Ice Ages and Changes in Earth s Orbit. Topic Outline

Size: px
Start display at page:

Download "Ice Ages and Changes in Earth s Orbit. Topic Outline"

Transcription

1 Ice Ages and Changes in Earth s Orbit Topic Outline Introduction to the Quaternary Oxygen isotopes as an indicator of ice volume Temporal variations in ice volume Periodic changes in Earth s orbit Relationship between orbital changes and variations in ice volume 1

2 Topic Outline Introduction to the Quaternary Oxygen isotopes as an indicator of ice volume Temporal variations in ice volume Periodic changes in Earth s orbit Relationship between orbital changes and variations in ice volume Geologic Time Scale 2

3 Geologic Time Scale Geologic Time Scale 3

4 The Quaternary Period In the first half of the 19 th century, Louis Agassiz argued that t widespread d glaciation was the explanation for various unusual geologic features in much of North America and Europe. A lengthy scientific debate ensued, but the evidence for a number of continental glaciations gradually became accepted. Moraines As a glacier advances, its leading edge acts like the blade of a bulldozer, pushing rock and debris in advance. These remnants of glaciation, called terminal moraines, mark the location of maximum ice extent. 4

5 Moraines As a glacier advances, its leading edge acts like the blade of a bulldozer, pushing rock and debris in advance. These remnants of glaciation, called terminal moraines, mark the location of maximum ice extent. Moraines As a glacier advances, its leading edge acts like the blade of a bulldozer, pushing rock and debris in advance. These remnants of glaciation, called terminal moraines, mark the location of maximum ice extent. 5

6 The Surface of the Ice Age Earth LGM Ice Extent in the Northeastern United States Moraines from earlier glaciations are most often destroyed by subsequent glaciations, so moraines are generally evidence of the most recent glacial advance. 6

7 Topic Outline Introduction to the Quaternary Oxygen isotopes as an indicator of ice volume Temporal variations in ice volume Periodic changes in Earth s orbit Relationship between orbital changes and variations in ice volume Oxygen Isotopes A small fraction of water molecules contain the heavy isotope 18 Oi instead of 16 O. 18 O/ 16 O 1/500 This ratio is not constant, but varies over a range of several percent. Vapor pressure of H 18 2 O is lower than that of H 16 2 O, thus the latter is more easily evaporated. 7

8 δ 18 O As water vapor is transported poleward in the hydrologic cycle, each cycle of evaporation and condensation lowers the ratio of H 18 2 O to H 16 2 O, in a process called fractionation. This ratio is expressed as δ 18 O. 18 δ O = 18 O Osample O Ostd O 16 O std 1000 δ 18 O vs. Temperature As a consequence of fractionation, δ 18 Oin precipitation decreases with decreasing temperature. Ice sheets have very low δ 18 O values. Observed δ 18 O in average annual precipitation as a function of mean annual air temperature (Dansgaard 1964). Note that all the points in this graph are for high latitudes (>45 ). (From Broecker 2002) 8

9 δ 18 O and Global Ice Volume As ice sheets grow, the water removed from the ocean has lower δ 18 Oth than the water that remains. Thus the δ 18 O value of sea water in the global ocean is linearly correlated with ice volume (larger δ 18 O larger ice sheets). A time series of global ocean δ 18 O is equivalent to a time series of ice volume. Obtaining a δ 18 O Time Series Microscopic marine organisms called foraminifera incorporate oxygen into their shells in the form of CaCO 3. When these organisms die, their shells fall to the sea floor and are deposited in deep sea sediments. 9

10 Obtaining Sediment Cores As sediments accumulate, the properties of the overlying ocean are recorded sequentially. Sediment cores are obtained by drilling into the sea floor. Obtaining Sediment Cores The sediments are analyzed, using both chemical and visual analysis. To produce a time series of ocean properties, a chronology or age model must be developed. 10

11 A simple age model can be obtained by assuming a constant accumulation rate. Reversals in Earth s magnetic field can be used for benchmarks. Magnetic reversals have been radiometrically dated. Chronology A simple age model can be obtained by assuming a constant accumulation rate. Reversals in Earth s magnetic field can be used for benchmarks. Magnetic reversals have been radiometrically dated. Chronology Brunhes- Matuyama magnetic reversal 11

12 Other Sources of δ 18 O Variation Complicating factor: Changes in ice volume are the largest contributor t to δ 18 O variations, but they are not the only one. Regions of the ocean in which evaporation exceeds precipitation are enriched in δ 18 O, and vice versa. Isotope separation between water oxygen and shell oxygen depends on temperature. Solution Changes in δ 18 O driven by variations in P-E are largest near the ocean surface, so δ 18 O from benthic (i.e., deep dwelling) forams are more representative of global ocean δ 18 O. The Pacific deep ocean temperature is very close to freezing, so it could not have been much colder during glacial periods. 12

