FAILURES IN THE AMAZON RIVERBANKS, IQUITOS, PERU

Size: px
Start display at page:

Download "FAILURES IN THE AMAZON RIVERBANKS, IQUITOS, PERU"

Transcription

1 FAILURES IN THE AMAZON RIVERBANKS, IQUITOS, PERU A.Carrillo-Gil University of Engineering & A.Carrillo Gil S.A.,Consulting Engineering,Lima,Peru L. Dominguez University of Engineering,Lima & The Maritime Authority of Peru ABSTRACT: The review of geological and getechnical conditions releted to the instability phenomena in the Amazon riverbanks near to Iquitos city in Peru have been presented. The Amazon river does not have a defined riverbed, therefore it flows forming meanders in the low-jungle of Peru, on a soft tropical soil formed by clays, silt and sands. The movement and withdrawal of the river, that has made an island disappear, has originated erosion in its left margin and sedimentation in its opposite margin, typical condition of the hydraulic behavior of this river each 100 years. This fact produces landslides that occur with great regularity along changing course of the river. The evaluation of stability of natural and cut slope in tropical soil involves in many cases a considerable degree of uncertainty. 1- INTRODUCTION The stability of the riverbanks in the Peruvian Amazon jungle present a great number of technical problems not existing in other places, since in very few regions of the world are present the atmospherical, environmental or hydrological conditions that prevail in this region, adding to these factors the lack of conventional construction materials. The erosion and sedimentation phenomena that alternatively occur in both margins of the rivers, and the continuous course changes between the subsequent years, present additional problems and large challenges to the application of the knowledge of the geotechnical engineering, so much in the low jungle that is between 80 and 400 meters above mean sea level, as in the high jungle between 400 and 1000 meters above mean sea level.. Fig.1 Overview of Reference 3 Landslide, 1994, Iquitos - Perú

2 Fig.2 - Schematic movements of the Amazon River

3 water when the level of the oceans having 100 meters above of the existing now (330,000 years ago) and began to fluctuate during several glacial and interglacial periods forming terraces throughout the water courses, dropping to 100 meters below of the level during the last Glacial Era (17,000 years ago) and remaining in these deep channels the large rivers, between them the Amazon river, raising afterwards to the current level (6,000 years ago) The accomplished studies establish that in the high jungle and in the limits of the low jungle are found so much igneous rocks as sedimentary, while in the low jungle prevail saprolitic soils originated by the sedimentary rocks of the terciary and quaternary and they are formed mainly by sandstones, shales and clays. The general description of the geomorphology of the Amazon region indicates that the low jungle is substantially flat and as said remain, its height varies between 80 to 400 meters above mean sea level. Due to this small difference of elevation the rivers flow slowly, getting in the dry station the apperance of lakes. This region of the Amazone plain, can be indicated as advanced erosion type. The Amazon plain is characterized by his great humidity and soil covered by a dense tropical vegetation. Fig.3 - Cross sectional illustration of the bed movement Two factors that influence of preponderant way on the bank failures of the Amazon river are undoubtedly the behavior of the tropical saprolitic soil and the special characteristics of the river within the Peruvian Amazon region; this is why we emphasize of general way these two aspects trying to explain the phenomena occurred since several years ago in this region. (Fig.1) 2- GEOTECHNICAL SETTING The general geology considers that a large part of the Amazon region has stayed covered during the periods interglacial periods of the quaternary by an interior sea of shallow 3- MORPHOLOGICAL PROCESS OF THE RIVER The Amazon river does not have a defined riverbed, it reflects forming meanders on a soft alluvial soil of thickness variable. The meanders are displaced downstream originating erosion and sedimentation, near the zone of Iquitos city, the river is split into two arms by an Island. If it is compared the information of the movement of the Amazon river for 1948 with that of 1994 we can observe that the erosion of the Island is of almost 2,500 meters (Fig. 2). The erosion of the head of the Island originated by the flow of the river, has permitted the advance of the waters meander up of this but not to it used to, causing its deformation upstream as well as downstream. The deformation of the upstream meander has modified the riverbed of the eastern arm stressing its curvature and narrowing the

4 Island, getting to break it in February As consequence of the break of the Island, the eastern riverbed is becoming the main bed of the river, carrying out more than 90% of the liquid and solid transportation of the flow of the river; this flow prevents the free delivery of the western arm flow, originating loss of speed of the flow and the sedimentation in all the eastern bed (Fig. 3). The revenue of the water flow by the western arm will be every time smaller due to the sedimentation being formed in the left margin.in a near future, in low waters, there will not be revenue of water to this arm. 4- ORIGINS OF MEANDERS MOVEMENT To offer some explanation to the movement of the meanders of the Amazon river, we present below the factors that they can originate them: Soil with low gradient and smoothly sloped toward to the East, in the order of 1: 20,000, that offers greater or smaller resistance to the water flow. The changes of water level between flood and ebb times, that reach fluctuations from 10 to 12 meters. The tectonic movements in the Amazon zone that are small, however the surface of the land bark suffers level changes, originating possible displacement in the bed of the rivers, this is as if a great flat platform and slightly inclined is moved slowly through a geological time of 100 to 200 years, modifying the riverbeds of then returning to their original state causing again disorders and instability in their banks. Finally, the periodical change of the magnetic axis of the earth that originates a difference of attraction located in the course of the river, producing greater levels in the banks and as consequence a change in the form of the meanders. 5- EVOLUTION OF INSTABILITY OF THE RIVERBANKS According to what is shown previously, the Amazon river has impacted strongly on the riverbank of reference 1 between the years 1948 and 1972 and on the riverbank of reference 3, between the years 1993 and 1994, being produced phenomena of instability similar in the zone of Iquitos city. Phenomena that go advancing downstream initially as Fig.4 - Observed safety factors, References 3 landslides

