ME 582 Advanced Materials Science. Chapter 2 Macromechanical Analysis of a Lamina (Part 2)


 Gabriel Chambers
 1 years ago
 Views:
Transcription
1 ME 582 Advanced Materials Science Chapter 2 Macromechanical Analysis of a Lamina (Part 2) Laboratory for Composite Materials Research Department of Mechanical Engineering University of South Alabama, Mobile, AL HW # Due Day: 6:00 PM, 10/04/2006, Wednesday.
2 Strength Failure Theories of an Angle Lamina The failure theories are generally based on the normal and shear strengths of a unidirectional lamina. An isotropic material generally has two strength parameters: normal strength and shear strength. In the case of a unidirectional lamina, the five strength parameters are Longitudinal tensile strength ( σ T 1 ) ult Longitudinal compressive strength ( σ C 1 ) ult Transverse tensile strength ( σ T 2 ) ult Transverse compressive strength ( σ C 2 ) ult Inplane shear strength ( τ 12 ) ult Maximum Stress Failure Theory The lamina is considered to be failed if Each component of stress does not interact with each other.
3 Example 2.13 Example 2.13
4 Example 2.13 Example 2.13
5 Maximum Strain Theory The lamina is considered to be failed if Maximum Stress and Strain Failure Theories The ultimate strains can be found from the ultimate strength parameters and the elastic moduli, assuming the stressstrain response is linear until failure. For the maximum strain failure theory, no interactions occurs between various components of strain. The maximum stress failure theory and the maximum failure strain theory give different results because the local strains in a lamina include the Poisson s ratio. If the Poisson s ratio is zero in the unidirectional lamina, the two failure theories will give identical results.
6 TsaiHill Failure Theory Based on the distorsion energy theory, they proposed that a lamina has failed if This theory is based on the interaction failure theory. The components G 1 G 6 of the strength criteria depend on the failure strength. Components of TsaiHill Failure Theory
7 Components of TsaiHill Failure Theory Solution: TsaiHill Failure Theory Plane Stress
8 TsaiHill Failure Theory Unlike the maximum strain and maximum stress failure theories, the TsaiHill failure theory considers the interaction among the three unidirectional lamina strength parameter. The TsaiHill failure theory does not distinguish between the compressive and tensile strengths in its equation. This can result in underestimation of the maximum loads that can be applied when compared to other failure theory. TsaiHill failure theory underestimates the failure stress because the transverse strength of a unidirectional lamina is generally much less than its transverse compressive strength. Modified TsaiHill Failure Theory
9 TsaiWu Failure Theory TsaiWu applied the failure theory to a lamina in plane stress. A lamina is considered to be failed if The components H 1 H 66 of the failure theory are found using the five strength parameters of a unidirectional lamina. Components of TsaiWu Failure Theory Solution:
10 Components of TsaiWu Failure Theory Solution: Components of TsaiWu Failure Theory Solution:
11 Determination of H 12 Determination of H 12
12 Empirical Models of H 12 Example 2.19
13 Example 2.19 Example 2.19
14 Example 2.19 Example 2.19
15 Experimental Results and Failure Theories TsaiWu compared the results from various failure theories to some experimental results. He considered an angle lamina subjected to a uniaxial load in the xdirection. The failure stresses were obtained experimentally for tensile and compressive stresses for various angles of the lamina. Stresses in the Material Axes
16 Strains in the Material Axes Experimental Results and Failure Theories
17 Experimental Results and Failure Theories Experimental Results and Failure Theories
18 Experimental Results and Failure Theories Hygrothermal StressStrain Relationship For a unidirectional lamina Thermally induced strains: Moisture induced strains:
19 Hygrothermal StressStrain Relationship For a unidirectional lamina Hygrothermal StressStrain Relationship For an angular lamina Thermally induced strains: Moisture induced strains:
20 Transformation of CTE For an angular lamina Transformation of Coefficients of Moisture Expansion For an angular lamina
21 Example 2.20 Example 2.20
22 Example 2.20 Example 2.20
TABLE OF CONTENTS. Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA
Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA TABLE OF CONTENTS 1. INTRODUCTION TO COMPOSITE MATERIALS 1.1 Introduction... 1.2 Classification... 1.2.1
More informationQUESTION BANK Composite Materials
QUESTION BANK Composite Materials 1. Define composite material. 2. What is the need for composite material? 3. Mention important characterits of composite material 4. Give examples for fiber material 5.
