1. Deglacial climate changes

Size: px
Start display at page:

Download "1. Deglacial climate changes"

Transcription

1 Review 3

2 Major Topics Deglacial climate changes (last 21,000 years) Millennial oscillations (thousands of years) Historical Climate Change (last 1000 years) Climate Changes Since the 1800s Climate Change and Atmospheric Chemistry

3 1. Deglacial climate changes

4 Causes of Climate Change Since Deglaciation Climate controls: 21k yrs ago Large ice sheets Low CO k yrs ago Increasing summer insolation Increasing CO 2 6-0k yrs ago Decreasing summer insolation High CO 2

5 What is the best method of measuring the melting of ice sheets over the last 17,000 years? the rise in summer insolation at higher northern latitudes (Milankovitch theory) an increase in CO2 (methane) radiocarbon dating

6 Does the timing of ice sheet melting support the Milankovitch theory that orbital insolation controls the sizes of ice sheets? Radiocarbon dating shows the retreat of the large ice sheet in North America, and the timing of these retreats agrees with the Milankovitch theory Best record of ice sheet melting comes from tropical coral reefs far from the polar ice sheets. (Sea level rising)

7 Were changes in the intensity of summer monsoons in the last 17,000 years controlled by orbital insolation? Monsoons were strong near 10,000 yrs ago because of Earth s orbital configuration.

8 Stronger, Then Weaker Monsoons High lake levels in the north tropics 9000 years ago

9 Why were summer temperatures at high northern latitudes warmer 6000 years ago than they are today? mainly because of summer insolation

10 List evidence from ice, land, and water for a cooling in north polar regions since 6000 years ago. Ice cores taken from small ice caps in several parts of the Arctic. Ice from the tiny Agassiz ice cap on Ellesmere Island, in far northern Canada. Ocean sediment cores from the high-latitude Atlantic Ocean off the coast of Greenland. (Diatom species) The increase in size of small glaciers on Arctic islands. Changes in aboudance of temperature-sensitive diatom species off the sourthwest coast of Norway The boundary between tundra to the north and boreal forest to the south in Asia and North America Mountain glaciers increased since 5000 years ago.

11 2. Millennial oscillations Records from Greenland Ice Cores Evidence from North Atlantic Sediments

12 Tectonic-scale Climate Change at Different Time Scales Orbital-scale (Cycles) Millennial-scale (Oscillations) Hundreds of millions of years Tens to hundreds of thousands of years Thousands of years

13 Oscillations Recorded in Greenland Ice Cores Ice core drilled in 1970s Early studies in the 1970s Recent studies since early 1990s Two long ice cores drilled on the summit of Greenland in 1990s (GISP/GRIP sites) Focused on oxygen isotope ratios and dust Rapid, large fluctuations mask slower orbital changes Minimizing the ice flow impacts on deeper ice layers Millennial oscillations throughout the last glaciation

14 Millennial Oscillations in Greenland Ice Cores An Known Example Younger Dryas During the last deglacial period ~1500 years long Abrupt beginning and ending Millennial Oscillations During glacial Dansgaard- period Oeschger Cycles Vary widely in spacing and amplitude Average spacing: 1500 yrs Large amplitude During interglacial period Small amplitude Millennial-scale (Oscillations) Thousands of years

15 Oscillations Recorded in North Atlantic Sediments The Atlantic Ocean is a good place to detect millennial changes. High deposition rates Foraminifera and ice-rafted debris stay in place Sources of ice-rafted debris Heinrich events: ice-rafting events occurred when climate had been cooling for several millennia, followed by rapid warming N More negative δ 18 O in Greenland ice core, the colder air, the colder ocean water,, the more icebergs, the more ice-rafted debris, and the more polar plankton.

16 Worldwide Where Else Did Millennial Oscillations Occur? N.H. Midlatitude Europe, Asia, USA, N.H. Tropics, Equatorial Atlantic South American Andes New Zealand, Antarctica

17 Causes of Millennial Changes What initiates these oscillations? How are they transmitted to those parts of the climate system where they have been observed? Why are they stronger during glaciations than during interglaciations? Why would the climate system oscillate in such a way? H1. The natural oscillations inherent in the internal behavior of northern hemisphere ice sheets. H2. The result of internal interactions among several parts of the climate system. H3. A response to solar variations external to the climate system.

18 3. Historical Climate Change Decades to hundreds of years Historical-scale scale

19 Climate Change Since the Last Glacial Maximum Data important for estimating past climate include: lake bottom sediment, ice cores, fossil evidence, written documents, coral isotopes, calcium carbonate layers in caves, borehole temperature,, and dendrochronology or tree ring data. These data have helped identify several important climate change events in the past 18,000 years.

20 The Little Ice Age: Local or Global? Sea ice on the coast of Iceland The cooling in Europe ( ): 1900): colder winters and shorter growing seasons Evidence Lakes, rivers, and ports in Europe froze. The European population seriously affected. Mountain glaciers in the Alps of Switzerland and Austria advanced. The Little Ice Age was not a true ice age. Major ice sheets did not develop. Small (<1 C) drop in global temperature. Widely scattered land-based records, but few records from the oceans.

21 Causes of The Little Ice Age (1) Low solar activity ( ): 1715): 50 sunspots over a 30-yr period compared to normally 40,000 to 50,000 spots.