5 erosion to end afterwards as sedimentation and therefore stabilization of the slide critical area. During more than 40 years they have been producing landslides that have damaged considerably different types of engineering works placed in the banks of the Amazon river, having been evaluated their stability throughout different methods and calculation procedures, finding evidently, safety factors very low (Fs = 0.963) when the river impacts directly on the critical border, and increasing gradually according the river is going far creating sedimentation and throwing safety factors that go growing (Fs = 1.341, 1.684, 1.848, etc) until showing reasonably high stability, that assure stable engineering works during a time that varies from 50 to 100 years in some instances, returning after this period to present critical instability states. (Fig. 4) 6- FINAL COMMENTS The results shown in this paper provide a global vision of the stability problems of soils of the Peruvian wet tropic, generated by the changing morphology of the rivers that originate important risk situations in some cases, and increasingly growing stability in others that permits to establish the development of new behavior standards for the riverbanks of the Peruvian Amazon that in the future can be predictable with certain approximation considering their evolution in the geological time of hundreds of years, since now in certain areas it has already passed the danger, and maybe within 100 or more years, the problem return to be present and the safety factors of the banks decrease gradually until to become unstable and to produce large landslides as they occurred in sites and dates of study. Due to the fact that is not yet possible to arrive to a real determination of the engineering properties of saprolitic soils of the Peruvian Amazon that allow to formulate a rational forecast about the behavior of these geotechnical materials, it is convenient to project engineering structures for a given useful life, according to the probable safety factors of the banks of the river, being estimated the probable and necessary investments, in some instances effective and in others unnecessary due to the fact that the traditional criteria does not insert satisfactorily in many of the cases of instability studied, considering finally that the Peruvian Amazon is located in a region of a very singular world in light of their geotechnical occurrences and of climate that create very difficult wet tropical soils to predict and handle in the construction of the earth works. 7- REFERENCES Carrillo-Gil, A.,(1978), Characteristic of Tropical Soils in Peru, Latin American Magazine of Geotecnique, Vol. IV, Nº4 pp , Caracas - Venezuela (in Spanish). Carrillo-Gil, A.,(1983), Stability Problems in Iquitos, Peru, Proc. VII PanAmerican Conference on Soil Mechanics and Foundation Engineering, Vancouver -Canada. Carrillo-Gil, A.,Carrillo Delgado E.,Cardenas, J.,Flores, J., 1993, Stabilization alternative in the Wet Tropical Region for Pavements, Proc. of the VII National Conference on Soils Mechanics, Lima - Peru (in Spanish). Carrillo-Gil,A.,Carrillo, E.,Cardenas, J.,Robalino M.,(1994), Characterization of Tropical Soils of Peru, X National Congress of Civil Engineering, Lima, Peru (in Spanish). Carrillo-Gil, A.,Carrillo, E.,Cardenas, J.,(1995), Properties of the peruvian tropical soils, Paper submited to X Panamerican Conference on Soil Mech. and Foundation Eng., Guadalajara, Mexico. Dominguez, L., (1994), Morphological changes on the Amazon River, Conference in Ricardo Palma University, Lima, Perú. (in Spanish).

Erosion Surface Water. moving, transporting, and depositing sediment.

Erosion Surface Water. moving, transporting, and depositing sediment. + Erosion Surface Water moving, transporting, and depositing sediment. + Surface Water 2 Water from rainfall can hit Earth s surface and do a number of things: Slowly soak into the ground: Infiltration

More information

mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output

mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output strong interaction between streams & hillslopes Sediment Budgets for Mountain Rivers Little

More information

Surface Processes Focus on Mass Wasting (Chapter 10)

Surface Processes Focus on Mass Wasting (Chapter 10) Surface Processes Focus on Mass Wasting (Chapter 10) 1. What is the distinction between weathering, mass wasting, and erosion? 2. What is the controlling force in mass wasting? What force provides resistance?

More information

Surface Water and Stream Development

Surface Water and Stream Development Surface Water and Stream Development Surface Water The moment a raindrop falls to earth it begins its return to the sea. Once water reaches Earth s surface it may evaporate back into the atmosphere, soak

More information

Name. 4. The diagram below shows a soil profile formed in an area of granite bedrock. Four different soil horizons, A, B, C, and D, are shown.

Name. 4. The diagram below shows a soil profile formed in an area of granite bedrock. Four different soil horizons, A, B, C, and D, are shown. Name 1. In the cross section of the hill shown below, which rock units are probably most resistant to weathering? 4. The diagram below shows a soil profile formed in an area of granite bedrock. Four different

More information

27. Running Water I (p ; )

27. Running Water I (p ; ) 27. Running Water I (p. 424-436; 440-444) Hydrosphere How much of the Earth s surface is covered by water? Earth's water is collectively called the and is stored in a number of so-called as follows: 1.

