THE RELATION OF GREAT BASIN LATE QUATERNARY HYDROLOGIC AND CRYOLOGIC VARIABILITY TO NORTH ATLANTIC CLIMATE OSCILLATIONS

Size: px
Start display at page:

Download "THE RELATION OF GREAT BASIN LATE QUATERNARY HYDROLOGIC AND CRYOLOGIC VARIABILITY TO NORTH ATLANTIC CLIMATE OSCILLATIONS"

Transcription

1 THE RELATION OF GREAT BASIN LATE QUATERNARY HYDROLOGIC AND CRYOLOGIC VARIABILITY TO NORTH ATLANTIC CLIMATE OSCILLATIONS L. Benson a, R. Spencer b, D. Rhode c, L. Louderback d, R. Rye e a U. S. Geological Survey, 3215 Marine Street, Boulder, CO 80303, USA b Department of Geology and Geophysics, University of Calgary, Alberta T2N 1N4, Canada c Desert Research Institute, Division of Earth and Ecosystem Sciences, 2215 Raggio Parkway, Reno, NV 89512, USA d Anthropology Department, University of Nevada,1664 North Virginia Street, MS 096, Reno, NV 89557, USA e U.S. Geological Survey, MS 963, Denver Federal Center, Lakewood, CO 80225, USA

2 HEINRICH AND DO EVENTS Heinrich events were first recognized in marine sediments as layers containing high percentages of carbonate fragments in the 180-µm to 3-mm sediment-size fraction (Heinrich, 1988). Broecker et al. (1992) interpreted the Heinrich layers as debris released during massive influxes of icebergs into the North Atlantic. The carbonate fragments in Heinrich events 1, 2, 4, and 5 indicate that much of the ice that transported the carbonate came from the LIS (Bond et al., 1992). Heinrich events occur during cold DO stadials. There are two principal theories regarding the relation of Heinrich events to variability in the strength of the AMOC. In one theory (SURGE FIRST), the Heinrich event surges ice from the LIS producing a freshwater cap on the North Atlantic which shuts down the production of NADW and shuts down the AMOC (MacAyeal, 1993). In the other theory (SURGE LAST), freshwater is released from ablation of the LIS or melting of pack ice in the North Atlantic, shutting down the AMOC, which through a variety of possible mechanisms leads to the ice surging associated with a Heinrich event (Clark et al., 1999; Calov et al., 2002). Both theories are consistent with the observation that abrupt climate change in almost all climate models is triggered by changes in the surface freshwater balance of the North Atlantic. During a non-heinrich DO stadial, air and water temperatures in the North Atlantic region also decline in concert with reductions in the strength of the AMOC (Boyle, 2000). Wunsch (2006) has suggested that DO oscillations observed in Greenland ice were not generated by shifts in North Atlantic ocean circulation, given the small contribution of heat from the high-latitude ocean to the overall meridional heat flux. Instead, Wunsch suggests that DO oscillations are a consequence of the interactions of the windfield with Northern Hemisphere ice sheets and that changes in ocean circulation also are a consequence of wind shifts.

3 Outburst floods: 8.2 ka event ( cal ka) Preboreal Oscillation ( cal ka) Younger Dryas ( cal ka) Surging Ice: Heinrich 1 (15.8 ka) Heinrich 2 (23.9 ka) Heinrich 3 (30.0 ka) Heinrich 4 (38.5 ka) Melting Ice: Dansgaard-Oeschger interstadial 1-12

4

5 (A) Blue Lake/Bonneville core, (B) Wilson Creek Fm, (C, D) Owens Lake cores, (E) Pyramid Lake core. The age model for the Wilson Creek Formation (Fig. B) was constructed using the GISP2 ages of H1, H2, H3, H4 and their paleomagnetic secular variationbased locations in the sediment column together with the GISP2 age of the MLE (33.9 cal ka) and the calibrated 14 C age of the top of the stratigraphic section (14.14 cal ka) (Benson et al., 1998). All 14 C ages were assigned a zero reservoir age except those for Pyramid Lake which were assigned a 600-yr value before calibration (Fig. E). However, sediments in Bonneville associated with the Mazama tephra are C yr too old. Age-model calibration done using CALIB (Stuiver et al., 2005) for 14 C ages <19,250 yr. Older ages calibrated by interpolation of Cariaco-based chronology discussed in Hughen et al. (2005).

6 (1298 m) 8-m sediment core 1-cm sampling interval 1-cm ~ 60 yr

7 The Bonneville climatic highstand/provo was terminated by the warming that followed H1. Periods of aridity occur during H3 and slightly before H2 and H4. If we invoke a 1000-yr reservoir correction then H2 and H4 are associated with aridity and H3 is not. The YD and PBO are associated with abrupt increases in lake size. The overall shape of the Bonneville δ 18 O record resembles the GISP2 δ 18 O record.

8 BONNEVILLE CARBONATE MINERALOGY Aragonite, high-mg calcite, low- Mg calcite form in sequence as salinity decreases. In general the data support the isotope and TIC records.

9 Cattails Typha latifolia Typha angustifolia Cyperaceae Sedges Potamogeton Spore A Pediastrum Botryococcus Zones b YD 3a Age (cal BP) Pollen grains per cubic centimeter/years per sample Appendix A. Aquatic pollen accumulation rates. Accumulation rates were calculated by dividing the pollen concentration by the number of years represented by the sample (Data of Lisbeth Louderback)

10 Summer Lake and GISP2 records tied together by the Mono Lake excursion (Zic et al., 2002). IRM record stretched to match the GISP2 δ 18 O record. Cold N. Atlantic temps. occur during low lake levels. Low IRM occurs during low-lake levels when magnetite is lost due to oxidative decomposition of TOC. M L E Summer Lake δ 18 O record indicates low lake levels during Heinrich events but GISP2 interstadials do not usually line up with Summer Lake δ 18 O maxima (Benson et al. 2003).