More informationHygrothermal stresses in laminates
Hygrothermal stresses in laminates Changing environment conditions (temperature and moisture) have an important effect on the properties which are matrix dominated. Change in temperaturet and moisture
More informationChapter 2  Macromechanical Analysis of a Lamina. Exercise Set. 2.1 The number of independent elastic constants in three dimensions are: 2.
Chapter  Macromechanical Analysis of a Lamina Exercise Set. The number of independent elastic constants in three dimensions are: Anisotropic Monoclinic 3 Orthotropic 9 Transversely Orthotropic 5 Isotropic.
More informationMechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA
Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA What programs are in PROMAL? Master Menu The master menu screen with five separate applications from
More informationPROMAL2012 SOFTWARE PACKAGE A USER GUIDE
PROMAL2012 SOFTWARE PACKAGE A USER GUIDE 1. This manual is only for VISTA, WINDOWS 7 and WINDOWS 8 users. The PROMAL2012 software and manual are available at http://www.eng.usf.edu/~kaw/promal2012/ 2.
More informationComposite Structures. Indian Institute of Technology Kanpur
Mechanics of Laminated Composite Structures Nachiketa Tiwari Indian Institute of Technology Kanpur Lecture 24 Analysis of an Orthotropic Ply Lecture Overview Transformation of stresses and strains Stress
More informationGetting Started with Composites Modeling and Analysis
Getting Started with Composites Modeling and Analysis IN THIS WEBINAR: PRESENTED BY: Orthotropic materials and how to define them Composite Laminate properties and modeling Composite failure theories and
More informationStress, Strain Stress strain relationships for different types of materials Stress strain relationships for a unidirectional/bidirectional lamina
Chapter 2 Macromechanical Analysis of a Lamina Stress, Strain Stress strain relationships for different types of materials Stress strain relationships for a unidirectional/bidirectional lamina Islamic
More informationModule 7: Micromechanics Lecture 25: Strength of Materials Approach. Introduction. The Lecture Contains. Effective Transverse Modulus
Introduction In the previous lecture we have introduced the concept of Representative Volume Element or Unit Cell. This is the basic building block in a micromechanical study. Further, we explained the
More informationME 7502 Lecture 2 Effective Properties of Particulate and Unidirectional Composites
ME 75 Lecture Effective Properties of Particulate and Unidirectional Composites Concepts from Elasticit Theor Statistical Homogeneit, Representative Volume Element, Composite Material Effective Stress
More informationComputational Analysis for Composites
Computational Analysis for Composites Professor Johann Sienz and Dr. Tony Murmu Swansea University July, 011 The topics covered include: OUTLINE Overview of composites and their applications Micromechanics
More informationSmart Materials, Adaptive Structures, and Intelligent Mechanical Systems
Smart Materials, Adaptive Structures, and Intelligent Mechanical Systems Bishakh Bhattacharya & Nachiketa Tiwari Indian Institute of Technology Kanpur Lecture 19 Analysis of an Orthotropic Ply References
More informationComposite Structures. Indian Institute of Technology Kanpur
Mechanics of Laminated Composite Structures Nachiketa Tiwari Indian Institute of Technology Kanpur Lecture 23 Analysis of an Orthotropic Ply Lecture Overview Introduction Engineering constants for an 2
More information9 Strength Theories of Lamina
9 trength Theories of Lamina 9 TRENGTH O ORTHOTROPIC LAMINA or isotropic materials the simplest method to predict failure is to compare the applied stresses to the strengths or some other allowable stresses.