More information

Page 1. Name:

Page 1. Name: Name: 1) Which event is the best example of erosion? dissolving of rock particles on a limestone gravestone by acid rain breaking apart of shale as a result of water freezing in a crack rolling of a pebble

More information

4. The map below shows a meandering stream. Points A, B, C, and D represent locations along the stream bottom.

4. The map below shows a meandering stream. Points A, B, C, and D represent locations along the stream bottom. 1. Sediment is deposited as a river enters a lake because the A) velocity of the river decreases B) force of gravity decreases C) volume of water increases D) slope of the river increases 2. Which diagram

More information

Problems with Landslide Stabilization of Dukat in the Road Vlora Saranda

Problems with Landslide Stabilization of Dukat in the Road Vlora Saranda Procedia Engineering Volume 14, 2016, Pages 145 1442 Advances in Transportation Geotechnics. The rd International Conference on Transportation Geotechnics (ICTG 2016) Problems with Landslide Stabilization

More information

1. The map below shows a meandering river. A A' is the location of a cross section. The arrows show the direction of the river flow.

1. The map below shows a meandering river. A A' is the location of a cross section. The arrows show the direction of the river flow. 1. The map below shows a meandering river. A A' is the location of a cross section. The arrows show the direction of the river flow. Which cross section best represents the shape of the river bottom at

More information

1. Which type of climate has the greatest amount of rock weathering caused by frost action? A) a wet climate in which temperatures remain below

1. Which type of climate has the greatest amount of rock weathering caused by frost action? A) a wet climate in which temperatures remain below 1. Which type of climate has the greatest amount of rock weathering caused by frost action? A) a wet climate in which temperatures remain below freezing B) a wet climate in which temperatures alternate

More information

1. Base your answer to the following question on the map below, which shows the generalized bedrock of a part of western New York State.

1. Base your answer to the following question on the map below, which shows the generalized bedrock of a part of western New York State. 1. Base your answer to the following question on the map below, which shows the generalized bedrock of a part of western New York State. 3. The table below describes the deposits that an observer saw while

More information

Lab 7: Sedimentary Structures

Lab 7: Sedimentary Structures Name: Lab 7: Sedimentary Structures Sedimentary rocks account for a negligibly small fraction of Earth s mass, yet they are commonly encountered because the processes that form them are ubiquitous in the

More information

Need of Proper Development in Hilly Urban Areas to Avoid

Need of Proper Development in Hilly Urban Areas to Avoid Need of Proper Development in Hilly Urban Areas to Avoid Landslide Hazard Dr. Arvind Phukan, P.E. Cosultant/Former Professor of Civil Engineering University of Alaska, Anchorage, USA RI District Governor

More information

The Hydrologic Cycle STREAM SYSTEMS. Earth s Water and the Hydrologic Cycle. The Hydrologic Cycle. Hydrologic Cycle

The Hydrologic Cycle STREAM SYSTEMS. Earth s Water and the Hydrologic Cycle. The Hydrologic Cycle. Hydrologic Cycle STREAM SYSTEMS Earth Science: Chapter 5 Reading pages 114-124 The Hydrologic Cycle Oceans not filling up Evaporation = precipitation System is balanced Earth s Water and the Hydrologic Cycle Earth s Water

More information

WATERCOURSE HARNESSING BANK EROSION AND CONSOLIDATION

WATERCOURSE HARNESSING BANK EROSION AND CONSOLIDATION GUVERNUL MINISTERUL POSDRU MUNCII, FAMILIEI ŞI WATERCOURSE HARNESSING BANK EROSION AND CONSOLIDATION PhD. student: ALUPOAE Daniel Gheorghe Asachi Technical University of Iasi, Faculty of Civil Engineering

More information

Rivers T. Perron

Rivers T. Perron 1 Rivers T. Perron 12.001 After our discussions of large-scale topography, how we represent topography in maps, and how topography interacts with geologic structures, you should be frothing at the mouth

More information

STREAM SYSTEMS and FLOODS

STREAM SYSTEMS and FLOODS STREAM SYSTEMS and FLOODS The Hydrologic Cycle Precipitation Evaporation Infiltration Runoff Transpiration Earth s Water and the Hydrologic Cycle The Hydrologic Cycle The Hydrologic Cycle Oceans not filling

More information

Precipitation Evaporation Infiltration Earth s Water and the Hydrologic Cycle. Runoff Transpiration

Precipitation Evaporation Infiltration Earth s Water and the Hydrologic Cycle. Runoff Transpiration STREAM SYSTEMS and FLOODS The Hydrologic Cycle Precipitation Evaporation Infiltration Earth s Water and the Hydrologic Cycle Runoff Transpiration The Hydrologic Cycle The Hydrologic Cycle Oceans not filling

More information

June 9, R. D. Cook, P.Eng. Soils Engineer Special Services Western Region PUBLIC WORKS CANADA WESTERN REGION REPORT ON

June 9, R. D. Cook, P.Eng. Soils Engineer Special Services Western Region PUBLIC WORKS CANADA WESTERN REGION REPORT ON PUBLIC WORKS CANADA WESTERN REGION REPORT ON GEOTECHNICAL INVESTIGATION PROPOSED MARTIN RIVER BRIDGE MILE 306.7 MACKENZIE HIGHWAY Submitted by : R. D. Cook, P.Eng. Soils Engineer Special Services Western

More information

Year 6. Geography. Revision

Year 6. Geography. Revision Year 6 Geography Revision November 2017 Rivers and World knowledge How the water cycle works and the meaning of the terms evaporation, condensation, precipitation, transpiration, surface run-off, groundwater

More information

Debris flow: categories, characteristics, hazard assessment, mitigation measures. Hariklia D. SKILODIMOU, George D. BATHRELLOS

Debris flow: categories, characteristics, hazard assessment, mitigation measures. Hariklia D. SKILODIMOU, George D. BATHRELLOS Debris flow: categories, characteristics, hazard assessment, mitigation measures Hariklia D. SKILODIMOU, George D. BATHRELLOS Natural hazards: physical phenomena, active in geological time capable of producing

More information

Bell Ringer. Are soil and dirt the same material? In your explanation be sure to talk about plants.