11 Mono Lake record indicates aridity during H2 and H1 and possibly during H4. Two highstands (δ 18 O minima): One during glacial maximum (20 cal ka) and another at 14.9 cal ka (terminated by BØA warm Interval). TIC values between 30 and 15.5 cal ka indicates that Tioga glaciation was also terminated by the BØA.

12 Pyramid Lake δ 18 O record indicates aridity during H1 and a highstand at 15.5 cal ka that was terminated by BØA. The Pyramid Lake TOC record indicates that the TIOGA glaciation began ~28 cal ka and probably ended during or after the BØA. Note that shape of Pyramid Lake δ 18 O record is similar to GISP2 δ 18 O record but shifted in time and that the frequency of TOC oscillations is similar to the frequency of GISP2 δ18o oscillations.

13 Owens Lake desiccated during H1. The TIC record indicates Tioga glaciation occurred between 29.5 and 15.5 cal ka and was terminated by BØA. The TOC record indicates that six pre-tioga Sierran glacier advances occurred during GISP2 stadials. The YD and PBO oscillations were associated with peaks in Owens Lake overflow (δ 18 O and TOC minima).

14 GLACIER RECESSION IN THE UINTA, WASATCH AND SIERRA NEVADA MOUNTAINS Well-constrained cosmogenic surface-exposure 10 Be ages for two LGM moraines in the southwestern Uinta Mountains have ranges, respectively, of 16.7 ± 1.5 to 19.9 ± 2.0 ka and 16.1 ± 1.5 to 18.0 ± 1.9 ka (Munroe et al., 2006). Bear Lake IRM data indicate glacial activity between 32 and 17.5 cal ka (Joe Rosenbaum, pers. comm.). 10 Be ages of moraines deposited after the Bonneville flood, downvalley of the mouths of Little Cottonwood and Bells canyons on the western flank of the Wasatch, have younger ages, ranging from 16.9 ± 0.4 to 15.2 ± 0.4 ka (Elliot Lips, pers. comm.). Sierran Tioga 4 glaciers retreated from Chiatovich Creek between ~15 and Cl ka (Phillips et al.,1996).

15 SUMMARY H1 was a dry period in the Great Basin. H2 and H4 may also have been associated with dry periods. The YD and PBO were associated with abrupt increases in lake size. The overall shapes of the Lake Bonneville and Lake Lahontan δ 18 O records resemble the GISP2 δ 18 O record shifted in time. Alpine glaciers and highstand lakes were terminated by the warming that followed H1 (~15.5 cal ka) and which caused changes in the topography of the LIS. Between 39 and 29.5 cal ka, Sierran alpine glacial advances were associated with four DO stadials and two Heinrich events (which also occur during DO stadials). The lack of consistent coherence between the GISP2 and Great Basin hydrologicbalance records suggests that the Heinrich/DO signal may have been shifted in time and/or space before it reached the Great Basin, or that the precipitation field over the Great Basin was spatially inhomogeneous, or that the age models used to construct the hydrologic-balance records are flawed, or that older carbonate-containing sediment may have been reworked and transported to core sites during lowstand lakes that accompanied Heinrich events and may have confounded isotopic records of low-lake levels.

16 Chappell (2002) calculated that m increases in sea level occurred during H4 and H5; Clark et al. (2007) recently modeled the response of sea level to changes in the mass balance of Northern Hemisphere ice sheets. These simulations, indicate that H4 through H6 were accompanied by m of sea-level rise). An isotope-based calculation by Roche et al. (2004) suggested that H4 released only 2 ± 1 m sea-level equivalent of ice; Bintanja et al. (2005) has calculated the amount of water stored in the LIS during the past 1.2 Ma. We used the amount of water stored in the LIS just prior to H1, H2, and H4 and estimates of sea level change, ranging from 2-15 m, to calculate the percentage of LIS ice transported to the North Atlantic during a Heinrich event, assuming all the ice came from the LIS. H1 H2 H3 H4 Percent Reduction in Size of Laurentide Ice Sheet Heinrich event 2 m Increase in sea level 5 m m m

17 HEINRICH EVENT FORCING OF THE WINDFIELD We offer the hypothesis that the change in size and shape of the LIS associated with warming after H1 and with Heinrich events, in general, caused a shift in the mean position of the PJS away from the catchment areas of one or more Great Basin lakes. For example, Dyke et al. (2002) have suggested that H1 probably drew down the entire central ice surface positioned over Hudson Bay. Such a change in topography should have affected the windfield, including the trajectory of the PJS, which is in agreement with the hypothesis of Wunsch (2006).

18 Changes In the Trajectory Of The Polar Jet Stream Many of the lakes discussed in this paper indicate increases in wetness at 20 ± 1 and 15.5 ± 0.5 cal ka. Mono Lake experienced highstands at 20.3 and 15.0 cal ka, and Lake Mojave to the south experienced prominent highstands centered at 21.7 and 14.8 cal ka ka These records indicate that the mean position of PJS reached its most southerly extent during the LGM (21-20 cal ka). At ~16 cal ka, Pyramid Lake/Lake Lahontan (~40ºN) experienced its maximum highstand; however, Mono Lake and Lake Mojave also experienced highstands, suggesting that the PJS still affected latitudes south of Pyramid Lake ka

Correlation of Late-Pleistocene Lake-Level Oscillations in Mono Lake, California, with North Atlantic Climate Events

Correlation of Late-Pleistocene Lake-Level Oscillations in Mono Lake, California, with North Atlantic Climate Events University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 1997 Correlation of Late-Pleistocene Lake-Level Oscillations in Mono

More information

Margie B. DeRose Martin J. Kennedy. Department of Earth Sciences University of California, Riverside

Margie B. DeRose Martin J. Kennedy. Department of Earth Sciences University of California, Riverside Limitations of absolute age constraints for the Quaternary morainal record in the Eastern Sierra Nevada, California from detailed stratigraphic relationships of the Casa Diablo till Margie B. DeRose Martin

More information

/ Past and Present Climate

/ Past and Present Climate MIT OpenCourseWare http://ocw.mit.edu 12.842 / 12.301 Past and Present Climate Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Ice Sheet Paleoclimatology

More information

We re living in the Ice Age!