More informationMaterials and Structures. Indian Institute of Technology Kanpur
Introduction to Composite Materials and Structures Nachiketa Tiwari Indian Institute of Technology Kanpur Lecture 16 Behavior of Unidirectional Composites Lecture Overview Mt Material ilaxes in unidirectional
More informationModule 7: Micromechanics Lecture 34: Self Consistent, Mori Tanaka and Halpin Tsai Models. Introduction. The Lecture Contains. Self Consistent Method
Introduction In this lecture we will introduce some more micromechanical methods to predict the effective properties of the composite. Here we will introduce expressions for the effective properties without
More informationEffect of Thermal Stresses on the Failure Criteria of Fiber Composites
Effect of Thermal Stresses on the Failure Criteria of Fiber Composites Martin Leong * Institute of Mechanical Engineering Aalborg University, Aalborg, Denmark Bhavani V. Sankar Department of Mechanical
More informationLecture 15 Strain and stress in beams
Spring, 2019 ME 323 Mechanics of Materials Lecture 15 Strain and stress in beams Reading assignment: 6.1 6.2 News: Instructor: Prof. Marcial Gonzalez Last modified: 1/6/19 9:42:38 PM Beam theory (@ ME
More informationModule III  Macromechanics of Lamina. Lecture 23. MacroMechanics of Lamina
Module III  Macromechanics of Lamina Lecture 23 MacroMechanics of Lamina For better understanding of the macromechanics of lamina, the knowledge of the material properties in essential. Therefore, the
More informationPRELIMINARY PREDICTION OF SPECIMEN PROPERTIES CLT and 1 st order FEM analyses
OPTIMAT BLADES Page 1 of 24 PRELIMINARY PREDICTION OF SPECIMEN PROPERTIES CLT and 1 st order FEM analyses first issue Peter Joosse CHANGE RECORD Issue/revision date pages Summary of changes draft 241002
More informationPredicting Failure of Multiangle Composite Laminates
Predicting Failure of Multiangle Composite Laminates Preliminary discussion (not in textbook): Micromechanics failure analyses vs Macromechanics failure analyses Fiber Architecture of Some Common Composite
More informationFailure surface according to maximum principal stress theory
Maximum Principal Stress Theory (W. Rankin s Theory 1850) Brittle Material The maximum principal stress criterion: Rankin stated max principal stress theory as follows a material fails by fracturing
More informationMAE 322 Machine Design. Dr. Hodge Jenkins Mercer University
MAE 322 Machine Design Dr. Hodge Jenkins Mercer University What is this Machine Design course really about? What you will learn: How to design machine elements 1) Design so they won t break under varying
More informationSIMULATION OF PROGRESSIVE FAILURE PREDICTION OF FILAMENT WOUND COMPOSITE TUBES SUBJECTED TO MULTIPLE LOADING WITH MEMBRANEFLEXION COUPLING EFFECTS
VOL. 5, NO. 4, APRIL 010 ISSN 18196608 006010 Asian Research Publishing Network (ARPN). All rights reserved. SIMULATION OF PROGRESSIVE FAILURE PREDICTION OF FILAMENT WOUND COMPOSITE TUBES SUBJECTED TO
More informationPractice Final Examination. Please initial the statement below to show that you have read it
EN175: Advanced Mechanics of Solids Practice Final Examination School of Engineering Brown University NAME: General Instructions No collaboration of any kind is permitted on this examination. You may use
More informationMaterials and Structures. Indian Institute of Technology Kanpur
Introduction to Composite Materials and Structures Nachiketa Tiwari Indian Institute of Technology Kanpur Lecture 15 Behavior of Unidirectional Composites Lecture Overview Mt Material ilaxes in unidirectional
More informationPLY LEVEL UNCERTAINTY EFFECTS ON FAILURE OF COMPOSITE
7th European Workshop on Structural Health Monitoring July 811, 2014. La Cité, Nantes, France More Info at Open Access Database www.ndt.net/?id=17206 PLY LEVEL UNCERTAINTY EFFECTS ON FAILURE OF COMPOSITE
More informationPlasticity R. Chandramouli Associate DeanResearch SASTRA University, Thanjavur
Plasticity R. Chandramouli Associate DeanResearch SASTRA University, Thanjavur613 401 Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 9 Table of Contents 1. Plasticity:... 3 1.1 Plastic Deformation,
More informationPURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.