Bell Ringer. Are soil and dirt the same material? In your explanation be sure to talk about plants. Bell Ringer Are soil and dirt the same material? In your explanation be sure to talk about plants. 5.3 Mass Movements Triggers of Mass Movements The transfer of rock and soil downslope due to gravity is

More information

Streams. Stream Water Flow

Streams. Stream Water Flow CHAPTER 14 OUTLINE Streams: Transport to the Oceans Does not contain complete lecture notes. To be used to help organize lecture notes and home/test studies. Streams Streams are the major geological agents

More information

Weathering, Erosion, Deposition, and Landscape Development

Weathering, Erosion, Deposition, and Landscape Development Weathering, Erosion, Deposition, and Landscape Development I. Weathering - the breakdown of rocks into smaller particles, also called sediments, by natural processes. Weathering is further divided into

More information

Land subsidence due to groundwater withdrawal in Hanoi, Vietnam

Land subsidence due to groundwater withdrawal in Hanoi, Vietnam Land Subsidence (Proceedings of the Fifth International Symposium on Land Subsidence, The Hague, October 1995). 1AHS Publ. no. 234, 1995. 55 Land subsidence due to groundwater withdrawal in Hanoi, Vietnam

More information

Unit 3 Review - Surface Processes

Unit 3 Review - Surface Processes Unit 3 Review - Surface Processes 1. Why is the surface of Mercury covered with meteor impact craters, while Earth s surface has relatively few craters? A) Mercury is larger than Earth, so it gets hit

More information

NATURE OF RIVERS B-1. Channel Function... ALLUVIAL FEATURES. ... to successfully carry sediment and water from the watershed. ...dissipate energy.

NATURE OF RIVERS B-1. Channel Function... ALLUVIAL FEATURES. ... to successfully carry sediment and water from the watershed. ...dissipate energy. 1 2 Function... Sevier River... to successfully carry sediment and water from the watershed....dissipate energy. 3 ALLUVIAL FEATURES 4 CHANNEL DIMENSION The purpose of a stream is to carry water and sediment

More information

HW #2 Landscape Travel from A to B 12,

HW #2 Landscape Travel from A to B 12, HW #2 Landscape 2016 Section: Name: ate: 1. ase your answer(s) to the following question(s) on the map below, which represents two bridges that cross the Green River. Letters,, and represent locations

More information

INTRODUCTION. Climate

INTRODUCTION. Climate INTRODUCTION Climate Landslides are serious natural disasters in many parts of the world. Since the past 30 years, rainfall triggered landslides and debris flows had been one of the natural disasters of

More information

STUDY GUIDE FOR CONTENT MASTERY. Surface Water Movement

STUDY GUIDE FOR CONTENT MASTERY. Surface Water Movement Surface Water SECTION 9.1 Surface Water Movement In your textbook, read about surface water and the way in which it moves sediment. Complete each statement. 1. An excessive amount of water flowing downslope

More information

Landforms in Canada. Canada is made up of three dis;nct types of landforms: Canadian Shield Highlands Lowlands

Landforms in Canada. Canada is made up of three dis;nct types of landforms: Canadian Shield Highlands Lowlands Canada s Landforms What is a Landform? A landform is any physical feature of the Earth s surface having a characteris;c, recognizable shape, produced by natural causes. Landforms include major features

More information

Pratice Surface Processes Test

Pratice Surface Processes Test 1. The cross section below shows the movement of wind-driven sand particles that strike a partly exposed basalt cobble located at the surface of a windy desert. Which cross section best represents the

More information

Surface Water Short Study Guide

Surface Water Short Study Guide Name: Class: Date: Surface Water Short Study Guide Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The three ways in which a stream carries

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 7 Glaciers, Desert, and Wind 7.1 Glaciers Types of Glaciers A glacier is a thick ice mass that forms above the snowline over hundreds or thousands of

More information

1 Earth s Oceans. TAKE A LOOK 2. Identify What are the five main oceans?

1 Earth s Oceans. TAKE A LOOK 2. Identify What are the five main oceans? CHAPTER 13 1 Earth s Oceans SECTION Exploring the Oceans BEFORE YOU READ After you read this section, you should be able to answer these questions: What affects the salinity of ocean water? What affects

More information

Chapter 10. Running Water aka Rivers. BFRB Pages

Chapter 10. Running Water aka Rivers. BFRB Pages Chapter 10 Running Water aka Rivers BFRB Pages 101-116 Stream Erosion and Transportation Running water is all precipitation (rain, snow, etc) that falls on Earth and is pulled downhill by gravity. Running

More information

GY 111: Physical Geology

GY 111: Physical Geology UNIVERSITY OF SOUTH ALABAMA GY 111: Physical Geology Lecture 14: Sedimentary Rocks Part 2: Alluvial Fans and Rivers Instructor: Dr. Douglas W. Haywick Last Time 1) Types of Sediment 2) Sedimentary Rock

More information

Cattaraugus Creek: A Story of Flowing Water and the Geology of the Channel It Flows Through Presentation to West Valley Citizen Task Force 4/27/16

Cattaraugus Creek: A Story of Flowing Water and the Geology of the Channel It Flows Through Presentation to West Valley Citizen Task Force 4/27/16 Cattaraugus Creek: A Story of Flowing Water and the Geology of the Channel It Flows Through Presentation to West Valley Citizen Task Force 4/27/16 Raymond C. Vaughan, Ph.D. What happens if you drop a