22 Causes of The Little Ice Age (2) More volcanic eruptions The Year without summer in 1816 caused by the 1815 eruption of Mt Tambora Mt Tambora in Indonesia Ice Core in Greenland

23 Causes of The Little Ice Age (3) Shutdown of thermohaline circulation

24 Yearly Temperature Change for the Last 2000 Years Red: recent estimates; Blue: earlier estimates Global Warming Data from tree rings, corals, ice cores, and historical records are shown in various colors. Thermometers data in black. About 1000 y.a.,., Medieval Warm Period. Certain regions were warmer than others. Warm and dry summers in England ( ): vineyards flourished and wine was produced. Vikings colonized Iceland and Greenland.

25 4. Climate Changes Since the 1800s

26

27 Satellite evidence of warming

28 Name four kinds of satellite evidence that support a gradual warming of high northern latitudes in the last two decades. Decrease in Arctic sea ice cover Decrease in snow cover over the northern hemisphere The growing season lengthens in Alaska Changes in ice volume

29 Temperature Trends from 1850 to Data over the globe (land and sea). Warming periods: (by 0.5 C), the mid-1970s to present. The warmest decade: the 1990s. The warmest year: Top 20 includes every single year since Over last 25 years warming ~ 0.5 C. Over past century warming ~ 0.75 C Cooling periods:

30 Yearly Temperature Change Since Data from thermometers

31 An increasing body of observations gives a collective picture of a warming world and other changes in the climate system Global mean surface temperature increase (NH, SH, land, ocean) Melting of glaciers, sea ice retreat and thinning Rise of sea levels Decrease in snow cover Decrease in duration of lake and river ice Increased water vapor, precipitation and intensity of precipitation over the NH Less extreme low temperatures, more extreme high temperatures

32 5. Climate Change and Atmospheric Chemistry

33 Historical Climate: Volcanoes and Sunspots Ch. 16, p How do volcanoes affect climate? Name two important volcanic eruptions in the past two hundred years. How do sunspots affect climate? In what way do sunspot cycles before the 20 th century imply a Sunclimate connections? Did volcanic eruptions and El Nino events affect the gradual trend of global temperature over the last century?

34 EFFECTS OF LARGE EXPLOSIVE TROPICAL VOLCANOES ON WEATHER AND CLIMATE EFFECT/MECHANISM BEGINS DURATION 1. Enhance or reduce El Niño? 1-2 weeks 1-2 months Tropospheric absorption of shortwave and longwave radiation, dynamics 2. Reduction of diurnal cycle Immediately 1-4 days Blockage of shortwave and emission of longwave radiation 3. Summer cooling of NH tropics, subtropics Immediately 1-2 years Blockage of shortwave radiation 4. Reduced tropical precipitation Immediately ~1 year Blockage of shortwave radiation, reduced evaporation 5. Reduced Sahel precipitation 1-3 months 1-2 years Blockage of shortwave radiation, reduced land temp., reduced evaporation Weaker African monsoon

35 EFFECTS OF LARGE EXPLOSIVE TROPICAL VOLCANOES ON WEATHER AND CLIMATE EFFECT/MECHANISM BEGINS DURATION 6. Ozone depletion, enhanced UV 1 day 1-2 years Dilution, heterogeneous chemistry on aerosols 7. Global cooling Immediately 1-3 years Blockage of shortwave radiation multiple eruptions: years 8. Stratospheric warming Immediately 1-2 years Stratospheric absorption of shortwave and longwave radiation 9. Winter warming of NH continents ½-1½ years 1 or 2 winters Stratospheric absorption of shortwave and longwave radiation, dynamics

36 EFFECTS OF LARGE EXPLOSIVE HIGH-LATITUDE VOLCANOES ON WEATHER AND CLIMATE EFFECT/MECHANISM BEGINS DURATION High latitude eruptions: 10. Cooling of continents Immediately 1-2 years Blockage of shortwave radiation 11. Reduction of Indian summer monsoon ½-1 year 1 or 2 summers Continental cooling, reduction of land-sea temperature contrast 12. Reduction of African summer monsoon ½-1 year 1 or 2 summers Continental cooling, reduction of land-sea temperature contrast 13. Reduction of Nile River flow ½-1 year 1-2 years Reduced monsoon precipitation

37 Santorini, 1628 BC Etna, 44 BC Tambora, 1815 Lakagígar, 1783 Toba, 71,000 BP Famous Volcanic Eruptions Krakatau, 1883 Pinatubo, 1991 El Chichón, 1982 St. Helens, 1980 Agung, 1963

38 Short history of discovery of ozone problem 1970: P. Crutzen showed that nitrogen oxides are involved in reactions that destroy ozone. NO + O 3 NO 2 + O : M. Molina and F. Rowland theorized that chlorine in chlorofluorocarbons (CFCs: e.g., CH 3 Cl) also help destroy the ozone layer. Cl + O 3 ClO + O : Ozone "hole" above Antarctica discovered 1987: Montreal Protocol signed to restrict CFCs emissions 1995: Crutzen, Molina and Rowland share Nobel Prize.

39 Ozone depletion is a global problem! Ozone depletion is not just confined to the stratospheric Arctic and Antarctic. Over the United States in March, 1994, ozone levels fell between 8 and 16% below the values observed during March, 1979.

NATS 101 Section 13: Lecture 32. Paleoclimate

NATS 101 Section 13: Lecture 32. Paleoclimate NATS 101 Section 13: Lecture 32 Paleoclimate Natural changes in the Earth s climate also occur at much longer timescales The study of prehistoric climates and their variability is called paleoclimate.