BENDING STRESS The effect of a bending moment applied to a crosssection of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally
More informationLecture 8 Viscoelasticity and Deformation
HW#5 Due 2/13 (Friday) Lab #1 Due 2/18 (Next Wednesday) For Friday Read: pg 130 168 (rest of Chpt. 4) 1 Poisson s Ratio, μ (pg. 115) Ratio of the strain in the direction perpendicular to the applied force
More informationUse Hooke s Law (as it applies in the uniaxial direction),
0.6 STRSSSTRAIN RLATIONSHIP Use the principle of superposition Use Poisson s ratio, v lateral longitudinal Use Hooke s Law (as it applies in the uniaxial direction), x x v y z, y y vx z, z z vx y Copyright
More informationCoupling of plasticity and damage in glass fibre reinforced polymer composites
EPJ Web of Conferences 6, 48 1) DOI: 1.151/epjconf/1648 c Owned by the authors, published by EDP Sciences, 1 Coupling of plasticity and damage in glass fibre reinforced polymer composites R. Kvale Joki
More informationN = Shear stress / Shear strain
UNIT  I 1. What is meant by factor of safety? [A/M15] It is the ratio between ultimate stress to the working stress. Factor of safety = Ultimate stress Permissible stress 2. Define Resilience. [A/M15]
More informationCE 221: MECHANICS OF SOLIDS I CHAPTER 1: STRESS. Dr. Krisada Chaiyasarn Department of Civil Engineering, Faculty of Engineering Thammasat university
CE 221: MECHANICS OF SOLIDS I CHAPTER 1: STRESS By Dr. Krisada Chaiyasarn Department of Civil Engineering, Faculty of Engineering Thammasat university Agenda Introduction to your lecturer Introduction
More informationPrincipal Stresses, Yielding Criteria, wall structures
Principal Stresses, Yielding Criteria, St i thi Stresses in thin wall structures Introduction The most general state of stress at a point may be represented by 6 components, x, y, z τ xy, τ yz, τ zx normal
More informationDevelopment of a Progressive Failure Model for Notched Woven Composite Laminates. Daniel Christopher Munden
Development of a Progressive Failure Model for Notched Woven Composite Laminates Daniel Christopher Munden Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in
More informationMODELING OF THE BEHAVIOR OF WOVEN LAMINATED COMPOSITES UNTIL RUPTURE
MODELING OF THE BEHAVIOR OF WOVEN LAMINATED COMPOSITES UNTIL RUPTURE Jean Paul Charles, Christian Hochard,3, Pierre Antoine Aubourg,3 Eurocopter, 375 Marignane cedex, France Unimeca, 6 rue J. Curie, 3453
More informationFracture Mechanics, Damage and Fatigue: Composites
University of Liège Aerospace & Mechanical Engineering Fracture Mechanics, Damage and Fatigue: Composites Ludovic Noels Computational & Multiscale Mechanics of Materials CM3 http://www.ltascm3.ulg.ac.be/
More informationTheory at a Glance (for IES, GATE, PSU)
1. Stress and Strain Theory at a Glance (for IES, GATE, PSU) 1.1 Stress () When a material is subjected to an external force, a resisting force is set up within the component. The internal resistance force
More informationINTRODUCTION TO STRAIN
SIMPLE STRAIN INTRODUCTION TO STRAIN In general terms, Strain is a geometric quantity that measures the deformation of a body. There are two types of strain: normal strain: characterizes dimensional changes,
More informationChapter Two: Mechanical Properties of materials
Chapter Two: Mechanical Properties of materials Time : 16 Hours An important consideration in the choice of a material is the way it behave when subjected to force. The mechanical properties of a material
More informationModule 7: Micromechanics Lecture 29: Background of Concentric Cylinder Assemblage Model. Introduction. The Lecture Contains
Introduction In this lecture we are going to introduce a new micromechanics model to determine the fibrous composite effective properties in terms of properties of its individual phases. In this model
More informationMechanical Behavior of Composite Tapered Lamina
International Journal of Engineering Research and Development eissn: 2278067X, pissn: 2278800X, www.ijerd.com Volume 10, Issue 8 (August 2014), PP.1927 Mechanical Behavior of Composite Tapered Lamina