More information

Landscape evolution. An Anthropic landscape is the landscape modified by humans for their activities and life

Landscape evolution. An Anthropic landscape is the landscape modified by humans for their activities and life Landforms Landscape evolution A Natural landscape is the original landscape that exists before it is acted upon by human culture. An Anthropic landscape is the landscape modified by humans for their activities

More information

Class Notes: Surface Processes

Class Notes: Surface Processes Name: Date: Period: Surface Processes The Physical Setting: Earth Science Class Notes: Surface Processes I. Weathering and Soils Weathering -! Sediments -! Weathering occurs when rocks are exposed to:

More information

Final Exam. Running Water Erosion and Deposition. Willamette Discharge. Running Water

Final Exam. Running Water Erosion and Deposition. Willamette Discharge. Running Water Final Exam Running Water Erosion and Deposition Earth Science Chapter 5 Pages 120-135 Scheduled for 8 AM, March 21, 2006 Bring A scantron form A calculator Your 3 x 5 paper card of formulas Review questions

More information

Grade 5 Hands on Science Weathering, Erosion and Deposition

Grade 5 Hands on Science Weathering, Erosion and Deposition Grade 5 Hands on Science Weathering, Erosion and Deposition Objective: To demonstrate and investigate the effect of weathering, water and wind erosion and the subsequent deposition into landforms. Background:

More information

Working with Natural Stream Systems

Working with Natural Stream Systems Working with Natural Stream Systems Graydon Dutcher Delaware County Soil & Water Conservation District Stream Corridor Management Program Tropical Storm Sandy October 29,2012 What is a Watershed?

More information

What factors affect the angle of a slope?

What factors affect the angle of a slope? Climate Rock type and Structure What factors affect the angle of a slope? Aspect Fast mass movements Slides: Slides are movements along the SLIP PLANE, i.e. a line of weakness in the rock or soil structure.

More information

Chapter 3 Erosion and Deposition. The Big Question:

Chapter 3 Erosion and Deposition. The Big Question: Chapter 3 Erosion and Deposition The Big Question: 1 Design a way to represent and describe the 4 types of mass movement. You may use pictures, diagrams, list, web, chart, etc 2 Chapter 3: Erosion and

More information

Sediment and Sedimentary rock

Sediment and Sedimentary rock Sediment and Sedimentary rock Sediment: An accumulation of loose mineral grains, such as boulders, pebbles, sand, silt or mud, which are not cemented together. Mechanical and chemical weathering produces

More information

What is weathering and how does it change Earth s surface? Answer the question using

What is weathering and how does it change Earth s surface? Answer the question using 7 th Grade Lesson What is weathering and how does it change Earth s surface? Answer the question using the sentence frame. You have 4 minutes. Weathering is. This changes the Earth s surface because. 1

More information

GLG101: What-To-Know List

GLG101: What-To-Know List Exam 3, Page 1 GLG101: What-To-Know List (Derived from Before You Leave This Page Lists) This list is intended to guide your reading and to help you prepare for the online multiple-choice quizzes. Each

More information

Science EOG Review: Landforms

Science EOG Review: Landforms Mathematician Science EOG Review: Landforms Vocabulary Definition Term canyon deep, large, V- shaped valley formed by a river over millions of years of erosion; sometimes called gorges (example: Linville

More information

Forces in Earth s Crust

Forces in Earth s Crust Name Date Class Earthquakes Section Summary Forces in Earth s Crust Guide for Reading How does stress in the crust change Earth s surface? Where are faults usually found, and why do they form? What land

More information

Analysis of soil failure modes using flume tests

Analysis of soil failure modes using flume tests Analysis of soil failure modes using flume tests A. Spickermann & J.-P. Malet Institute of Earth Physics, CNRS UMR 751, University of Strasbourg, Strasbourg, France Th.W.J. van Asch, M.C.G. van Maarseveen,

More information

Classification according to patent rock material/origin, soil distribution and orders

Classification according to patent rock material/origin, soil distribution and orders Classification according to patent rock material/origin, soil distribution and orders Alluvial Soils Shales and Sandstone Soils Limestone Soils Chocolate Hills: Limestone formation Andesite and Basalt

More information

Lecture Outlines PowerPoint. Chapter 6 Earth Science 11e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 6 Earth Science 11e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 6 Earth Science 11e Tarbuck/Lutgens 2006 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Developed in Consultation with Florida Educators

Developed in Consultation with Florida Educators Developed in Consultation with Florida Educators Table of Contents Next Generation Sunshine State Standards Correlation Chart... 7 Benchmarks Chapter 1 The Practice of Science...................... 11

More information

Erosion and Deposition

Erosion and Deposition Erosion and Deposition Erosion Sediment natural forces move rock/soil from one place to another. gravity, water, wind, glaciers, waves are causes material moved by erosion Deposition when erosion lays

More information

1. The diagram below shows the stump of a tree whose root grew into a small crack in bedrock and split the rock apart.

1. The diagram below shows the stump of a tree whose root grew into a small crack in bedrock and split the rock apart. 1. The diagram below shows the stump of a tree whose root grew into a small crack in bedrock and split the rock apart. 4. Which process involves either a physical or chemical breakdown of earth materials?