More information

6. What has been the most effective erosive agent in the climate system? a. Water b. Ice c. Wind

6. What has been the most effective erosive agent in the climate system? a. Water b. Ice c. Wind Multiple Choice. 1. Heinrich Events a. Show increased abundance of warm-water species of planktic foraminifera b. Show greater intensity since the last deglaciation c. Show increased accumulation of ice-rafted

More information

Introduction to Climate Change

Introduction to Climate Change Ch 19 Climate Change Introduction to Climate Change Throughout time, the earth's climate has always been changing produced ice ages Hence, climate variations have been noted in the past what physical processes

More information

ATOC OUR CHANGING ENVIRONMENT

ATOC OUR CHANGING ENVIRONMENT ATOC 1060-002 OUR CHANGING ENVIRONMENT Class 22 (Chp 15, Chp 14 Pages 288-290) Objectives of Today s Class Chp 15 Global Warming, Part 1: Recent and Future Climate: Recent climate: The Holocene Climate

More information

Climate Change: Past and Future ERTH 303, 3 December, 2009

Climate Change: Past and Future ERTH 303, 3 December, 2009 Climate Change: Past and Future ERTH 303, 3 December, 2009 a) Defining climate change b) Patterns of past climate change c) Causes of past climate change 1 2006 temperature relative to 1951-1980 means

More information

Chapter outline. Reference 12/13/2016

Chapter outline. Reference 12/13/2016 Chapter 2. observation CC EST 5103 Climate Change Science Rezaul Karim Environmental Science & Technology Jessore University of science & Technology Chapter outline Temperature in the instrumental record

More information

Chapter 15 Millennial Oscillations in Climate

Chapter 15 Millennial Oscillations in Climate Chapter 15 Millennial Oscillations in Climate This chapter includes millennial oscillations during glaciations, millennial oscillations during the last 8000 years, causes of millennial-scale oscillations,

More information

Welcome to ATMS 111 Global Warming.

Welcome to ATMS 111 Global Warming. Welcome to ATMS 111 Global Warming http://www.atmos.washington.edu/2010q1/111 Isotopic Evidence 16 O isotopes "light 18 O isotopes "heavy" Evaporation favors light Rain favors heavy Cloud above ice is

More information

Climate and Environment

Climate and Environment Climate and Environment Oxygen Isotope Fractionation and Measuring Ancient Temperatures Oxygen Isotope Ratio Cycles Oxygen isotope ratio cycles are cyclical variations in the ratio of the mass of oxygen

More information

The Distribution of Cold Environments

The Distribution of Cold Environments The Distribution of Cold Environments Over 25% of the surface of our planet can be said to have a cold environment, but defining what we actually mean by that can be very challenging. This is because cold

More information

The ocean s overall role in climate

The ocean s overall role in climate The ocean s overall role in climate - moderates climate in time (diurnally, annually) - redistributes heat spatially in the largescale ocean circulation - lower albedo (sea ice higher albedo) - dry atmosphere

More information

Weather Forecasts and Climate AOSC 200 Tim Canty. Class Web Site: Lecture 27 Dec

Weather Forecasts and Climate AOSC 200 Tim Canty. Class Web Site:   Lecture 27 Dec Weather Forecasts and Climate AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Climate Natural Variations Feedback Mechanisms Lecture 27 Dec 4 2018 1 Climate

More information

Today we will discuss global climate: how it has changed in the past, and how the current status and possible future look.

Today we will discuss global climate: how it has changed in the past, and how the current status and possible future look. Global Climate Change Today we will discuss global climate: how it has changed in the past, and how the current status and possible future look. If you live in an area such as the Mississippi delta (pictured)

More information

Factors That Affect Climate

Factors That Affect Climate Factors That Affect Climate Factors That Affect Climate Latitude As latitude (horizontal lines) increases, the intensity of solar energy decreases. The tropical zone is between the tropic of Cancer and

More information

Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework due Thursday Nov. 12. What we ll learn today:! Learning Objectives (LO)

Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework due Thursday Nov. 12. What we ll learn today:! Learning Objectives (LO) Learning Objectives (LO) Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework due Thursday Nov. 12 What we ll learn today:! 1. 1. Glaciers and where they occur! 2. 2. Compare depositional and

More information

Pleistocene Glaciation (Ch.14) Geologic evidence Milankovitch cycles Glacial climate feedbacks

Pleistocene Glaciation (Ch.14) Geologic evidence Milankovitch cycles Glacial climate feedbacks Pleistocene Glaciation (Ch.14) Geologic evidence Milankovitch cycles Glacial climate feedbacks End of last ice-age rise of human civilization Modern ice-ages begin Asteroid impact end of dinosaurs Cambrian

More information

Chapter 14: The Changing Climate

Chapter 14: The Changing Climate Chapter 14: The Changing Climate Detecting Climate Change Natural Causes of Climate Change Anthropogenic Causes of Climate Change Possible Consequences of Global Warming Climate Change? -Paleo studies

More information

Global climate change

Global climate change Global climate change What is climate change? This winter was really cold! Temp difference ( C): Jan 2004 vs. Jan 2002-2003 Make your own maps at: http://www.giss.nasa.gov/data/update/gistemp/maps/ 1 What

More information

Summary. The Ice Ages and Global Climate

Summary. The Ice Ages and Global Climate The Ice Ages and Global Climate Summary Earth s climate system involves the atmosphere, hydrosphere, lithosphere, and biosphere. Changes affecting it operate on time scales ranging from decades to millions

More information

Short-Term Climate Variability (Ch.15) Volcanos and Climate Other Causes of Holocene Climate Change

Short-Term Climate Variability (Ch.15) Volcanos and Climate Other Causes of Holocene Climate Change Short-Term Climate Variability (Ch.15) Volcanos and Climate Other Causes of Holocene Climate Change Volcanos and Climate We learned in Chapter 12 that the volanos play an important role in Earth s climate

More information

We re living in the Ice Age!

