.A. van Breemen March 6,

### NON-LINEAR ANALYSIS OF SOIL-PILE-STRUCTURE INTERACTION UNDER SEISMIC LOADS

NON-LINEAR ANALYSIS OF SOIL-PILE-STRUCTURE INTERACTION UNDER SEISMIC LOADS Yingcai Han 1 and Shin-Tower Wang 2 1 Fluor Canada Ltd., Calgary AB, Canada Email: yingcai.han@fluor.com 2 Ensoft, Inc. Austin,

### THE TRANSVERSE OFF-AXIS STIFFNESS AND STRENGTH OF SOFTWOODS. Abstract

THE TRANSVERSE OFF-AXIS STIFFNESS AND STRENGTH OF SOFTWOODS Carl S. Moden 1, Jessica Polycarpe 1 and Lars A. Berglund 2 1 Dept. of Aeronautical and Vehicle Engineering The Royal Institute of Technology

### Lecture 2: Finite Elements

Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP7, Finite Element Analysis, H. K. D. H. Bhadeshia Lecture 2: Finite Elements In finite element analysis, functions of

### DEVELOPMENT OF A CONTINUUM PLASTICITY MODEL FOR THE COMMERCIAL FINITE ELEMENT CODE ABAQUS

DEVELOPMENT OF A CONTINUUM PLASTICITY MODEL FOR THE COMMERCIAL FINITE ELEMENT CODE ABAQUS Mohsen Safaei, Wim De Waele Ghent University, Laboratory Soete, Belgium Abstract The present work relates to the

### Stress analysis of a stepped bar

Stress analysis of a stepped bar Problem Find the stresses induced in the axially loaded stepped bar shown in Figure. The bar has cross-sectional areas of A ) and A ) over the lengths l ) and l ), respectively.

### Nanoindentation of Fibrous Composite Microstructures: Experimentation and Finite Element Investigation. Mark Hardiman

Nanoindentation of Fibrous Composite Microstructures: Experimentation and Finite Element Investigation Mark Hardiman Materials and Surface Science Institute (MSSI), Department of Mechanical and Aeronautical

### Strength of Material. Shear Strain. Dr. Attaullah Shah

Strength of Material Shear Strain Dr. Attaullah Shah Shear Strain TRIAXIAL DEFORMATION Poisson's Ratio Relationship Between E, G, and ν BIAXIAL DEFORMATION Bulk Modulus of Elasticity or Modulus of Volume

### UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The magnitude

### 3D and Planar Constitutive Relations

3D and Planar Constitutive Relations A School on Mechanics of Fibre Reinforced Polymer Composites Knowledge Incubation for TEQIP Indian Institute of Technology Kanpur PM Mohite Department of Aerospace

### Elements of Rock Mechanics

Elements of Rock Mechanics Stress and strain Creep Constitutive equation Hooke's law Empirical relations Effects of porosity and fluids Anelasticity and viscoelasticity Reading: Shearer, 3 Stress Consider

### CHAPTER -6- BENDING Part -1-

Ishik University / Sulaimani Civil Engineering Department Mechanics of Materials CE 211 CHAPTER -6- BENDING Part -1-1 CHAPTER -6- Bending Outlines of this chapter: 6.1. Chapter Objectives 6.2. Shear and

### BIAXIAL STRENGTH INVESTIGATION OF CFRP COMPOSITE LAMINATES BY USING CRUCIFORM SPECIMENS

BIAXIAL STRENGTH INVESTIGATION OF CFRP COMPOSITE LAMINATES BY USING CRUCIFORM SPECIMENS H. Kumazawa and T. Takatoya Airframes and Structures Group, Japan Aerospace Exploration Agency 6-13-1, Ohsawa, Mitaka,

### COMPRESSION AND BENDING STIFFNESS OF FIBER-REINFORCED ELASTOMERIC BEARINGS. Abstract. Introduction

COMPRESSION AND BENDING STIFFNESS OF FIBER-REINFORCED ELASTOMERIC BEARINGS Hsiang-Chuan Tsai, National Taiwan University of Science and Technology, Taipei, Taiwan James M. Kelly, University of California,

### Transactions on Engineering Sciences vol 13, 1996 WIT Press, ISSN

Computational debonding analysis of a thermally stressed fiber/matrix composite cylinder F.-G. Buchholz," O. Koca* "Institute ofapplied Mechanics, University ofpaderborn, D-33098 Paderborn, Germany ^Institute