More informationMODELING OF CONCRETE MATERIALS AND STRUCTURES. Kaspar Willam
MODELING OF CONCRETE MATERIALS AND STRUCTURES Class Meeting #1: Fundamentals Kaspar Willam University of Colorado at Boulder Notation: Direct and indicial tensor formulations Fundamentals: Stress and Strain
More informationLAMINATION THEORY FOR THE STRENGTH OF FIBER COMPOSITE MATERIALS
XXII. LAMINATION THEORY FOR THE STRENGTH OF FIBER COMPOSITE MATERIALS Introduction The lamination theory for the elastic stiffness of fiber composite materials is the backbone of the entire field, it holds
More informationBone Tissue Mechanics
Bone Tissue Mechanics João Folgado Paulo R. Fernandes Instituto Superior Técnico, 2016 PART 1 and 2 Introduction The objective of this course is to study basic concepts on hard tissue mechanics. Hard tissue
More informationMECHANICS OF MATERIALS
CHATR Stress MCHANICS OF MATRIALS and Strain Axial Loading Stress & Strain: Axial Loading Suitability of a structure or machine may depend on the deformations in the structure as well as the stresses induced
More informationMICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING
MICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING N. Krishna Vihari 1, P. Phani Prasanthi 1, V. Bala Krishna Murthy 2* and A. Srihari Prasad 3 1 Mech. Engg. Dept., P. V. P. Siddhartha
More informationRATEDEPENDENT OFFAXIS COMPRESSIVE STRENGTH OF A UNIDIRECTIONAL CARBON/EPOXY LAMINATE AT HIGH TEMPERATURE
16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS RATEDEPENDENT OFFAXIS COMPRESSIVE STRENGTH OF A UNIDIRECTIONAL CARBON/EPOXY LAMINATE AT HIGH TEMPERATURE Masamichi KAWAI *, Satoru SAITO **, JianQi
More informationSTRAIN. Normal Strain: The elongation or contractions of a line segment per unit length is referred to as normal strain denoted by Greek symbol.
STRAIN In engineering the deformation of a body is specified using the concept of normal strain and shear strain whenever a force is applied to a body, it will tend to change the body s shape and size.
More informationFinite element analysis of drilled holes in unidirectional composite laminates using failure theories
American Journal of Science and Technology 2014; 1(3): 101105 Published online May 30, 2014 (http://www.aascit.org/journal/ajst) Finite element analysis of drilled holes in unidirectional composite laminates
More informationAn orthotropic damage model for crash simulation of composites
High Performance Structures and Materials III 511 An orthotropic damage model for crash simulation of composites W. Wang 1, F. H. M. Swartjes 1 & M. D. Gan 1 BU Automotive Centre of Lightweight Structures
More informationTensile stress strain curves for different materials. Shows in figure below
Tensile stress strain curves for different materials. Shows in figure below Furthermore, the modulus of elasticity of several materials effected by increasing temperature, as is shown in Figure Asst. Lecturer
More informationMost of the material in this package is based on a recently published book. This is:
Mechanics of Composite Materials Version 2.1 Bill Clyne, University of Cambridge Boban Tanovic, MATTER Assumed Preknowledge It is assumed that the student is familiar with simple concepts of mechanical
More informationHardened Concrete. Lecture No. 16
Hardened Concrete Lecture No. 16 Fatigue strength of concrete Modulus of elasticity, Creep Shrinkage of concrete StressStrain Plot of Concrete At stress below 30% of ultimate strength, the transition
More informationGeology 229 Engineering Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6)
Geology 229 Engineering Geology Lecture 5 Engineering Properties of Rocks (West, Ch. 6) Common mechanic properties: Density; Elastic properties:  elastic modulii Outline of this Lecture 1. Uniaxial rock
More informationIJSER 1. INTRODUCTION. M.Elhadary
1591 A new failure criterion for GRP composite materials subjected to inphase and outofphase biaxial fatigue loading under different stress ratios M.Elhadary Abstract this studying the fatigue behavior