We re living in the Ice Age! Chapter 18. Coping with the Weather: Causes and Consequences of Naturally Induce Climate Change 지구시스템의이해 We re living in the Ice Age! 1 Phanerozoic Climate 서늘해지고 더웠고 따뜻했고 3 Climate Rollercoaster 4 2 Time

More information

FORCING ANTHROPOGENIC

FORCING ANTHROPOGENIC NATURAL CLIMATIC FORCING Earth-Sun orbital relationships, changing landsea distribution (due to plate tectonics), solar variability & VOLCANIC ERUPTIONS vs. ANTHROPOGENIC FORCING Human-Enhanced GH Effect,

More information

Volcanoes drive climate variability by

Volcanoes drive climate variability by Volcanoes drive climate variability by 1. emitting ozone weeks before eruptions, 2. forming lower stratospheric aerosols that cool Earth, 3. causing sustained ozone depletion, surface warming, and lower

More information

B. The Observed Changes in the Climate System

B. The Observed Changes in the Climate System gases (decades to centuries), and, as a result, their concentrations respond much more quickly to changes in emissions. Volcanic activity can inject large amounts of sulphur-containing gases (primarily

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 21 Climate 21.1 Factors That Affect Climate Factors That Affect Climate Latitude As latitude increases, the intensity of solar energy decreases. The

More information

Agronomy 406 World Climates

Agronomy 406 World Climates Agronomy 406 World Climates April 3, 2018 Causes of natural climate changes (finish). Schedule is being adjusted. No change to due dates. Bring IPCC Fifth Assessment Report Summary for Policymakers to

More information

Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate

Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate between weather and climate Global Climate Focus Question

More information

Climate Change. April 21, 2009

Climate Change. April 21, 2009 Climate Change Chapter 16 April 21, 2009 Reconstructing Past Climates Techniques Glacial landscapes (fossils) CLIMAP (ocean sediment) Ice cores (layering of precipitation) p Otoliths (CaCO 3 in fish sensory

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 21 Climate 21.1 Factors That Affect Climate Factors That Affect Climate Latitude As latitude increases, the intensity of solar energy decreases. The

More information

Lecture 8. The Holocene and Recent Climate Change

Lecture 8. The Holocene and Recent Climate Change Lecture 8 The Holocene and Recent Climate Change Recovery from the last ice age About 15,000 years ago, the earth began to warm and the huge ice sheets covering much of North America and Eurasia began

More information

ATMS 321: Natural Climate Variability Chapter 11

ATMS 321: Natural Climate Variability Chapter 11 ATMS 321: Natural Climate Variability Chapter 11 Solar Variability: Total solar irradiance variability is relatively small about a tenth of a percent. Ultraviolet variability is larger, and so could affect

More information

GEO 377P/387H Physical Climatology DIAGNOSTIC EXAM

GEO 377P/387H Physical Climatology DIAGNOSTIC EXAM GEO 377P/387H Physical Climatology DIAGNOSTIC EXAM Name You may not refer to any other materials during the exam. For each question (except otherwise explicitly stated), select the best answer for that

More information

Extent of Periglacial = Global Permafrost Permafrost: Soil and/or rock where temperatures remain below 0 degrees C for 2 or more years.

Extent of Periglacial = Global Permafrost Permafrost: Soil and/or rock where temperatures remain below 0 degrees C for 2 or more years. Geog 1000 - Lecture 34 Periglacial Environments and Paleoclimatology http://scholar.ulethbridge.ca/chasmer/classes/ Today s Lecture (Pgs 422-434) 1. Exam questions from last week, and today 2. Extent of

More information

Evidence of Climate Change in Glacier Ice and Sea Ice

Evidence of Climate Change in Glacier Ice and Sea Ice Evidence of Climate Change in Glacier Ice and Sea Ice John J. Kelley Institute of Marine Science School of Fisheries and Ocean Sciences University of Alaska Fairbanks Evidence for warming of the Arctic

More information

Understanding past climate change

Understanding past climate change Steven J. Phipps ARC Centre of Excellence for Climate System Science Climate Change Research Centre University of New South Wales CLIM1001 Introduction to Climate Change 3 September 2013 1 Why past climates

More information

Chapter 14: Climate Change

Chapter 14: Climate Change Chapter 14: Climate Change Goals of Period 14 Section 14.1: To review the energy balance of the Earth and the enhanced greenhouse effect Section 14.2: To examine evidence for climate change Section 14.3:

More information

Climate Changes due to Natural Processes

Climate Changes due to Natural Processes Climate Changes due to Natural Processes 2.6.2a Summarize natural processes that can and have affected global climate (particularly El Niño/La Niña, volcanic eruptions, sunspots, shifts in Earth's orbit,

More information

7/5/2018. Global Climate Change

7/5/2018. Global Climate Change 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Global Climate Change Earth, Chapter 21 Chapter 21 Global Climate Change Climate and Geology The climate system is a multidimensional system of many interacting parts,

More information

Orbital-Scale Interactions in the Climate System. Speaker:

Orbital-Scale Interactions in the Climate System. Speaker: Orbital-Scale Interactions in the Climate System Speaker: Introduction First, many orbital-scale response are examined.then return to the problem of interactions between atmospheric CO 2 and the ice sheets

More information

NATURAL CLIMATIC FORCING Part II

NATURAL CLIMATIC FORCING Part II TOPIC #12 NATURAL CLIMATIC FORCING Part II (p 72 in Class Notes) Today we will focus on the third main driver of NATURAL CLIMATIC FORCING: 1) ATRONOMICAL FORCING 2) SOLAR FORCING 3) VOLCANIC FORCING VOLCANIC

More information

CLIMATE. SECTION 14.1 Defining Climate

CLIMATE. SECTION 14.1 Defining Climate Date Period Name CLIMATE SECTION.1 Defining Climate In your textbook, read about climate and different types of climate data. Put a check ( ) next to the types of data that describe climate. 1. annual

More information

Chapter Introduction. Earth. Change. Chapter Wrap-Up

Chapter Introduction. Earth. Change. Chapter Wrap-Up Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Climates of Earth Chapter Wrap-Up Climate Cycles Recent Climate Change What is climate and how does it impact life on Earth? What do you think? Before you

More information

Development of the Global Environment

Development of the Global Environment Development of the Global Environment G302: Spring 2004 A course focused on exploration of changes in the Earth system through geological history Simon C. Brassell Geological Sciences simon@indiana.edu

More information

Any Questions? Glacier

Any Questions? Glacier Geology of the Hawaiian Islands Class 25 13 April 2004 Any Questions? Earth Systems Today CD Click on Weather and Climate Look at the sections on El Niño Ozone Hole Glaciers Why do we care? They help control

More information

Glaciers. Geology of the Hawaiian Islands. Any Questions? Earth Systems Today CD. Class April Why do we care?

Glaciers. Geology of the Hawaiian Islands. Any Questions? Earth Systems Today CD. Class April Why do we care? Geology of the Hawaiian Islands Class 25 13 April 2004 Any Questions? Earth Systems Today CD Click on Weather and Climate Look at the sections on El Niño Ozone Hole Glaciers Why do we care? They help control

More information

WELCOME TO PERIOD 14:CLIMATE CHANGE. Homework #13 is due today.

WELCOME TO PERIOD 14:CLIMATE CHANGE. Homework #13 is due today. WELCOME TO PERIOD 14:CLIMATE CHANGE Homework #13 is due today. Note: Homework #14 due on Thursday or Friday includes using a web site to calculate your carbon footprint. You should complete this homework

More information

ttp://news.discovery.com/earth/iceland-volcano-aurora.html

ttp://news.discovery.com/earth/iceland-volcano-aurora.html ttp://news.discovery.com/earth/iceland-volcano-aurora.html Outline Role of volcanism on the climate system Distribution of Arctic volcanoes Types of eruptions Frequency of Arctic eruptions Influence on

More information

Climate. What is climate? STUDY GUIDE FOR CONTENT MASTERY. Name Class Date

Climate. What is climate? STUDY GUIDE FOR CONTENT MASTERY. Name Class Date Climate SECTION 14.1 What is climate? In your textbook, read about climate and different types of climate data. Put a check ( ) next to the types of data that describe climate. 1. annual wind speed 4.

More information

Observed and Projected Climate Change. David R. Easterling, Ph.D. NOAA/National Climatic Data Center. Asheville, NC

Observed and Projected Climate Change. David R. Easterling, Ph.D. NOAA/National Climatic Data Center. Asheville, NC Observed and Projected Climate Change David R. Easterling, Ph.D NOAA/National Climatic Data Center Asheville, NC Introduction One of the most vigorously debated topics on Earth is the issue of climate

More information

What is the IPCC? Intergovernmental Panel on Climate Change

What is the IPCC? Intergovernmental Panel on Climate Change IPCC WG1 FAQ What is the IPCC? Intergovernmental Panel on Climate Change The IPCC is a scientific intergovernmental body set up by the World Meteorological Organization (WMO) and by the United Nations

More information

Topic 6: Insolation and the Seasons

Topic 6: Insolation and the Seasons Topic 6: Insolation and the Seasons Solar Radiation and Insolation Insolation: In Sol ation The Sun is the primary source of energy for the earth. The rate at which energy is radiated is called Intensity

More information

ATOC OUR CHANGING ENVIRONMENT Class 19 (Chp 6) Objectives of Today s Class: The Cryosphere [1] Components, time scales; [2] Seasonal snow

ATOC OUR CHANGING ENVIRONMENT Class 19 (Chp 6) Objectives of Today s Class: The Cryosphere [1] Components, time scales; [2] Seasonal snow ATOC 1060-002 OUR CHANGING ENVIRONMENT Class 19 (Chp 6) Objectives of Today s Class: The Cryosphere [1] Components, time scales; [2] Seasonal snow cover, permafrost, river and lake ice, ; [3]Glaciers and

More information

( 1 d 2 ) (Inverse Square law);

( 1 d 2 ) (Inverse Square law); ATMO 336 -- Exam 3 120 total points including take-home essay Name The following equations and relationships may prove useful. F d1 =F d2 d 2 2 ( 1 d 2 ) (Inverse Square law);! MAX = 0.29 " 104 µmk (Wien's

More information

What is Climate? Climate Change Evidence & Causes. Is the Climate Changing? Is the Climate Changing? Is the Climate Changing? Is the Climate Changing?