We re living in the Ice Age! Chapter 18. Coping with the Weather: Causes and Consequences of Naturally Induce Climate Change 지구시스템의이해 We re living in the Ice Age! 1 Phanerozoic Climate 서늘해지고 더웠고 따뜻했고 3 Climate Rollercoaster 4 2 Time

More information

Rapid climate change in ice cores

Rapid climate change in ice cores Rapid climate change in ice cores Liz Thomas British Antarctic Survey Overview Introduction to ice cores Evidence of rapid climate change in the Greenland ice cores DO events Younger Dryas 8.2 kyr cold

More information

CORRELATION OF CLIMATIC AND SOLAR VARIATIONS OVER THE PAST 500 YEARS AND PREDICTING GLOBAL CLIMATE CHANGES FROM RECURRING CLIMATE CYCLES

CORRELATION OF CLIMATIC AND SOLAR VARIATIONS OVER THE PAST 500 YEARS AND PREDICTING GLOBAL CLIMATE CHANGES FROM RECURRING CLIMATE CYCLES Easterbrook, D.J., 2008, Correlation of climatic and solar variations over the past 500 years and predicting global climate changes from recurring climate cycles: International Geological Congress, Oslo,

More information

Climate and Environment

Climate and Environment Climate and Environment Oxygen Isotope Fractionation and Measuring Ancient Temperatures Oxygen Isotope Ratio Cycles Oxygen isotope ratio cycles are cyclical variations in the ratio of the mass of oxygen

More information

Lake Levels and Climate Change in Maine and Eastern North America during the last 12,000 years

Lake Levels and Climate Change in Maine and Eastern North America during the last 12,000 years Maine Geologic Facts and Localities December, 2000 Lake Levels and Climate Change in Maine and Eastern North America during the last 12,000 years Text by Robert A. Johnston, Department of Agriculture,

More information

Ruddiman CHAPTER 13. Earth during the LGM ca. 20 ka BP

Ruddiman CHAPTER 13. Earth during the LGM ca. 20 ka BP Ruddiman CHAPTER 13 Earth during the LGM ca. 20 ka BP The Last Glacial Maximum When? How much more ice than today? How much colder was it than today (global average)? How much lower were snowlines? Did

More information

Rapid Climate Change: Heinrich/Bolling- Allerod Events and the Thermohaline Circulation. By: Andy Lesage April 13, 2010 Atmos.

Rapid Climate Change: Heinrich/Bolling- Allerod Events and the Thermohaline Circulation. By: Andy Lesage April 13, 2010 Atmos. Rapid Climate Change: Heinrich/Bolling- Allerod Events and the Thermohaline Circulation By: Andy Lesage April 13, 2010 Atmos. 6030 Outline Background Heinrich Event I/Bolling-Allerod Transition (Liu et

More information

Possible Millennial-scale Climate Cycles and their Effect on Tulare Lake, CA during the Late Pleistocene. Lilian Rubi

Possible Millennial-scale Climate Cycles and their Effect on Tulare Lake, CA during the Late Pleistocene. Lilian Rubi Possible Millennial-scale Climate Cycles and their Effect on Tulare Lake, CA during the Late Pleistocene Lilian Rubi California State University Bakersfield 3/2015-3/2016 Dr. Robert Negrini, CSUB Department

More information

Pacific Northwest Quaternary Climate History: Very Short Version 2:00

Pacific Northwest Quaternary Climate History: Very Short Version 2:00 Pacific Northwest Quaternary Climate History: Very Short Version 2:00 Glacial Maximum North America Major Effects: 1. Great Lakes 2. Missouri River Drainage 3. Upper Mississippi River Drainage 3. Ohio

More information

Welcome to ATMS 111 Global Warming.

Welcome to ATMS 111 Global Warming. Welcome to ATMS 111 Global Warming http://www.atmos.washington.edu/2010q1/111 Isotopic Evidence 16 O isotopes "light 18 O isotopes "heavy" Evaporation favors light Rain favors heavy Cloud above ice is

More information

6. What has been the most effective erosive agent in the climate system? a. Water b. Ice c. Wind

6. What has been the most effective erosive agent in the climate system? a. Water b. Ice c. Wind Multiple Choice. 1. Heinrich Events a. Show increased abundance of warm-water species of planktic foraminifera b. Show greater intensity since the last deglaciation c. Show increased accumulation of ice-rafted

More information

Chapter 15 Millennial Oscillations in Climate

Chapter 15 Millennial Oscillations in Climate Chapter 15 Millennial Oscillations in Climate This chapter includes millennial oscillations during glaciations, millennial oscillations during the last 8000 years, causes of millennial-scale oscillations,

More information

Sensitivity of the Younger Dryas climate to changes in freshwater, orbital, and greenhouse gas forcing in CESM1.

Sensitivity of the Younger Dryas climate to changes in freshwater, orbital, and greenhouse gas forcing in CESM1. OCE-1536630 EAR-0903071 Sensitivity of the Younger Dryas climate to changes in freshwater, orbital, and greenhouse gas forcing in CESM1. The 21 st Annual CESM Workshop Paleoclimate Working Group Taylor

More information

Air sea temperature decoupling in western Europe during the last interglacial glacial transition

Air sea temperature decoupling in western Europe during the last interglacial glacial transition María Fernanda Sánchez Goñi, Edouard Bard, Amaelle Landais, Linda Rossignol, Francesco d Errico SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO1924 Air sea temperature decoupling in western Europe during the

More information

Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework due Thursday Nov. 12. What we ll learn today:! Learning Objectives (LO)

Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework due Thursday Nov. 12. What we ll learn today:! Learning Objectives (LO) Learning Objectives (LO) Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework due Thursday Nov. 12 What we ll learn today:! 1. 1. Glaciers and where they occur! 2. 2. Compare depositional and