### Two-dimensional ternary locally resonant phononic crystals with a comblike coating

Two-dimensional ternary locally resonant phononic crystals with a comblike coating Yan-Feng Wang, Yue-Sheng Wang,*, and Litian Wang Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing,

### The concept of Representative Volume for elastic, hardening and softening materials

The concept of Representative Volume for elastic, hardening and softening materials Inna M. Gitman Harm Askes Lambertus J. Sluys Oriol Lloberas Valls i.gitman@citg.tudelft.nl Abstract The concept of the

### Chapter 6: Mechanical Properties of Metals. Dr. Feras Fraige

Chapter 6: Mechanical Properties of Metals Dr. Feras Fraige Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility Toughness

### Modelling Anisotropic, Hyperelastic Materials in ABAQUS

Modelling Anisotropic, Hyperelastic Materials in ABAQUS Salvatore Federico and Walter Herzog Human Performance Laboratory, Faculty of Kinesiology, The University of Calgary 2500 University Drive NW, Calgary,

### PRELIMINARY PREDICTION OF SPECIMEN PROPERTIES CLT and 1 st order FEM analyses

OPTIMAT BLADES Page 1 of 24 PRELIMINARY PREDICTION OF SPECIMEN PROPERTIES CLT and 1 st order FEM analyses first issue Peter Joosse CHANGE RECORD Issue/revision date pages Summary of changes draft 24-10-02

### Lecture 8 Viscoelasticity and Deformation

HW#5 Due 2/13 (Friday) Lab #1 Due 2/18 (Next Wednesday) For Friday Read: pg 130 168 (rest of Chpt. 4) 1 Poisson s Ratio, μ (pg. 115) Ratio of the strain in the direction perpendicular to the applied force

### MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS

1 MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS Version 2011-01-14 Stress tensor Definition of traction vector (1) Cauchy theorem (2) Equilibrium (3) Invariants (4) (5) (6) or, written in terms of principal

### FREE VIBRATION ANALYSIS OF THIN CYLINDRICAL SHELLS SUBJECTED TO INTERNAL PRESSURE AND FINITE ELEMENT ANALYSIS

FREE VIBRATION ANALYSIS OF THIN CYLINDRICAL SHELLS SUBJECTED TO INTERNAL PRESSURE AND FINITE ELEMENT ANALYSIS J. Kandasamy 1, M. Madhavi 2, N. Haritha 3 1 Corresponding author Department of Mechanical

### 3D Compression Molding

Autodesk Simulation Moldflow Insight 2014 3D Compression Molding Executive summary In this work, the simulation results from a program developed for the three-dimensional analysis of compression molding

### Macroscopic Elastic Constitutive Relationship of Cast-in-Place Hollow-Core Slabs

Macroscopic Elastic Constitutive Relationship of Cast-in-Place Hollow-Core Slabs Jing-Zhong Xie 1 Abstract: The macroscopic Poisson ratio and elastic moduli of the cast-in-place hollow-core slab are researched

### 2. Mechanics of Materials: Strain. 3. Hookes's Law

Mechanics of Materials Course: WB3413, Dredging Processes 1 Fundamental Theory Required for Sand, Clay and Rock Cutting 1. Mechanics of Materials: Stress 1. Introduction 2. Plane Stress and Coordinate

### Analyze a Load Bearing Structure using MATLAB

Analyze a Load Bearing Structure using MATLAB Instructor: Prof. Shahrokh Ahmadi (ECE Dept.) Teaching Assistant: Kartik Bulusu (MAE Dept.) Email: bulusu@gwu.edu September 16, 2005 1 Brief Discussion of

### A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials

Dublin, October 2010 A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials FracMan Technology Group Dr Mark Cottrell Presentation Outline Some Physical

### Materials and Structures. Indian Institute of Technology Kanpur

Introduction to Composite Materials and Structures Nachiketa Tiwari Indian Institute of Technology Kanpur Lecture 16 Behavior of Unidirectional Composites Lecture Overview Mt Material ilaxes in unidirectional