13 Topic Outline Introduction to the Quaternary Oxygen isotopes as an indicator of ice volume Temporal variations in ice volume Periodic changes in Earth s orbit Relationship between orbital changes and variations in ice volume 13

14 Topic Outline Introduction to the Quaternary Oxygen isotopes as an indicator of ice volume Temporal variations in ice volume Periodic changes in Earth s orbit Relationship between orbital changes and variations in ice volume 14

15 Earth s Orbit Can Vary 15

16 Earth s Orbit Can Vary Earth s Orbit Can Vary 16

17 Eccentricity Eccentricity = (distance from focus to center) / (length of semimajor axis) Eccentricity of Earth s orbit varies from 0 to 0.05, with 100-kyr, 400- kyr and 2 Myr periodicities. Eccentricity 17

18 Obliquity Obliquity (i.e., tilt) of Earth s axis varies from 22 to 24.5, with a 41-kyr periodicity. Obliquity 18

19 Precession The Earth s axis precesses, or wobbles, with periodicities of 19 kyr and 23 kyr. Precession 19

20 Astronomical Theory of Ice Ages In 1842, J. Adhémar suggested that slow variations in Earth s orbit could be responsible for climatic changes by altering the lengths of the seasons. In 1875, J. Croll hypothesized that orbital variations might lead to substantial changes in climate. (Colder winters larger snow cover glaciation) Renewed interest in orbital forcing of glacial cycles occurred when M. Milankovitch (1941) computed long-term variations in insolation. Milankovitch believed that cold summers led to glaciation by allowing snow to survive into the next year. Milankovitch 20

21 Three Conceptual Models of Orbital Effects on Glacial Cycles Temporal Variation of Orbital Parameters 0.04 Eccentricity: Relatively Eccentricity 0.03 low for the past 60 kyr Obliquity: Variations 0.01 Obliquity have been quite 24 regular; current value 23 of 23.5 near mean. Precession: Perihelion currently occurs near NH winter solstice. (degrees) (degrees) Longitude of Perihelion AE SS VE WS AE Thousands of years before present 21

22 In the N. Hemisphere, the effects of tilt and distance act in opposite directions, although tilt dominates. In the S. Hemisphere, the effects of tilt and distance are in phase, yielding an amplified seasonal cycle of insolation. Insolation at 65 N High latitude summer insolation (June, 65 N) has been regarded as an index of orbital forcing of glaciation. (This is the original Milankovitch hypothesis: Cool summers are beneficial to ice growth.) Note that the effects of precession are modulated by eccentricity. For low summer insolation: Aphelion in summer (esp. with high eccentricity), low obliquity. 22

23 Topic Outline Introduction to the Quaternary Oxygen isotopes as an indicator of ice volume Temporal variations in ice volume Periodic changes in Earth s orbit Relationship between orbital changes and variations in ice volume Turning Point for Astronomical Theory of Ice Ages Hays, J. D., J. Imbrie, and N. J. Shackleton, 1976: Variations in the Earth s orbit: Pacemaker of the ice ages. Science, 194, It is concluded that changes in the earth s orbital geometry are the fundamental cause of the succession of Quaternary ice ages. 23

24 Peaks in δ 18 O Spectrum Correspond to Orbital Frequencies Variance spectra for marine oxygen isotopes for the last 700 kyr (lower curve) compared with spectra for Earth s orbital parameters (Imbrie,1985). (From Broecker, 2002) Spectral Analysis of SPECMAP Stacked δ 18 O Record Distinct peaks in ice volume record at orbital frequencies are present. These peaks are robust, even when more powerful spectral methods are used. 24

25 The 100-kyr Problem Model 1: Calder (1974) dv dt = k ( i ) i 0 V = ice volume i = summer insolation at 65 N i 0 = insolation threshold k = k A (accumulation) if i < i 0 k = k M (melting) if i > i 0 25

26 Model 2: Imbrie and Imbrie (1980) Written in dimensionless form (i.e., variables are divided by a scaling value) dv dt V = V τ i V = ice volume V i = equil. ice volume at insolation i i = summer insolation at 65 N τ = τ M if V > i (melting) τ = τ A otherwise Model 3: Paillard (1998) 26

27 Model 3: Paillard (1998) Very good agreement with record, both in time and frequency domain. Weakness: Highly nonlinear, with a number of adjustable parameters. Ice Core Paleoclimatology As snow falls on very cold glaciers or ice sheets and gradually is converted to ice, air is trapped in bubbles. This fossil air can be chemically analyzed to determine past atmospheric composition. Other paleoclimatic proxies (isotopes, dust, acidity) can also be determined from the ice, providing information about temperature, sulfate aerosols, precipitation. 27