More information

Lecture Outline Lecture Outline Monday April 9-16, 2018 Questions? Announcements:

Lecture Outline Lecture Outline Monday April 9-16, 2018 Questions? Announcements: Lecture Outline Lecture Outline Monday April 9-16, 2018 Questions? Announcements: Geology 101 Night Video: The Day After Tomorrow Hollywood disaster movie about the onset of a glacial period When: Monday

More information

Father of Glacial theory. First investigations of glaciers and mountain geology,

Father of Glacial theory. First investigations of glaciers and mountain geology, First investigations of glaciers and mountain geology, 1750-1800 Glaciation happens! -- Historical perspective It happens in cycles -- How do we know this? What are Milankovitch cycles? Sub-Milankovitch

More information

The rise and fall of Lake Bonneville between 45 and 10.5 ka

The rise and fall of Lake Bonneville between 45 and 10.5 ka University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2011 The rise and fall of Lake Bonneville between 45 and 10.5 ka L.V.

More information

Glacial Modification of Terrain

Glacial Modification of Terrain Glacial Modification Part I Stupendous glaciers and crystal snowflakes -- every form of animate or inanimate existence leaves its impress upon the soul of man. 1 -Orison Swett Marden Glacial Modification

More information

Atlantic Meridional Overturning Circulation (AMOC) = thermohaline circulation in N Atlantic. Wikipedia

Atlantic Meridional Overturning Circulation (AMOC) = thermohaline circulation in N Atlantic. Wikipedia Last time. Atlantic Meridional Overturning Circulation (AMOC) = thermohaline circulation in N Atlantic Wikipedia Dansgaard-Oeschger events HOLOCENE ice record smeared out here Last interglacial Dansgaard-Oeschger

More information

Loess and dust. Jonathan A. Holmes Environmental Change Research Centre

Loess and dust. Jonathan A. Holmes Environmental Change Research Centre Loess and dust Jonathan A. Holmes Environmental Change Research Centre Why is dust important? Mineral dust is an important constituent of the solid load in Earth's atmosphere, the total atmospheric aerosol

More information

Orbital-Scale Interactions in the Climate System. Speaker:

Orbital-Scale Interactions in the Climate System. Speaker: Orbital-Scale Interactions in the Climate System Speaker: Introduction First, many orbital-scale response are examined.then return to the problem of interactions between atmospheric CO 2 and the ice sheets

More information

ATOC OUR CHANGING ENVIRONMENT

ATOC OUR CHANGING ENVIRONMENT ATOC 1060-002 OUR CHANGING ENVIRONMENT Class 22 (Chp 15, Chp 14 Pages 288-290) Objectives of Today s Class Chp 15 Global Warming, Part 1: Recent and Future Climate: Recent climate: The Holocene Climate

More information

Lecture 10 Glaciers and glaciation

Lecture 10 Glaciers and glaciation Lecture 10 Glaciers and glaciation Outline Importance of ice to people! Basics of glaciers formation, classification, mechanisms of movement Glacial landscapes erosion and deposition by glaciers and the

More information

Glaciers. (Shaping Earth s Surface, Part 6) Science 330 Summer 2005

Glaciers. (Shaping Earth s Surface, Part 6) Science 330 Summer 2005 Glaciers (Shaping Earth s Surface, Part 6) Science 330 Summer 2005 1 Glaciers Glaciers are parts of two basic cycles Hydrologic cycle Rock cycle Glacier a thick mass of ice that originates on land from

More information

Chapter 5: Glaciers and Deserts

Chapter 5: Glaciers and Deserts I. Glaciers and Glaciation Chapter 5: Glaciers and Deserts A. A thick mass of ice that forms over land from the compaction and recrystallization of snow and shows evidence of past or present flow B. Types

More information

Glaciers Earth 9th Edition Chapter 18 Glaciers: summary in haiku form Key Concepts Glaciers Glaciers Glaciers Glaciers

Glaciers Earth 9th Edition Chapter 18 Glaciers: summary in haiku form Key Concepts Glaciers Glaciers Glaciers Glaciers 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Earth 9 th Edition Chapter 18 : summary in haiku form Ten thousand years thence big glaciers began to melt - called "global warming." Key Concepts and types of glaciers.

More information

Timing and magnitude of late Pleistocene and Holocene glaciations in Yosemite National Park

Timing and magnitude of late Pleistocene and Holocene glaciations in Yosemite National Park National Park Service U.S. Department of the Interior Yosemite National Park Timing and magnitude of late Pleistocene and Holocene glaciations in Yosemite National Park Greg Stock Yosemite National Park

More information

PHYSICAL GEOGRAPHY. By Brett Lucas

PHYSICAL GEOGRAPHY. By Brett Lucas PHYSICAL GEOGRAPHY By Brett Lucas GLACIAL PROCESSES Glacial Processes The Impact of Glaciers on the Landscape Glaciations Past and Present Types of Glaciers Glacier Formation and Movement The Effects of

More information

ABRUPT CLIMATIC CHANGES AND DEEP WATER CIRCULATION IN THE NORTH ATLANTIC

ABRUPT CLIMATIC CHANGES AND DEEP WATER CIRCULATION IN THE NORTH ATLANTIC ABRUPT CLIMATIC CHANGES AND DEEP WATER CIRCULATION IN THE NORTH ATLANTIC Carlo Laj and Catherine Kissel Laboratoire des Sciences du Climat et de l Environnement Gif-sur-Yvette, France How fast did scientists

More information

GSC 107 Lab # 3 Calculating sea level changes

GSC 107 Lab # 3 Calculating sea level changes GSC 107 Lab # 3 Calculating sea level changes Student name Student ID Background Glacial-Interglacial Cycles Climate-related sea-level changes of the last century are very minor compared with the large