### Effects of Fracture Parameters in an Anisotropy Model on P-Wave Azimuthal Amplitude Responses

PROC. ITB Eng. Science Vol. 38 B, No. 2, 2006, 159-170 159 Effects of Fracture Parameters in an Anisotropy Model on P-Wave Azimuthal Amplitude Responses Fatkhan Program Studi Teknik Geofisika FIKTM-ITB

### Non-axisymmetric guided waves in a composite cylinder with transversely isotropic core

Geophys. J. Int. (1994) 118, 317-324 Non-axisymmetric guided waves in a composite cylinder with transversely isotropic core N. Rattanawangcharoen,' Subhendu K. Datta27* and Arvind H. Shah3 ' Department

### 6.730 Physics for Solid State Applications

6.730 Physics for Solid State Applications Lecture 5: Specific Heat of Lattice Waves Outline Review Lecture 4 3-D Elastic Continuum 3-D Lattice Waves Lattice Density of Modes Specific Heat of Lattice Specific

### Shear stresses around circular cylindrical openings

Shear stresses around circular cylindrical openings P.C.J. Hoogenboom 1, C. van Weelden 1, C.B.M. Blom 1, 1 Delft University of Technology, the Netherlands Gemeentewerken Rotterdam, the Netherlands In

### Tensile behaviour of anti-symmetric CFRP composite

Available online at www.sciencedirect.com Procedia Engineering 1 (211) 1865 187 ICM11 Tensile behaviour of anti-symmetric CFRP composite K. J. Wong a,b, *, X. J. Gong a, S. Aivazzadeh a, M. N. Tamin b

### Properties of a chiral honeycomb with a Poisson's ratio -1

Properties of a chiral honeycomb with a Poisson's ratio -1 D. Prall, R. S. Lakes Int. J. of Mechanical Sciences, 39, 305-314, (1996). Abstract A theoretical and experimental investigation is conducted

Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) 5.1 DEFINITION A construction member is subjected to centric (axial) tension or compression if in any cross section the single distinct stress

### Hooke s law and its consequences 1

AOE 354 Hooke s law and its consequences Historically, the notion of elasticity was first announced in 676 by Robert Hooke (635 73) in the form of an anagram, ceiinosssttuv. He explained it in 678 as Ut

### NONLINEAR ELASTIC CONSTITUTIVE RELATIONS FOR CELLULOSIC MATERIALS

In: Perkins, R.W., ed. Mechanics of cellulosic and polymeric materials: Proceedings, 3d Joint ASCE/ASME Mechanics conference; 1989 July 9-12; San Diego, New York: The American Society of Mechanical Engineers;

### Modeling of Fiber-Reinforced Membrane Materials Daniel Balzani. (Acknowledgement: Anna Zahn) Tasks Week 2 Winter term 2014

Institute of echanics and Shell Structures Faculty Civil Engineering Chair of echanics odeling of Fiber-Reinforced embrane aterials OOC@TU9 Daniel Balani (Acknowledgement: Anna Zahn Tasks Week 2 Winter

### Mechanics of Solids notes

Mechanics of Solids notes 1 UNIT II Pure Bending Loading restrictions: As we are aware of the fact internal reactions developed on any cross-section of a beam may consists of a resultant normal force,

### Numerical modelling of elastic-plastic deformation at crack tips in composite material under stress wave loading

JOURNAL DE PHYSIQUE IV Colloque C8, supplément au Journal de Physique III, Volume 4, septembre 1994 C8-53 Numerical modelling of elastic-plastic deformation at crack tips in composite material under stress

### 1.103 CIVIL ENGINEERING MATERIALS LABORATORY (1-2-3) Dr. J.T. Germaine Spring 2004 LABORATORY ASSIGNMENT NUMBER 6

1.103 CIVIL ENGINEERING MATERIALS LABORATORY (1-2-3) Dr. J.T. Germaine MIT Spring 2004 LABORATORY ASSIGNMENT NUMBER 6 COMPRESSION TESTING AND ANISOTROPY OF WOOD Purpose: Reading: During this laboratory

### DETERMINING THE STRESS PATTERN IN THE HH RAILROAD TIES DUE TO DYNAMIC LOADS 1

PERIODICA POLYTECHNICA SER. CIV. ENG. VOL. 46, NO. 1, PP. 125 148 (2002) DETERMINING THE STRESS PATTERN IN THE HH RAILROAD TIES DUE TO DYNAMIC LOADS 1 Nándor LIEGNER Department of Highway and Railway Engineering