More informationOnline publication date: 23 October 2010
This article was downloaded by: [informa internal users] On: 1 November 2010 Access details: Access Details: [subscription number 755239602] Publisher Taylor & Francis Informa Ltd Registered in England
More informationChapter 6: Mechanical Properties of Metals. Dr. Feras Fraige
Chapter 6: Mechanical Properties of Metals Dr. Feras Fraige Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility Toughness
More informationModule 4: Behaviour of a LaminaeII. Learning Unit 1: M1. M4.1 Mechanics of Composites. M4.1.1 Introduction to Mechanics of Composites
Module 4: Behaviour of a LaminaeII Learning Unit 1: M1 M4.1 Mechanics of Composites M4.1.1 Introduction to Mechanics of Composites The relation between ply uniaxial strengths and constituent properties
More informationDAMAGE MECHANICS MODEL FOR OFFAXIS FATIGUE BEHAVIOR OF UNIDIRECTIONAL CARBON FIBERREINFORCED COMPOSITES AT ROOM AND HIGH TEMPERATURES
DAMAGE MECHANICS MODEL FOR OFFAXIS FATIGUE BEHAVIOR OF UNIDIRECTIONAL CARBON FIBERREINFORCED COMPOSITES AT ROOM AND HIGH TEMPERATURES M. Kawai Institute of Engineering Mechanics University of Tsukuba,
More informationComposite Structures. Indian Institute of Technology Kanpur
Mechanics of Laminated Composite Structures Nachiketa Tiwari Indian Institute of Technology Kanpur Lecture 21 Behavior of Ribbon Fiber Composites Ribbon Reinforced Composites: Introduction Quite often,
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139
MASSACHUSTTS INSTITUT OF TCHNOLOGY DPARTMNT OF MATRIALS SCINC AND NGINRING CAMBRIDG, MASSACHUSTTS 0239 322 MCHANICAL PROPRTIS OF MATRIALS PROBLM ST 4 SOLUTIONS Consider a 500 nm thick aluminum ilm on a
More informationLab Exercise #5: Tension and Bending with Strain Gages
Lab Exercise #5: Tension and Bending with Strain Gages Prelab assignment: Yes No Goals: 1. To evaluate tension and bending stress models and Hooke s Law. a. σ = Mc/I and σ = P/A 2. To determine material
More informationFINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS
FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS Ever J. Barbero Department of Mechanical and Aerospace Engineering West Virginia University USA CRC Press Taylor &.Francis Group Boca Raton London New York
More informationUNIT I SIMPLE STRESSES AND STRAINS
Subject with Code : SM1(15A01303) Year & Sem: IIB.Tech & ISem SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) UNIT I SIMPLE STRESSES
More informationComposite models 30 and 131: Ply types 0 and 8 calibration
Model calibration Composite BiPhase models 30 and 3 for elastic, damage and failure PAMCRASH material model 30 is for solid and 3 for multilayered shell elements. Within these models different ply types
More informationRELATIONSHIP BETWEEN RADIAL COMPRESSIVE MODULUS OF ELASTICITY AND SHEAR MODULUS OF WOOD Jen Y. Liu Research Engineer
RELATIONSHIP BETWEEN RADIAL COMPRESSIVE MODULUS OF ELASTICITY AND SHEAR MODULUS OF WOOD Jen Y. Liu Research Engineer and Robert J. Ross Supervisory Research Engineer USDA Forest Service Forest Products
More informationDate Submitted: 1/8/13 Section #4: T Instructor: Morgan DeLuca. Abstract
Lab Report #2: Poisson s Ratio Name: Sarah Brown Date Submitted: 1/8/13 Section #4: T 1012 Instructor: Morgan DeLuca Group Members: 1. Maura Chmielowiec 2. Travis Newberry 3. Thomas Cannon Title: Poisson
More information6.730 Physics for Solid State Applications
6.730 Physics for Solid State Applications Lecture 5: Specific Heat of Lattice Waves Outline Review Lecture 4 3D Elastic Continuum 3D Lattice Waves Lattice Density of Modes Specific Heat of Lattice Specific
More informationModelling the nonlinear shear stressstrain response of glass fibrereinforced composites. Part II: Model development and finite element simulations
Modelling the nonlinear shear stressstrain response of glass fibrereinforced composites. Part II: Model development and finite element simulations W. Van Paepegem *, I. De Baere and J. Degrieck Ghent