More information

Outline 23: The Ice Ages-Cenozoic Climatic History

Outline 23: The Ice Ages-Cenozoic Climatic History Outline 23: The Ice Ages-Cenozoic Climatic History Continental Glacier in Antarctica Valley Glaciers in Alaska, note the moraines Valley Glaciers in Alaska, note the moraines Mendenhall Glacier, Juneau,

More information

Lecture 0 A very brief introduction

Lecture 0 A very brief introduction Lecture 0 A very brief introduction Eli Tziperman Climate variability results from a very diverse set of physical phenomena and occurs on a very wide range of time scales. It is difficult to envision a

More information

Oceans and Climate. Caroline Katsman. KNMI Global Climate Division

Oceans and Climate. Caroline Katsman. KNMI Global Climate Division Oceans and Climate Caroline Katsman KNMI Global Climate Division Aimée Slangen, Roderik van de Wal (IMAU, Utrecht University) Sybren Drijfhout, Wilco Hazeleger (KNMI, Global Climate) Bert Vermeersen (NIOZ/Delft

More information

Introduction to Quaternary Geology (MA-Modul 3223) Prof. C. Breitkreuz, SS2012, TU Freiberg

Introduction to Quaternary Geology (MA-Modul 3223) Prof. C. Breitkreuz, SS2012, TU Freiberg Introduction to Quaternary Geology (MA-Modul 3223) Prof. C. Breitkreuz, SS2012, TU Freiberg 1. Introduction: - Relevance, and relations to other fields of geoscience - Lower stratigraphic boundary and

More information

Continental Hydrology, Rapid Climate Change, and the Intensity of the Atlantic MOC: Insights from Paleoclimatology

Continental Hydrology, Rapid Climate Change, and the Intensity of the Atlantic MOC: Insights from Paleoclimatology Continental Hydrology, Rapid Climate Change, and the Intensity of the Atlantic MOC: Insights from Paleoclimatology W.R. Peltier Department of Physics University of Toronto WOCE derived N-S salinity section

More information

T. Perron Glaciers 1. Glaciers

T. Perron Glaciers 1. Glaciers T. Perron 12.001 Glaciers 1 Glaciers I. Why study glaciers? [PPT: Perito Moreno glacier, Argentina] Role in freshwater budget o Fraction of earth s water that is fresh (non-saline): 3% o Fraction of earth

More information

Glaciers form wherever snow and ice can accumulate High latitudes High mountains at low latitudes Ice temperatures vary among glaciers Warm

Glaciers form wherever snow and ice can accumulate High latitudes High mountains at low latitudes Ice temperatures vary among glaciers Warm The Cryosphere Glaciers form wherever snow and ice can accumulate High latitudes High mountains at low latitudes Ice temperatures vary among glaciers Warm (temperate) glaciers: at pressure melting point,

More information

Natural and anthropogenic climate change Lessons from ice cores

Natural and anthropogenic climate change Lessons from ice cores Natural and anthropogenic climate change Lessons from ice cores Eric Wolff British Antarctic Survey, Cambridge ewwo@bas.ac.uk ASE Annual Conference 2011; ESTA/ESEU lecture Outline What is British Antarctic

More information

Correlation of Late-Pleistocene Lake-Level Oscillations in Mono Lake, California, with North Atlantic Climate Events

Correlation of Late-Pleistocene Lake-Level Oscillations in Mono Lake, California, with North Atlantic Climate Events QUATERNARY RESEARCH 49, 1 10 (1998) ARTICLE NO. QR971940 Correlation of Late-Pleistocene Lake-Level Oscillations in Mono Lake, California, with North Atlantic Climate Events Larry V. Benson U.S. Geological

More information

1. Deglacial climate changes

1. Deglacial climate changes Review 3 Major Topics Deglacial climate changes (last 21,000 years) Millennial oscillations (thousands of years) Historical Climate Change (last 1000 years) Climate Changes Since the 1800s Climate Change

More information

Glaciology (as opposed to Glacial Geology) Why important? What are glaciers? How do they work?

Glaciology (as opposed to Glacial Geology) Why important? What are glaciers? How do they work? Glaciology (as opposed to Glacial Geology) Why important? What are glaciers? How do they work? Glaciers are important because of their role in creating glacial landscapes (erosional and depositional features).

More information

4. What type of glacier forms in a sloping valley between rock walls? a. firn glacier b. ice sheet c. cirque d. alpine glacier

4. What type of glacier forms in a sloping valley between rock walls? a. firn glacier b. ice sheet c. cirque d. alpine glacier Multiple Choice Questions 1. The term means the loss of snow and ice by evaporation and melting. a. sublimation b. ablation c. erosion d. abrasion 2. What condition must be met for a glacier to begin flowing

More information

Sutherland et al: Glacial chronology, NZ

Sutherland et al: Glacial chronology, NZ Orbital forcing of mid-latitude southern hemisphere glaciation since 100 ka, inferred from cosmogenic nuclide ages of moraine boulders from the Cascade Plateau, southwest New Zealand Rupert Sutherland

More information

Lecture Outlines PowerPoint. Chapter 6 Earth Science 11e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 6 Earth Science 11e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 6 Earth Science 11e Tarbuck/Lutgens 2006 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

CLIMATE CHANGE IN ARCTIC AND ALPINE AREAS

CLIMATE CHANGE IN ARCTIC AND ALPINE AREAS CLIMATE CHANGE IN ARCTIC AND ALPINE AREAS 1. Introduction 2. Data sources: glaciers 3. Data sources: ice cores 4. Patterns and mechanisms 5. Feedbacks and surprises Striations (evidence of glacial erosion)

More information

Grade 8 Science. Unit 1: Water Systems on Earth Chapter 1

Grade 8 Science. Unit 1: Water Systems on Earth Chapter 1 Grade 8 Science Unit 1: Water Systems on Earth Chapter 1 Effects of Water? Churchill River Large Ocean Wave How do you use water? House Hold Use Personal Use Recreational Activities Water Distribution

More information

Brita Horlings

Brita Horlings Knut Christianson Brita Horlings brita2@uw.edu https://courses.washington.edu/ess431/ Natural Occurrences of Ice: Distribution and environmental factors of seasonal snow, sea ice, glaciers and permafrost

More information

Chapter 2: Physical Geography

Chapter 2: Physical Geography Chapter 2: Physical Geography Pg. 39-68 Learning Goals for Chp2: q q q q q Explain how the Earth moves in space and why seasons change. Outline the factors that influence climate and recognize different

More information

ENIGMA: something that is mysterious, puzzling, or difficult to understand.