More information

Stream Geomorphology. Leslie A. Morrissey UVM July 25, 2012

Stream Geomorphology. Leslie A. Morrissey UVM July 25, 2012 Stream Geomorphology Leslie A. Morrissey UVM July 25, 2012 What Functions do Healthy Streams Provide? Flood mitigation Water supply Water quality Sediment storage and transport Habitat Recreation Transportation

More information

Erosion and Deposition

Erosion and Deposition Erosion and Deposition The Erosion-Deposition Process What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with

More information

3/3/2013. The hydro cycle water returns from the sea. All "toilet to tap." Introduction to Environmental Geology, 5e

3/3/2013. The hydro cycle water returns from the sea. All toilet to tap. Introduction to Environmental Geology, 5e Introduction to Environmental Geology, 5e Running Water: summary in haiku form Edward A. Keller Chapter 9 Rivers and Flooding Lecture Presentation prepared by X. Mara Chen, Salisbury University The hydro

More information

Weathering, Erosion and Deposition

Weathering, Erosion and Deposition Weathering, Erosion and Deposition Shaping the Earth s Surface Weathering the process of breaking down rocks into smaller fragments Erosion the transport of rock fragments from one location to another

More information

NATURAL RIVER. Karima Attia Nile Research Institute

NATURAL RIVER. Karima Attia Nile Research Institute NATURAL RIVER CHARACTERISTICS Karima Attia Nile Research Institute NATURAL RIVER DEFINITION NATURAL RIVER DEFINITION Is natural stream of water that flows in channels with ih more or less defined banks.

More information

Controlling Processes That Change Land

Controlling Processes That Change Land 1 Name Date Controlling Processes That Change Land People try to control some of the processes that change land. To do this, people apply technology- the use of science to solve problems in everyday life.

More information

PHYSICAL GEOGRAPHY: An overview. Definitions. Faulting. Folding GEOLOGIC PROCESSES 9/17/2013 TOPOGRAPHIC RELIEF

PHYSICAL GEOGRAPHY: An overview. Definitions. Faulting. Folding GEOLOGIC PROCESSES 9/17/2013 TOPOGRAPHIC RELIEF TOPOGRAPHIC RELIEF PHYSICAL GEOGRAPHY: An overview Prof. Anthony Grande AFG 0913 2 Definitions GEOLOGIC PROCESSES Geography: Study of people living on the surface of the earth. Geology: the study of the

More information

Term Knowledge Using and applying Grade Criteria Autumn 1 Assessment window October Natural hazards pose major risks to people and property.

Term Knowledge Using and applying Grade Criteria Autumn 1 Assessment window October Natural hazards pose major risks to people and property. Assessment Schedule Year 9 2015/6 Term Knowledge Using and applying Grade Criteria Autumn 1 Assessment window October 2015 3.1.1.2 Tectonic Natural hazards pose major risks to people and property. Definition

More information

FUTURE MEANDER BEND MIGRATION AND FLOODPLAIN DEVELOPMENT PATTERNS NEAR RIVER MILES 241 TO 235, SACRAMENTO RIVER

FUTURE MEANDER BEND MIGRATION AND FLOODPLAIN DEVELOPMENT PATTERNS NEAR RIVER MILES 241 TO 235, SACRAMENTO RIVER FUTURE MEANDER BEND MIGRATION AND FLOODPLAIN DEVELOPMENT PATTERNS NEAR RIVER MILES 241 TO 235, SACRAMENTO RIVER Eric W. Larsen University of California, Davis With the assistance of Evan Girvetz REPORT

More information

PALEOGEOGRAPHY of NYS. Definitions GEOLOGIC PROCESSES. Faulting. Folding 9/6/2012. TOPOGRAPHIC RELIEF MAP of NYS GRADATIONAL TECTONIC

PALEOGEOGRAPHY of NYS. Definitions GEOLOGIC PROCESSES. Faulting. Folding 9/6/2012. TOPOGRAPHIC RELIEF MAP of NYS GRADATIONAL TECTONIC TOPOGRAPHIC RELIEF MAP of NYS PALEOGEOGRAPHY of NYS Prof. Anthony Grande AFG 2012 Definitions GEOLOGIC PROCESSES Geography: study of people living on the surface of the earth. Geology: the scientific study

More information

Streams. Water. Hydrologic Cycle. Geol 104: Streams

Streams. Water. Hydrologic Cycle. Geol 104: Streams Streams Why study streams? Running water is the most important geologic agent in erosion, transportation and deposition of sediments. Water The unique physical and chemical properties of water make it

More information

GY 111 Lecture Note Series Sedimentary Environments 2: Rivers and Deltas

GY 111 Lecture Note Series Sedimentary Environments 2: Rivers and Deltas GY 111 Lecture Notes D. Haywick (2008-09) 1 GY 111 Lecture Note Series Sedimentary Environments 2: Rivers and Deltas Lecture Goals A) Rivers and Deltas (types) B) Water Flow and sedimentation in river/deltas

More information

Do you think sediment transport is a concern?