What is Climate? Climate Change Evidence & Causes. Is the Climate Changing? Is the Climate Changing? Is the Climate Changing? Is the Climate Changing? What is Climate? 1 Climate Change Evidence & Causes Refers to the average environmental conditions (i.e. temperature, precipitation, extreme events) in a given location over many years Climate is what

More information

4 Changes in Climate. TAKE A LOOK 2. Explain Why is more land exposed during glacial periods than at other times?

4 Changes in Climate. TAKE A LOOK 2. Explain Why is more land exposed during glacial periods than at other times? Name Class CHAPTER 3 Date Climate 4 Changes in Climate SECTION National Science Education Standards BEFORE YOU READ After you read this section, you should be able to answer these questions: ES 1k, 2a

More information

Climate Variability Natural and Anthropogenic

Climate Variability Natural and Anthropogenic Climate Variability Natural and Anthropogenic Jim Renwick NIWA Climate Research j.renwick@niwa.co.nz Climate equilibrium and climate forcings Natural forcings Anthropogenic forcings Feedbacks Natural variability

More information

Climate Throughout Geologic Time Has Been Controlled Primarily by the Balance Between

Climate Throughout Geologic Time Has Been Controlled Primarily by the Balance Between Climate Throughout Geologic Time Has Been Controlled Primarily by the Balance Between Cooling Caused by Major Explosive Eruptions of Evolved Magmas Typical of Island Arcs and Warming Caused by Voluminous

More information

TOPIC #12 NATURAL CLIMATIC FORCING

TOPIC #12 NATURAL CLIMATIC FORCING TOPIC #12 NATURAL CLIMATIC FORCING (Start on p 67 in Class Notes) p 67 ENERGY BALANCE (review) Global climate variability and change are caused by changes in the ENERGY BALANCE that are FORCED review FORCING

More information

TOPIC #12. Wrap Up on GLOBAL CLIMATE PATTERNS

TOPIC #12. Wrap Up on GLOBAL CLIMATE PATTERNS TOPIC #12 Wrap Up on GLOBAL CLIMATE PATTERNS POLE EQUATOR POLE Now lets look at a Pole to Pole Transect review ENERGY BALANCE & CLIMATE REGIONS (wrap up) Tropics Subtropics Subtropics Polar Extratropics

More information

3. Climate Change. 3.1 Observations 3.2 Theory of Climate Change 3.3 Climate Change Prediction 3.4 The IPCC Process

3. Climate Change. 3.1 Observations 3.2 Theory of Climate Change 3.3 Climate Change Prediction 3.4 The IPCC Process 3. Climate Change 3.1 Observations 3.2 Theory of Climate Change 3.3 Climate Change Prediction 3.4 The IPCC Process 3.1 Observations Need to consider: Instrumental climate record of the last century or

More information

What is Climate? Understanding and predicting climatic changes are the basic goals of climatology.

What is Climate? Understanding and predicting climatic changes are the basic goals of climatology. What is Climate? Understanding and predicting climatic changes are the basic goals of climatology. Climatology is the study of Earth s climate and the factors that affect past, present, and future climatic

More information

CORRELATION OF CLIMATIC AND SOLAR VARIATIONS OVER THE PAST 500 YEARS AND PREDICTING GLOBAL CLIMATE CHANGES FROM RECURRING CLIMATE CYCLES

CORRELATION OF CLIMATIC AND SOLAR VARIATIONS OVER THE PAST 500 YEARS AND PREDICTING GLOBAL CLIMATE CHANGES FROM RECURRING CLIMATE CYCLES Easterbrook, D.J., 2008, Correlation of climatic and solar variations over the past 500 years and predicting global climate changes from recurring climate cycles: International Geological Congress, Oslo,

More information

Lecture 28: Observed Climate Variability and Change

Lecture 28: Observed Climate Variability and Change Lecture 28: Observed Climate Variability and Change 1. Introduction This chapter focuses on 6 questions - Has the climate warmed? Has the climate become wetter? Are the atmosphere/ocean circulations changing?

More information

Reminders: Week 14 Assessment closes tonight Watch for Week 15 Assessment (will close Wednesday, Dec. 13)

Reminders: Week 14 Assessment closes tonight Watch for Week 15 Assessment (will close Wednesday, Dec. 13) Wednesday, December 6, 2017 The Pleistocene Glaciations, Continued (Chapter 14) Reminders: Week 14 Assessment closes tonight Watch for Week 15 Assessment (will close Wednesday, Dec. 13) Homework 5 due

More information

Climate Change. Unit 3

Climate Change. Unit 3 Climate Change Unit 3 Aims Is global warming a recent short term phenomenon or should it be seen as part of long term climate change? What evidence is there of long-, medium-, and short- term climate change?

More information

Chapter 1 Section 2. Land, Water, and Climate

Chapter 1 Section 2. Land, Water, and Climate Chapter 1 Section 2 Land, Water, and Climate Vocabulary 1. Landforms- natural features of the Earth s land surface 2. Elevation- height above sea level 3. Relief- changes in height 4. Core- most inner

More information

History. Late 18 th /early 19 th century Europeans observed that erratic boulders dispersed due to the retention of glaciers caused by climate chance

History. Late 18 th /early 19 th century Europeans observed that erratic boulders dispersed due to the retention of glaciers caused by climate chance Ice ages What is an ice age? Geological period of long-term reduction in the temperature of the Earth's surface and atmosphere which results in the formation and expansion of continental ice sheets, polar

More information

Glaciers and Ice Ages

Glaciers and Ice Ages ES 106 Glaciers and Ice Ages I. Glacier thick mass of ice accumulated over years, decades, centuries A. Function of recrystallization of fallen snow B. Types 1. alpine valley: a. high elevations worldwide

More information

Wrap up of TOPIC # 13 NATURAL CLIMATIC FORCING: Volcanic Eruptions (pp 71-74)

Wrap up of TOPIC # 13 NATURAL CLIMATIC FORCING: Volcanic Eruptions (pp 71-74) Wrap up of TOPIC # 13 NATURAL CLIMATIC FORCING: Volcanic Eruptions (pp 71-74) How the Climatic Effect Occurs.... through the ENERGY BALANCE of course! p 71 Mt Merapi Latitude: 7 32'30"S Indonesia's Mount

More information

Recent Climate History - The Instrumental Era.