ENIGMA: something that is mysterious, puzzling, or difficult to understand. Lecture 12. Attempts to solve the Eccentricity Enigma ENIGMA: something that is mysterious, puzzling, or difficult to understand. Milankovitch forcing glacier responses pre-900,000 yr BP glacier responses

More information

What are the consequences of melting pack ice?

What are the consequences of melting pack ice? The Hydrosphere s Cryosphere: A-Pack Ice: (Sea Ice) They are large sheets of ice found in the oceans around Antarctica and in the Arctic Ocean. Smaller ones are called ice floes. Example 1: What are the

More information

SAMPLE PAGE. pulses. The Ice Age By: Sue Peterson

SAMPLE PAGE. pulses. The Ice Age By: Sue Peterson Page 61 Objective sight words (pulses, intermittent, isotopes, chronicle, methane, tectonic plates, volcanism, configurations, land-locked, erratic); concepts (geological evidence and specific terminology

More information

Ice Sheets and Late Quaternary Environmental Change

Ice Sheets and Late Quaternary Environmental Change Ice Sheets and Late Quaternary Environmental Change Martin J. Siegert Bristol Glaciology Centre, School of Geographical Sciences University of Bristol JOHN WILEY & SONS, LTD Chichester New York Weinheim

More information

Quarternary Climate Variations

Quarternary Climate Variations Quarternary Climate Variations EAS 303 Lecture 34 Background and History Louis Agassiz (1840): recognition of Ice Ages Harold Urey (1947): The Thermodynamic Properties of Isotopic Substances calculated

More information

Name Date Class. growth rings of trees, fossilized pollen, and ocean. in the northern hemisphere.

Name Date Class. growth rings of trees, fossilized pollen, and ocean. in the northern hemisphere. Lesson Outline LESSON 2 A. Long-Term Cycles 1. A(n) climate cycle takes much longer than a lifetime to complete. a. To learn about long-term climate cycles, scientists study natural records, such as growth

More information

Permafrost http://www.cbc.ca/news/canada/story/2011/11/16/north-bigfix-permafrost.html 1. What is permafrost? Permafrost is a thick layer of permanently frozen ground. 2. Large parts of northeastern Russia

More information

Reminders: Week 14 Assessment closes tonight Watch for Week 15 Assessment (will close Wednesday, Dec. 13)

Reminders: Week 14 Assessment closes tonight Watch for Week 15 Assessment (will close Wednesday, Dec. 13) Wednesday, December 6, 2017 The Pleistocene Glaciations, Continued (Chapter 14) Reminders: Week 14 Assessment closes tonight Watch for Week 15 Assessment (will close Wednesday, Dec. 13) Homework 5 due

More information

Amazing Ice: Glaciers and Ice Ages

Amazing Ice: Glaciers and Ice Ages Amazing Ice: Glaciers and Ice Ages Updated by: Rick Oches, Professor of Geology & Environmental Sciences Bentley University Waltham, Massachusetts Based on slides prepared by: Ronald L. Parker, Senior

More information

An Arctic Perspective on Climate Change

An Arctic Perspective on Climate Change An Arctic Perspective on Climate Change 23 Oct 2012 Gifford Miller (and many others) University of Colorado Boulder The Earth is warming How do we know? Temperature Anomaly ( C) It s a fact Global Land

More information

Ice Ages and Changes in Earth s Orbit. Topic Outline

Ice Ages and Changes in Earth s Orbit. Topic Outline Ice Ages and Changes in Earth s Orbit Topic Outline Introduction to the Quaternary Oxygen isotopes as an indicator of ice volume Temporal variations in ice volume Periodic changes in Earth s orbit Relationship

More information

Deep Ocean Circulation & implications for Earth s climate

Deep Ocean Circulation & implications for Earth s climate Deep Ocean Circulation & implications for Earth s climate I. Ocean Layers and circulation types 1) Ocean Layers Ocean is strongly Stratified Consists of distinct LAYERS controlled by density takes huge

More information

Arctic Paleoclimates

Arctic Paleoclimates Arctic Paleoclimates The geologic time scale [from the Geological Society of America, product code CTS004, compiled by A.R. Palmer and J. Geissman, by permission of Geological Society of America]. Paleoclimate

More information

Bell Ringer. Are soil and dirt the same material? In your explanation be sure to talk about plants.

Bell Ringer. Are soil and dirt the same material? In your explanation be sure to talk about plants. Bell Ringer Are soil and dirt the same material? In your explanation be sure to talk about plants. 5.3 Mass Movements Triggers of Mass Movements The transfer of rock and soil downslope due to gravity is

More information

History. Late 18 th /early 19 th century Europeans observed that erratic boulders dispersed due to the retention of glaciers caused by climate chance

History. Late 18 th /early 19 th century Europeans observed that erratic boulders dispersed due to the retention of glaciers caused by climate chance Ice ages What is an ice age? Geological period of long-term reduction in the temperature of the Earth's surface and atmosphere which results in the formation and expansion of continental ice sheets, polar

More information

Paleoceanography Spring 2008

Paleoceanography Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 12.740 Paleoceanography Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. PALEOCEANOGRAPHY 12.740 SPRING

More information

Simulation of the Potential Responses of Regional Climate and Surface Processes in Western North America to a Canonical Heinrich Event