Do you think sediment transport is a concern? STREAM RESTORATION FRAMEWORK AND SEDIMENT TRANSPORT BASICS Pete Klingeman 1 What is Your Restoration Project Like? k? Do you think sediment transport is a concern? East Fork Lewis River, WA Tidal creek,

More information

Mountain Rivers. Gutta cavat lapidem. (Dripping water hollows out a stone) -Ovid, Epistulae Ex Ponto, Book 3, no. 10, 1. 5

Mountain Rivers. Gutta cavat lapidem. (Dripping water hollows out a stone) -Ovid, Epistulae Ex Ponto, Book 3, no. 10, 1. 5 Mountain Rivers Gutta cavat lapidem (Dripping water hollows out a stone) -Ovid, Epistulae Ex Ponto, Book 3, no. 10, 1. 5 Mountain Rivers Fixed channel boundaries (bedrock banks and bed) High transport

More information

ENVIRONMENTAL GEOSCIENCE UNIFORM SYLLABUS

ENVIRONMENTAL GEOSCIENCE UNIFORM SYLLABUS ENVIRONMENTAL GEOSCIENCE UNIFORM SYLLABUS The Association of Professional Engineers and Geoscientists of the Province of British Columbia Note: 1. This Syllabus May Be Subject To Change 2. These Courses

More information

Removal of riverbank protection along the River Rhine (the Netherlands)

Removal of riverbank protection along the River Rhine (the Netherlands) RR 2004 3rd European Conference on River Restoration RIVER RESTORATION 2004 Zagreb, Croatia, 17-21 May 2004 Removal of riverbank protection along the River Rhine (the Netherlands) L.J. Bolwidt, H.E.J.

More information

Module 2, Investigation 4: Log 1 Our coasts

Module 2, Investigation 4: Log 1 Our coasts Module 2, Investigation 4: Log 1 Our coasts The coast is where the ocean meets land. Coastlines are always changing their shape. They are being worn away in some places and built up in others. Coasts can

More information

What are the different ways rocks can be weathered?

What are the different ways rocks can be weathered? Romano - 223 What are the different ways rocks can be weathered? Weathering - the breakdown of rocks and minerals at the Earth s surface 1. 2. PHYSICAL WEATHERING Rock is broken into smaller pieces with

More information

Landscape Development

Landscape Development Landscape Development Slopes Dominate Natural Landscapes Created by the interplay of tectonic and igneous activity and gradation Deformation and uplift Volcanic activity Agents of gradation Mass wasting

More information

Laboratory Exercise #4 Geologic Surface Processes in Dry Lands

Laboratory Exercise #4 Geologic Surface Processes in Dry Lands Page - 1 Laboratory Exercise #4 Geologic Surface Processes in Dry Lands Section A Overview of Lands with Dry Climates The definition of a dry climate is tied to an understanding of the hydrologic cycle

More information

Seepage Analysis for Shurijeh Reservoir Dam Using Finite Element Method. S. Soleymani 1, A. Akhtarpur 2

Seepage Analysis for Shurijeh Reservoir Dam Using Finite Element Method. S. Soleymani 1, A. Akhtarpur 2 Seepage Analysis for Shurijeh Reservoir Dam Using Finite Element Method S. Soleymani 1, A. Akhtarpur 2 1 Group of Dam Construction, Toossab Company, P.O. Box 917751569, Mashhad City, Iran, PH (+98) 511-7684091;

More information

Biosphere. All living things, plants, animals, (even you!) are part of the zone of the earth called the biosphere.

Biosphere. All living things, plants, animals, (even you!) are part of the zone of the earth called the biosphere. Unit 1 Study Guide Earth s Spheres Biosphere All living things, plants, animals, (even you!) are part of the zone of the earth called the biosphere. Hydrosphere Water covers ¾ of the earth, made up mostly

More information

NATURAL SOIL DEPOSITS

NATURAL SOIL DEPOSITS NATURAL SOIL DEPOSITS Soils are produced by weathering of rock. Weathering is the physical or chemical breakdown of rock. Physical Processes: - Unloading - Frost Action - Organism Growth - Crystal Growth

More information

GEOL 1121 Earth Processes and Environments

GEOL 1121 Earth Processes and Environments GEOL 1121 Earth Processes and Environments Wondwosen Seyoum Department of Geology University of Georgia e-mail: seyoum@uga.edu G/G Bldg., Rm. No. 122 Seyoum, 2015 Chapter 6 Streams and Flooding Seyoum,

More information

Chapter 5: Glaciers and Deserts

Chapter 5: Glaciers and Deserts I. Glaciers and Glaciation Chapter 5: Glaciers and Deserts A. A thick mass of ice that forms over land from the compaction and recrystallization of snow and shows evidence of past or present flow B. Types

More information

Sediment and sedimentary rocks Sediment

Sediment and sedimentary rocks Sediment Sediment and sedimentary rocks Sediment From sediments to sedimentary rocks (transportation, deposition, preservation and lithification) Types of sedimentary rocks (clastic, chemical and organic) Sedimentary

More information

GEOLOGY OF TODMORDEN MOOR 2 BACKGROUND

GEOLOGY OF TODMORDEN MOOR 2 BACKGROUND GEOLOGY OF TODMORDEN MOOR 2 BACKGROUND 1) THE CARBONIFEROUS SERIES OF ROCKS The rocks of the Todmorden district are of the Carboniferous Series and were first laid down in an ancient sea, which covered

More information

Geology 101. Reading Guides for Chapters 5 and 14 Weathering: the Breakdown of Rocks (p. 142)

Geology 101. Reading Guides for Chapters 5 and 14 Weathering: the Breakdown of Rocks (p. 142) Geology 101 Name Reading Guides for Chapters 5 and 14 Weathering: the Breakdown of Rocks (p. 142) Please read the introduction to the chapter. What is the difference between weathering and erosion? Weathering

More information

Topic 6: Weathering, Erosion and Erosional-Deposition Systems (workbook p ) Workbook Chapter 4, 5 WEATHERING