More informationTensile Properties of ThermoplasticLaminated Composites Based on a Polypropylene Matrix Reinforced with Continuous Twaron Fibers
Tensile Properties of ThermoplasticLaminated Composites Based on a Polypropylene Matrix Reinforced with Continuous Twaron Fibers J. L. MENATUN, P. I. GONZALEZCHI Centro de Investigación Científica de
More informationLecture 8 Viscoelasticity and Deformation
Read: pg 130 168 (rest of Chpt. 4) 1 Poisson s Ratio, µ (pg. 115) Ratio of the strain in the direction perpendicular to the applied force to the strain in the direction of the applied force. For uniaxial
More informationThe Accuracy of Characteristic Length Method on Failure Load Prediction of Composite Pinned Joints
, June 30  July 2, 2010, London, U.K. The Accuracy of Characteristic Length Method on Failure Load Prediction of Composite Pinned Joints O. Aluko, and Q. Mazumder Abstract An analytical model was developed
More informationUNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich
UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS For Marker s Use Only LAST NAME (printed): FIRST
More informationMechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002
student personal identification (ID) number on each sheet. Do not write your name on any sheet. #1. A homogeneous, isotropic, linear elastic bar has rectangular cross sectional area A, modulus of elasticity
More information2002 Pavement Design
2002 Pavement Design Federal Highway Administration June 2001 Thomas P. Harman Asphalt Team Leader Predicting Pavement Performance Pavements are designed to fail But how do they perform? Defining Performance
More informationDYNAMIC FAILURE ANALYSIS OF LAMINATED COMPOSITE PLATES
Association of Metallurgical Engineers of Serbia AMES Scientific paper UDC:669.1419:628.183=20 DYNAMIC FAILURE ANALYSIS OF LAMINATED COMPOSITE PLATES J. ESKANDARI JAM 1 and N. GARSHASBI NIA 2 1 Aerospace
More information7.3 Design of members subjected to combined forces
7.3 Design of members subjected to combined forces 7.3.1 General In the previous chapters of Draft IS: 800 LSM version, we have stipulated the codal provisions for determining the stress distribution in
More informationComposite Laminate Modeling
omposite Laminate Modeling White Paper for Femap and NX Nastran Users Venkata Bheemreddy, Ph.D., Senior Staff Mechanical Engineer Adrian Jensen, PE, Senior Staff Mechanical Engineer WHAT THIS WHITE PAPER
More information16.20 HANDOUT #2 Fall, 2002 Review of General Elasticity
6.20 HANDOUT #2 Fall, 2002 Review of General Elasticity NOTATION REVIEW (e.g., for strain) Engineering Contracted Engineering Tensor Tensor ε x = ε = ε xx = ε ε y = ε 2 = ε yy = ε 22 ε z = ε 3 = ε zz =
More informationChapter 3. Load and Stress Analysis
Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3
More informationSimulation of FEA_ES00187
Simulation of FEA_ES00187 Date: 6. februar 2017 Designer: Study name: FEAES00187 Analysis type: Static Description Glass protection with glass anchor ES00187 Height 1100 mm Load 500N / m  a straight
More informationSamantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2
Samantha Ramirez, MSE Stress The intensity of the internal force acting on a specific plane (area) passing through a point. Δ ΔA Δ z Δ 1 2 ΔA Δ x Δ y ΔA is an infinitesimal size area with a uniform force
More informationMicromechanical analysis of FRP hybrid composite lamina for inplane transverse loading
Indian Journal of Engineering & Materials Sciences Vol. 15, October 2008, pp. 382390 Micromechanical analysis of FRP hybrid composite lamina for inplane transverse loading K Sivaji Babu a *, K Mohana
More informationEnhancing Prediction Accuracy In Sift Theory
18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS Enhancing Prediction Accuracy In Sift Theory J. Wang 1 *, W. K. Chiu 1 Defence Science and Technology Organisation, Fishermans Bend, Australia, Department
More informationStressStrain Behavior
StressStrain Behavior 6.3 A specimen of aluminum having a rectangular cross section 10 mm 1.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.