Simulation of the Potential Responses of Regional Climate and Surface Processes in Western North America to a Canonical Heinrich Event Simulation of the Potential Responses of Regional Climate and Surface Processes in Western North America to a Canonical Heinrich Event S.W. Hostetler U.S. Geological Survey, Corvallis, Oregon P.J. Bartlein

More information

Present and Past Warming of the Arctic Morten Hald Department of Geology, University of Tromsø, Norway

Present and Past Warming of the Arctic Morten Hald Department of Geology, University of Tromsø, Norway Lectures to the workshop Approaching Arctic Frontiers Areas for Petroleum exploration, 12-13 Nov. 2008 Univ. Tromsø Present and Past Warming of the Arctic Morten Hald Department of Geology, University

More information

Ice on Earth: An overview and examples on physical properties

Ice on Earth: An overview and examples on physical properties Ice on Earth: An overview and examples on physical properties - Ice on Earth during the Pleistocene - Present-day polar and temperate ice masses - Transformation of snow to ice - Mass balance, ice deformation,

More information

Climate Change. Unit 3

Climate Change. Unit 3 Climate Change Unit 3 Aims Is global warming a recent short term phenomenon or should it be seen as part of long term climate change? What evidence is there of long-, medium-, and short- term climate change?

More information

Ocean & climate: an introduction and paleoceanographic perspective

Ocean & climate: an introduction and paleoceanographic perspective Ocean & climate: an introduction and paleoceanographic perspective Edouard BARD Chaire de l évolution du climat et de l'océan du Collège de France CEREGE, UMR CNRS, AMU, IRD, CdF Aix-en-Provence The ocean

More information

Chp Spectral analysis a. Requires that the climate record must be at least 4 times longer than the cycled analyzed

Chp Spectral analysis a. Requires that the climate record must be at least 4 times longer than the cycled analyzed Chp 7 1. Earth s seasons are caused by a. The movement of the Sun from North to South of the equator and back again over a year s time b. The distance between Earth and the Sun c. The rate of Earth s movement

More information

"Global Warming Beer" Taps Melted Arctic Ice (UPDATE)

Global Warming Beer Taps Melted Arctic Ice (UPDATE) "Global Warming Beer" Taps Melted Arctic Ice (UPDATE) The brewery filed for bankruptcy in Aug 2008 The Greenland Brewhouse is the world's first Inuit microbrewery. The water, the brewers say, is the beer's

More information

Proxy-based reconstructions of Arctic paleoclimate

Proxy-based reconstructions of Arctic paleoclimate Proxy-based reconstructions of Arctic paleoclimate TODAY THE PAST Boothia Peninsula, Nunavut Prof. Sarah Finkelstein Earth Sciences, University of Toronto Finkelstein@es.utoronto.ca Outline Why does climate

More information

Spring break reading. Glacial formation. Surface processes: Glaciers and deserts. The Control of Nature

Spring break reading. Glacial formation. Surface processes: Glaciers and deserts. The Control of Nature suggested Spring break reading The Control of Nature by John McPhee Surface processes: Glaciers and deserts describes our efforts to control three natural hazards: 1. The Mississippi Floods 2. The Heimaey

More information

Selected Presentation from the INSTAAR Monday Noon Seminar Series.

Selected Presentation from the INSTAAR Monday Noon Seminar Series. Selected Presentation from the INSTAAR Monday Noon Seminar Series. Institute of Arctic and Alpine Research, University of Colorado at Boulder. http://instaar.colorado.edu http://instaar.colorado.edu/other/seminar_mon_presentations

More information

Chapter Causes of Climate Change Part I: Milankovitch Cycles

Chapter Causes of Climate Change Part I: Milankovitch Cycles Chapter 19.1-19.3 Causes of Climate Change Part I: Milankovitch Cycles Climate Cycles =400 Milankovitch Cycles Milankovitch Cycles are created by changes in the geometry of Earth s orbit around the sun

More information

Mono Basin climate changes correlative with North Atlantic Dansgaard-Oeschger oscillations

Mono Basin climate changes correlative with North Atlantic Dansgaard-Oeschger oscillations Mono Basin climate changes correlative with North Atlantic Dansgaard-Oeschger oscillations Susan Zimmerman Lawrence Livermore Nat l. Lab. Corinne Hartin RSMAS- U Miami Crystal Pearl Queens College,CUNY

More information

2/23/2009. Visualizing Earth Science. Chapter Overview. Deserts and Drylands. Glaciers and Ice Sheets

2/23/2009. Visualizing Earth Science. Chapter Overview. Deserts and Drylands. Glaciers and Ice Sheets Visualizing Earth Science By Z. Merali and B. F. Skinner Chapter 6 Deserts, Glaciers and Ice Sheets Chapter Overview Deserts and Drylands Glaciers and Ice Sheets Deserts Geography Categorization of deserts

More information

Natural Climate Change: A Geological Perspective

Natural Climate Change: A Geological Perspective Natural Climate Change: A Geological Perspective A presentation to the Seminar on Sustainable Development NBA 573, BEE 673 Sage Hall B-11 March 4, 2005 by L. M. Cathles Earth and Atmospheric Sciences Truth

More information

Mechanisms for an 7-kyr Climate and Sea-Level Oscillation During Marine Isotope Stage 3

Mechanisms for an 7-kyr Climate and Sea-Level Oscillation During Marine Isotope Stage 3 GM01073_CH15.qxd 9/8/07 8:25 AM Page 209 Mechanisms for an 7-kyr Climate and Sea-Level Oscillation During Marine Isotope Stage 3 Peter U. Clark 1, Steven W. Hostetler 2, Nicklas G. Pisias 3, Andreas Schmittner

More information

AMOC Impacts on Climate

AMOC Impacts on Climate AMOC Impacts on Climate Rong Zhang GFDL/NOAA, Princeton, NJ, USA Paleo-AMOC Workshop, Boulder, CO, USA May 24, 2016 Atlantic Meridional Overturning Circulation (AMOC) Kuklbrodt et al. 2007 McManus et al.,