Recent Climate History - The Instrumental Era. 2002 Recent Climate History - The Instrumental Era. Figure 1. Reconstructed surface temperature record. Strong warming in the first and late part of the century. El Ninos and major volcanic eruptions are

More information

Environmental Science Chapter 13 Atmosphere and Climate Change Review

Environmental Science Chapter 13 Atmosphere and Climate Change Review Environmental Science Chapter 13 Atmosphere and Climate Change Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Climate in a region is a. the long-term,

More information

Global Atmospheric Circulation

Global Atmospheric Circulation Global Atmospheric Circulation Polar Climatology & Climate Variability Lecture 11 Nov. 22, 2010 Global Atmospheric Circulation Global Atmospheric Circulation Global Atmospheric Circulation The Polar Vortex

More information

Climate Roles of Land Surface

Climate Roles of Land Surface Lecture 5: Land Surface and Cryosphere (Outline) Climate Roles Surface Energy Balance Surface Water Balance Sea Ice Land Ice (from Our Changing Planet) Surface Albedo Climate Roles of Land Surface greenhouse

More information

Land Surface Sea Ice Land Ice. (from Our Changing Planet)

Land Surface Sea Ice Land Ice. (from Our Changing Planet) Lecture 5: Land Surface and Cryosphere (Outline) Land Surface Sea Ice Land Ice (from Our Changing Planet) Earth s s Climate System Solar forcing Atmosphere Ocean Land Solid Earth Energy, Water, and Biochemistry

More information

Earth s Climate System. Surface Albedo. Climate Roles of Land Surface. Lecture 5: Land Surface and Cryosphere (Outline) Land Surface Sea Ice Land Ice

Earth s Climate System. Surface Albedo. Climate Roles of Land Surface. Lecture 5: Land Surface and Cryosphere (Outline) Land Surface Sea Ice Land Ice Lecture 5: Land Surface and Cryosphere (Outline) Earth s Climate System Solar forcing Land Surface Sea Ice Land Ice Atmosphere Ocean Land Solid Earth Energy, Water, and Biochemistry Cycles (from Our Changing

More information

8. Climate changes Short-term regional variations

8. Climate changes Short-term regional variations 8. Climate changes 8.1. Short-term regional variations By short-term climate changes, we refer here to changes occurring over years to decades. Over this timescale, climate is influenced by interactions

More information

1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely

1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely CHAPTER 3 SOLAR AND TERRESTRIAL RADIATION MULTIPLE CHOICE QUESTIONS 1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely 2. is the distance between successive

More information

ATMS 321: Sci. of Climate Final Examination Study Guide Page 1 of 4

ATMS 321: Sci. of Climate Final Examination Study Guide Page 1 of 4 ATMS 321: Sci. of Climate Final Examination Study Guide Page 1 of 4 Atmospheric Sciences 321: Final Examination Study Guide The final examination will consist of similar questions Science of Climate Multiple

More information

Winter. Here s what a weak La Nina usually brings to the nation with tempseraures:

Winter. Here s what a weak La Nina usually brings to the nation with tempseraures: 2017-2018 Winter Time again for my annual Winter Weather Outlook. Here's just a small part of the items I considered this year and how I think they will play out with our winter of 2017-2018. El Nino /

More information

Components of the Climate System. Lecture 2: Earth s Climate System. Pop Quiz. Sub-components Global cycles What comes in What goes out

Components of the Climate System. Lecture 2: Earth s Climate System. Pop Quiz. Sub-components Global cycles What comes in What goes out Lecture 2: Earth s Climate System Components of the Climate System terrestrial radiation Atmosphere Ocean solar radiation Land Energy, Water, and Biogeochemistry Cycles Sub-components Global cycles What

More information

Section 3. Climate and the General Circulation Causes of Climate Change

Section 3. Climate and the General Circulation Causes of Climate Change Section 3. Climate and the General Circulation Causes of Climate Change Why the earth s climate changes is not totally understood. Many theories attempt to explain the changing climate, but no single theory

More information

Lecture 2: Earth s Climate System

Lecture 2: Earth s Climate System Lecture 2: Earth s Climate System terrestrial radiation solar radiation Atmosphere Ocean Solid Earth Land Energy, Water, and Biogeochemistry Cycles Sub-components Global cycles What comes in What goes

More information

How Volcanism Controls Climate Change

How Volcanism Controls Climate Change How Volcanism Controls Climate Change V13D-2633 Peter L. Ward Teton Tectonics, Jackson, WY US Geological Survey retired peward@wyoming.com 307-413-4055 Fundamental Conclusion Large, explosive, volcanic

More information

Chp Spectral analysis a. Requires that the climate record must be at least 4 times longer than the cycled analyzed