Topic 6: Weathering, Erosion and Erosional-Deposition Systems (workbook p ) Workbook Chapter 4, 5 WEATHERING Topic 6: Weathering, Erosion and Erosional-Deposition Systems (workbook p. 95-125) Workbook Chapter 4, 5 THE BIG PICTURE: Weathering, erosion and deposition are processes that cause changes to rock material

More information

Why Geomorphology for Fish Passage

Why Geomorphology for Fish Passage Channel Morphology - Stream Crossing Interactions An Overview Michael Love Michael Love & Associates mlove@h2odesigns.com (707) 476-8938 Why Geomorphology for Fish Passage 1. Understand the Scale of the

More information

water erosion lithosphere Describe the process of erosion and deposition. chemical weathering Dissolving limestone is an example of.

water erosion lithosphere Describe the process of erosion and deposition. chemical weathering Dissolving limestone is an example of. At one time, there was one large island off the coast of Mississippi and now it is two separate islands. What caused the island to be split into two? water erosion The crust and the top part of the upper

More information

Summary. Streams and Drainage Systems

Summary. Streams and Drainage Systems Streams and Drainage Systems Summary Streams are part of the hydrologic cycle and the chief means by which water returns from the land to the sea. They help shape the Earth s surface and transport sediment

More information

Name Period Date 8R MIDTERM REVIEW I. ASTRONOMY 1. Most stars are made mostly of. 2. The dark, cooler areas on the sun s surface are

Name Period Date 8R MIDTERM REVIEW I. ASTRONOMY 1. Most stars are made mostly of. 2. The dark, cooler areas on the sun s surface are Name Period Date 8R MIDTERM REVIEW I. ASTRONOMY 1. Most stars are made mostly of 2. The dark, cooler areas on the sun s surface are 3. When hydrogen nuclei fuse they form 4. Einstein s equation is 5. The

More information

EFFECTS OF ICE ON THE HYDRAULICS OF INNER MONGOLIA REACH OF THE YELLOW RIVER

EFFECTS OF ICE ON THE HYDRAULICS OF INNER MONGOLIA REACH OF THE YELLOW RIVER Ice in the Environment: Proceedings of the 16th IAHR International Symposium on Ice Dunedin, New Zealand, 2nd 6th December 2002 International Association of Hydraulic Engineering and Research EFFECTS OF

More information

Weathering, Erosion, Deposition

Weathering, Erosion, Deposition Weathering, Erosion, Deposition The breakdown of rocks at or near the Earth s Surface. Physical Chemical - The breakdown of rock into smaller pieces without chemical change. - Dominant in moist /cold conditions

More information

AN APPROACH TO THE CLASSIFICATION OF SLOPE MOVEMENTS

AN APPROACH TO THE CLASSIFICATION OF SLOPE MOVEMENTS Training/workshop on Earthquake Vulnerability and Multi-Hazard Risk Assessment: Geospatial Tools for Rehabilitation and Reconstruction Effort 13 31 March 2006, Islamabad, Pakistan AN APPROACH TO THE CLASSIFICATION

More information

Figure 1 The map shows the top view of a meandering stream as it enters a lake. At which points along the stream are erosion and deposition dominant?

Figure 1 The map shows the top view of a meandering stream as it enters a lake. At which points along the stream are erosion and deposition dominant? 1. In which type of climate does chemical weathering usually occur most rapidly? 1. hot and dry 3. cold and dry 2. hot and wet 4. cold and wet 2. Figure 1 The map shows the top view of a meandering stream

More information

Extra Credit Assignment (Chapters 4, 5, 6, and 10)

Extra Credit Assignment (Chapters 4, 5, 6, and 10) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Extra Credit Assignment (Chapters 4, 5, 6, and 10) For this assignment you will require: a calculator and metric ruler. Chapter 4 Objectives:

More information

Stream Restoration and Environmental River Mechanics. Objectives. Pierre Y. Julien. 1. Peligre Dam in Haiti (deforestation)

Stream Restoration and Environmental River Mechanics. Objectives. Pierre Y. Julien. 1. Peligre Dam in Haiti (deforestation) Stream Restoration and Environmental River Mechanics Pierre Y. Julien Malaysia 2004 Objectives Brief overview of environmental river mechanics and stream restoration: 1. Typical problems in environmental

More information

Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College

Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College Hydrologic Cycle The hydrologic cycle is a summary of the circulation of Earth s water supply. Processes involved in the hydrologic

More information

Aquifer an underground zone or layer of sand, gravel, or porous rock that is saturated with water.

Aquifer an underground zone or layer of sand, gravel, or porous rock that is saturated with water. Aggradation raising of the streambed by deposition that occurs when the energy of the water flowing through a stream reach is insufficient to transport sediment conveyed from upstream. Alluvium a general

More information

Module 10: Resources and Virginia Geology Topic 4 Content: Virginia Geology Notes

Module 10: Resources and Virginia Geology Topic 4 Content: Virginia Geology Notes Virginia is composed of a very diverse landscape that extends from the beaches and barrier islands all of the way to the highly elevated Appalachian Plateau. Geologists have discovered ancient shallow

More information

ES 105 Surface Processes I. Hydrologic cycle A. Distribution % in oceans 2. >3% surface water a. +99% surface water in glaciers b.

ES 105 Surface Processes I. Hydrologic cycle A. Distribution % in oceans 2. >3% surface water a. +99% surface water in glaciers b. ES 105 Surface Processes I. Hydrologic cycle A. Distribution 1. +97% in oceans 2. >3% surface water a. +99% surface water in glaciers b. >1/3% liquid, fresh water in streams and lakes~1/10,000 of water

More information