More information

Supplementary Fig. 1. Locations of thinning transects and photos of example samples. Mt Suess/Gondola Ridge transects extended metres above

Supplementary Fig. 1. Locations of thinning transects and photos of example samples. Mt Suess/Gondola Ridge transects extended metres above Supplementary Fig. 1. Locations of thinning transects and photos of example samples. Mt Suess/Gondola Ridge transects extended 260 24 metres above the modern surface of Mackay Glacier, and included 16

More information

Muted change in Atlantic overturning circulation over some glacial-aged Heinrich events

Muted change in Atlantic overturning circulation over some glacial-aged Heinrich events SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO2045 Muted change in Atlantic overturning circulation over some glacial-aged Heinrich events Jean Lynch-Stieglitz 1, Matthew W. Schmidt 2, L. Gene Henry 1,7,

More information

Exploring The Polar Connection to Sea Level Rise NGSS Disciplinary Core Ideas Science & Engineering Crosscutting Concepts

Exploring The Polar Connection to Sea Level Rise NGSS Disciplinary Core Ideas Science & Engineering Crosscutting Concepts Exploring The Polar Connection to Sea Level Rise NGSS Disciplinary Core Ideas Science & Engineering Crosscutting Concepts Practices MS - ESS: Earth & Space Science 1. Ask questions 2. Developing and using

More information

Greenhouse Effect & Global Warming

Greenhouse Effect & Global Warming Chemical Cycles: Greenhouse Effect: Cause and effect Chemical Cycles: CO 2 and O 2 Chemical Fluxes: CO 2 and O 2 Proxies for climate change: Isotopes Greenhouse Effect & Global Warming Global Warming World

More information

Polar Portal Season Report 2013

Polar Portal Season Report 2013 Polar Portal Season Report 2013 All in all, 2013 has been a year with large melting from both the Greenland Ice Sheet and the Arctic sea ice but not nearly as large as the record-setting year of 2012.

More information

A 200 kyr record of lake-level change from the Carrizo Plain, Central Coastal California

A 200 kyr record of lake-level change from the Carrizo Plain, Central Coastal California A 200 kyr record of lake-level change from the Carrizo Plain, Central Coastal California R. Negrini, T. Miller, R. Stephenson, R. Ramirez, J. Leiran, D. Baron, P. Wigand, CSU Bakersfield D. Rhodes, Georgia

More information

Chapter 9 Notes: Ice and Glaciers, Wind and Deserts

Chapter 9 Notes: Ice and Glaciers, Wind and Deserts Chapter 9 Notes: Ice and Glaciers, Wind and Deserts *Glaciers and Glacial Features glacier is a mass of ice that moves over land under its own weight through the action of gravity Glacier Formation must

More information

CLIMATE CHANGE OVER THE LAST TWO MILLION YEARS

CLIMATE CHANGE OVER THE LAST TWO MILLION YEARS CLIMATE CHANGE OVER THE LAST TWO MILLION YEARS 1. Introduction: forcings and feedbacks 2. Standing on the shoulders of giants: development of the Milankovitch theory 3. Evidence from the oceans, evidence

More information

Climate of the Past. A. Govin et al.

Climate of the Past. A. Govin et al. Clim. Past Discuss., 9, C3570 C3579, 2014 www.clim-past-discuss.net/9/c3570/2014/ Author(s) 2014. This work is distributed under the Creative Commons Attribute 3.0 License. Climate of the Past Discussions

More information

Hydrosphere The hydrosphere includes all water on Earth.

Hydrosphere The hydrosphere includes all water on Earth. Hydrosphere The hydrosphere includes all water on Earth. The abundance of water on Earth is a unique feature that clearly distinguishes our "Blue Planet" from others in the solar system. Not a drop of

More information

The Science of Sea Level Rise and the Impact of the Gulf Stream

The Science of Sea Level Rise and the Impact of the Gulf Stream Old Dominion University ODU Digital Commons July 29, 2016: The Latest in Sea Level Rise Science Hampton Roads Sea Level Rise/Flooding Adaptation Forum 7-29-2016 The Science of Sea Level Rise and the Impact

More information

Lecture 8. The Holocene and Recent Climate Change

Lecture 8. The Holocene and Recent Climate Change Lecture 8 The Holocene and Recent Climate Change Recovery from the last ice age About 15,000 years ago, the earth began to warm and the huge ice sheets covering much of North America and Eurasia began

More information

Ice sheet action versus reaction: Distinguishing between Heinrich events and Dansgaard-Oeschger cycles in the North Atlantic

Ice sheet action versus reaction: Distinguishing between Heinrich events and Dansgaard-Oeschger cycles in the North Atlantic Click Here for Full Article PALEOCEANOGRAPHY, VOL. 21,, doi:10.1029/2005pa001247, 2006 Ice sheet action versus reaction: Distinguishing between Heinrich events and Dansgaard-Oeschger cycles in the North

More information

CURRICULUM VITAE. Terry W. Swanson Birth date: 15 March, 1960 Citizenship: United States

CURRICULUM VITAE. Terry W. Swanson Birth date: 15 March, 1960 Citizenship: United States CURRICULUM VITAE Terry W. Swanson Birth date: 15 March, 1960 Citizenship: United States Academic Training Ph.D., 1994, Geological Sciences, University of Washington, Seattle Washington. Ph.D. Dissertation:

More information

How do glaciers form?

How do glaciers form? Glaciers What is a Glacier? A large mass of moving ice that exists year round is called a glacier. Glaciers are formed when snowfall exceeds snow melt year after year Snow and ice remain on the ground

More information

A bit of background on carbonates. CaCO 3 (solid)

A bit of background on carbonates. CaCO 3 (solid) A bit of background on carbonates CaCO 3 (solid) Organisms need both carbon dioxide and carbonate Kleypas et al 2005 The two pumps put CO 2 into the deep ocean The long term record of climate change Or:

More information