28 Multiproxy Analysis of Glacial Cycles Glacial-interglacial cycles are evident in a variety of paleoclimatic and paleoceanographic proxies. The shapes of the cycles vary somewhat among the different proxies. Glacial-interglacial variations in atmospheric CO 2 concentration are substantial. (But what causes them?) There are uncertainties in time scales. 28

Glacial-Interglacial Cycling: Ice, orbital theory, and climate. Dr. Tracy M. Quan IMCS

Glacial-Interglacial Cycling: Ice, orbital theory, and climate. Dr. Tracy M. Quan IMCS Glacial-Interglacial Cycling: Ice, orbital theory, and climate Dr. Tracy M. Quan IMCS quan@marine.rutgers.edu Outline -The past - discovery of glacial periods - introduction of orbital theory -The present

More information

IMA. Celestial Influences on Glacial Cycles. Math and Climate Seminar

IMA. Celestial Influences on Glacial Cycles. Math and Climate Seminar Math and Climate Seminar IMA Celestial Influences on Richard McGehee Joint MCRN/IMA Math and Climate Seminar Tuesdays 11:15 1:5 streaming video available at www.ima.umn.edu Seminar on the Mathematics of

More information

lecture 12 Paleoclimate

lecture 12 Paleoclimate lecture 12 Paleoclimate OVERVIEW OF EARTH S CLIMATIC HISTORY Geologic time scales http://www.snowballearth.org/index.html Features of the climate during the Cretaceous period the land-sea distribution

More information

Math /29/2014. Richard McGehee, University of Minnesota 1. Math 5490 September 29, Glacial Cycles

Math /29/2014. Richard McGehee, University of Minnesota 1. Math 5490 September 29, Glacial Cycles Math 9 September 29, 21 Topics in Applied Mathematics: Introduction to the Mathematics of Climate Mondays and Wednesdays 2: : http://www.math.umn.edu/~mcgehee/teaching/math9-21-2fall/ Streaming video is

More information

Variations in the Earth's Orbit: Pacemaker of the Ice Ages

Variations in the Earth's Orbit: Pacemaker of the Ice Ages Variations in the Earth's Orbit: Pacemaker of the Ice Ages For 500,000 years, major climatic changes have followed variations in obliquity and precession. J. D. Hays, John Imbrie, N. J. Shackleton Science,

More information

Climate and Environment

Climate and Environment Climate and Environment Oxygen Isotope Fractionation and Measuring Ancient Temperatures Oxygen Isotope Ratio Cycles Oxygen isotope ratio cycles are cyclical variations in the ratio of the mass of oxygen

More information

Pleistocene Glaciations

Pleistocene Glaciations Chapter 14 Pleistocene Glaciations I. Geologic evidence 1. glacial deposits, etc. Pleistocene Glaciations 2. The Oxygen Isotope Record (1970s) II. Explanation of the glacial-interglacial periods The Milankovitch

More information

Orbital-Scale Interactions in the Climate System. Speaker:

Orbital-Scale Interactions in the Climate System. Speaker: Orbital-Scale Interactions in the Climate System Speaker: Introduction First, many orbital-scale response are examined.then return to the problem of interactions between atmospheric CO 2 and the ice sheets

More information

Chapter Causes of Climate Change Part I: Milankovitch Cycles

Chapter Causes of Climate Change Part I: Milankovitch Cycles Chapter 19.1-19.3 Causes of Climate Change Part I: Milankovitch Cycles Climate Cycles =400 Milankovitch Cycles Milankovitch Cycles are created by changes in the geometry of Earth s orbit around the sun

More information

Quarternary Climate Variations

Quarternary Climate Variations Quarternary Climate Variations EAS 303 Lecture 34 Background and History Louis Agassiz (1840): recognition of Ice Ages Harold Urey (1947): The Thermodynamic Properties of Isotopic Substances calculated

More information

Geol. 656 Isotope Geochemistry

Geol. 656 Isotope Geochemistry STABLE ISOTOPES IN PALEOCLIMATOLOGY I INTRODUCTION At least since the classic work of Louis Agassiz in 1840, geologists have contemplated the question of how the Earth s climate might have varied in the

More information

Recent Developments in the Theory of Glacial Cycles

Recent Developments in the Theory of Glacial Cycles Recent Developments in the Theory of Richard McGehee Seminar on the Mathematics of Climate Change School of Mathematics October 6, 010 Hansen, et al, Target atmospheric CO: Where should humanity aim? Open

More information

Milankovitch Cycles. Milankovitch Cycles. Milankovitch Cycles. Milankovitch Cycles. Milankovitch Cycles. Milankovitch Cycles.