Chp Spectral analysis a. Requires that the climate record must be at least 4 times longer than the cycled analyzed Chp 7 1. Earth s seasons are caused by a. The movement of the Sun from North to South of the equator and back again over a year s time b. The distance between Earth and the Sun c. The rate of Earth s movement

More information

Pacific Decadal Oscillation ( PDO ):

Pacific Decadal Oscillation ( PDO ): Time again for my annual Winter Weather Outlook. Here's just a small part of the items I considered this year and how I think they will play out with our winter of 2015-2016. El Nino / La Nina: When looking

More information

Global Climate Systems

Global Climate Systems Global Climate Systems I. Earth s Climate A. Past Climate B. Present Climate and Classification 1. Climate components 2. Classification 3. Köppen Climate Classification 4. El Nino III. Global Climate Change

More information

2. Fargo, North Dakota receives more snow than Charleston, South Carolina.

2. Fargo, North Dakota receives more snow than Charleston, South Carolina. 2015 National Tournament Division B Meteorology Section 1: Weather versus Climate Chose the answer that best answers the question 1. The sky is partly cloudy this morning in Lincoln, Nebraska. 2. Fargo,

More information

How do glaciers form?

How do glaciers form? Glaciers What is a Glacier? A large mass of moving ice that exists year round is called a glacier. Glaciers are formed when snowfall exceeds snow melt year after year Snow and ice remain on the ground

More information

Pleistocene Glaciations

Pleistocene Glaciations Chapter 14 Pleistocene Glaciations I. Geologic evidence 1. glacial deposits, etc. Pleistocene Glaciations 2. The Oxygen Isotope Record (1970s) II. Explanation of the glacial-interglacial periods The Milankovitch

More information

CHAPTER 7 Back into the Icehouse: The Last 55 Million Year. speaker: 林 烈

CHAPTER 7 Back into the Icehouse: The Last 55 Million Year. speaker: 林 烈 CHAPTER 7 Back into the Icehouse: The Last 55 Million Year speaker: 林 烈 Global Climate Change Since 55 Myr Age Evidence from Ice & Vegetation Oxygen Isotope Data Why Did Globe Climate Cool over the Last

More information

Today s Climate in Perspective: Hendrick Avercamp ( ) ~1608; Rijksmuseum, Amsterdam

Today s Climate in Perspective: Hendrick Avercamp ( ) ~1608; Rijksmuseum, Amsterdam Today s Climate in Perspective: Paleoclimate Evidence Hendrick Avercamp (1585-1634) ~1608; Rijksmuseum, Amsterdam Observations Instrumental surface temperature records? (Le Treut et al., 2007 IPCC AR4

More information

Factors that Affect Climate

Factors that Affect Climate Factors that Affect Climate What is climate? Climate is the average weather conditions over a long period of time Includes average temperatures and precipitation, wind patterns, humidity, air pressure

More information

/ Past and Present Climate

/ Past and Present Climate MIT OpenCourseWare http://ocw.mit.edu 12.842 / 12.301 Past and Present Climate Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Ice Sheet Paleoclimatology

More information

IV. Atmospheric Science Section

IV. Atmospheric Science Section EAPS 100 Planet Earth Lecture Topics Brief Outlines IV. Atmospheric Science Section 1. Introduction, Composition and Structure of the Atmosphere Learning objectives: Understand the basic characteristics

More information

School Name Team # International Academy East Meteorology Test Graphs, Pictures, and Diagrams Diagram #1

School Name Team # International Academy East Meteorology Test Graphs, Pictures, and Diagrams Diagram #1 School Name Team # International Academy East Meteorology Test Graphs, Pictures, and Diagrams Diagram #1 Use the map above, and the locations marked A-F, to answer the following questions. 1. The center

More information

IMPACTS OF A WARMING ARCTIC

IMPACTS OF A WARMING ARCTIC The Earth s Greenhouse Effect Most of the heat energy emitted from the surface is absorbed by greenhouse gases which radiate heat back down to warm the lower atmosphere and the surface. Increasing the

More information

Which graph best shows the relationship between intensity of insolation and position on the Earth's surface? A) B) C) D)

Which graph best shows the relationship between intensity of insolation and position on the Earth's surface? A) B) C) D) 1. The hottest climates on Earth are located near the Equator because this region A) is usually closest to the Sun B) reflects the greatest amount of insolation C) receives the most hours of daylight D)

More information

Earth s Heat Budget. What causes the seasons? Seasons

Earth s Heat Budget. What causes the seasons? Seasons Earth s Heat Budget Solar energy and the global heat budget Transfer of heat drives weather and climate Ocean circulation A. Rotation of the Earth B. Distance from the Sun C. Variations of Earth s orbit

More information

Glaciers. Valley and Piedmont Glaciers. Glaciers, Gloobal Warming El Niño and the Southern Oscillation. Ice Age Sea Level on North America

Glaciers. Valley and Piedmont Glaciers. Glaciers, Gloobal Warming El Niño and the Southern Oscillation. Ice Age Sea Level on North America Glaciers, Gloobal Warming El Niño and the Southern Oscillation Glaciers Earth Science: Ch 20, p. 573-581 STM: Ch 25, p. 545-568 Earth Science Chapter 6 p. 154-159, 168-173 Southern Hemisphere Northern

More information

Effects of Large Volcanic Eruptions on Global Summer Climate and East Asian Monsoon Changes

Effects of Large Volcanic Eruptions on Global Summer Climate and East Asian Monsoon Changes The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still

More information