More informationAerospace Structural Composites I Homework 6. Anirban Chaudhuri
Aerospace Structural Composites I Homework 6 Anirban Chaudhuri. The unidirectional Boron/Epoxy layer of Example 6.. (using E = 4GPa, E = 8.5GPa, G = 5.59GPa, =.3, t =.5mm) is to be loaded by combined axial
More informationAn integrated approach to the design of high performance carbon fibre reinforced risers  from micro to macro  scale
An integrated approach to the design of high performance carbon fibre reinforced risers  from micro to macro  scale Angelos Mintzas 1, Steve Hatton 1, Sarinova Simandjuntak 2, Andrew Little 2, Zhongyi
More informationMechanical Properties
Mechanical Properties Elastic deformation Plastic deformation Fracture I. Elastic Deformation S s u s y e u e T I II III e For a typical ductile metal: I. Elastic deformation II. Stable plastic deformation
More informationAmerican Society for Testing and Materials (ASTM) Standards. Mechanical Testing of Composites and their Constituents
Mechanical Testing of Composites and their Constituents American Society for Testing and Materials (ASTM) Standards Tests done to determine intrinsic material properties such as modulus and strength for
More informationPressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials
Pressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials Pressure Vessels: In the previous lectures we have discussed elements subjected
More informationISHIK UNIVERSITY DEPARTMENT OF MECHATRONICS ENGINEERING
ISHIK UNIVERSITY DEPARTMENT OF MECHATRONICS ENGINEERING QUESTION BANK FOR THE MECHANICS OF MATERIALSI 1. A rod 150 cm long and of diameter 2.0 cm is subjected to an axial pull of 20 kn. If the modulus
More information3D Elasticity Theory
3D lasticity Theory Many structural analysis problems are analysed using the theory of elasticity in which Hooke s law is used to enforce proportionality between stress and strain at any deformation level.
More informationAnalysis of Composite Pressure Vessels
Analysis of Composite Pressure Vessels Reza Mohammadzadeh Gheshlaghi 1 Mohammad Hassan Hojjati Hamid Reza Mohammadi Daniali 3 1 Engineering Research Centre, Tabriz, Iran,3 Department of Mechanical Engineering,
More informationMaterials and Structures. Indian Institute of Technology Kanpur
Introduction to Composite Materials and Structures Nachiketa Tiwari Indian Institute of Technology Kanpur Lecture 34 Thermal Stresses in Plates Lecture Overview Introduction Mechanical and Thermal Strains
More informationME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam crosssec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.
ME 323  Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM12:20PM Ghosh 2:303:20PM Gonzalez 12:301:20PM Zhao 4:305:20PM M (x) y 20 kip ft 0.2
More informationStatic Failure (pg 206)
Static Failure (pg 06) All material followed Hookeʹs law which states that strain is proportional to stress applied, until it exceed the proportional limits. It will reach and exceed the elastic limit
More informationProject MMS11 Report No 2. Models for Predicting Deformation and Failure In Adhesives and Polymer Matrix Composites. G D Dean and W R Broughton
Project MMS Report No Models for Predicting Deformation and Failure In Adhesives and Polymer Matrix Composites G D Dean and W R Broughton February February Models for Predicting Deformation and Failure
More information