Milankovitch Cycles. Milankovitch Cycles. Milankovitch Cycles. Milankovitch Cycles. Milankovitch Cycles. Milankovitch Cycles. Richard McGehee Temperatures in the Cenozoic ra Seminar on the Mathematics of Climate Change School of Mathematics March 4, 9 http://www.tqnyc.org/nyc5141/beginningpage.html Hansen, et al, 8, p. 7 Recent

More information

Development of the Global Environment

Development of the Global Environment Development of the Global Environment G302: Spring 2004 A course focused on exploration of changes in the Earth system through geological history Simon C. Brassell Geological Sciences simon@indiana.edu

More information

Lecture 10: Seasons and Ice Age. Earth s Orbit and Its Variations. Perihelion and Aphelion. Tilt Produces Seasons

Lecture 10: Seasons and Ice Age. Earth s Orbit and Its Variations. Perihelion and Aphelion. Tilt Produces Seasons Lecture 10: Seasons and Ice Age Earth s Orbit and Its Variations! Earth s Orbit and Its Variations! How Seasons Are produced! Milankovitch Theory on Glacial-Interglacial Cycle (from The Earth System)!

More information

8. Climate changes Short-term regional variations

8. Climate changes Short-term regional variations 8. Climate changes 8.1. Short-term regional variations By short-term climate changes, we refer here to changes occurring over years to decades. Over this timescale, climate is influenced by interactions

More information

Pleistocene Glaciation (Ch.14) Geologic evidence Milankovitch cycles Glacial climate feedbacks

Pleistocene Glaciation (Ch.14) Geologic evidence Milankovitch cycles Glacial climate feedbacks Pleistocene Glaciation (Ch.14) Geologic evidence Milankovitch cycles Glacial climate feedbacks End of last ice-age rise of human civilization Modern ice-ages begin Asteroid impact end of dinosaurs Cambrian

More information

Chapter 14: The Changing Climate

Chapter 14: The Changing Climate Chapter 14: The Changing Climate Detecting Climate Change Natural Causes of Climate Change Anthropogenic Causes of Climate Change Possible Consequences of Global Warming Climate Change? -Paleo studies

More information

A brief lesson on oxygen isotopes. more ice less ice

A brief lesson on oxygen isotopes. more ice less ice A brief lesson on oxygen isotopes Figure from Raymo and Huybers, 2008 more ice less ice The Pleistocene (1) δ 18 O in sediments is directly related to ice volume. Because ice sheets deplete the supply

More information

Paleoclimatology ATMS/ESS/OCEAN 589. Abrupt Climate Change During the Last Glacial Period

Paleoclimatology ATMS/ESS/OCEAN 589. Abrupt Climate Change During the Last Glacial Period Paleoclimatology ATMS/ESS/OCEAN 589 Ice Age Cycles Are they fundamentaly about ice, about CO2, or both? Abrupt Climate Change During the Last Glacial Period Lessons for the future? The Holocene Early Holocene

More information

Chapter 15 Millennial Oscillations in Climate

Chapter 15 Millennial Oscillations in Climate Chapter 15 Millennial Oscillations in Climate This chapter includes millennial oscillations during glaciations, millennial oscillations during the last 8000 years, causes of millennial-scale oscillations,

More information

WELCOME TO PERIOD 14:CLIMATE CHANGE. Homework #13 is due today.

WELCOME TO PERIOD 14:CLIMATE CHANGE. Homework #13 is due today. WELCOME TO PERIOD 14:CLIMATE CHANGE Homework #13 is due today. Note: Homework #14 due on Thursday or Friday includes using a web site to calculate your carbon footprint. You should complete this homework

More information

Outline 23: The Ice Ages-Cenozoic Climatic History

Outline 23: The Ice Ages-Cenozoic Climatic History Outline 23: The Ice Ages-Cenozoic Climatic History Continental Glacier in Antarctica Valley Glaciers in Alaska, note the moraines Valley Glaciers in Alaska, note the moraines Mendenhall Glacier, Juneau,

More information

An Orbital Theory for Glacial Cycles

An Orbital Theory for Glacial Cycles An Orbital Theory for Glacial Cycles Peter Bogenschutz March 2006 1. Introduction In the late 1800's, when ice ages were first discovered, variations in Earth's orbital mechanics were hypothesized to be

More information

Father of Glacial theory. First investigations of glaciers and mountain geology,

Father of Glacial theory. First investigations of glaciers and mountain geology, First investigations of glaciers and mountain geology, 1750-1800 Glaciation happens! -- Historical perspective It happens in cycles -- How do we know this? What are Milankovitch cycles? Sub-Milankovitch

More information

Extent of Periglacial = Global Permafrost Permafrost: Soil and/or rock where temperatures remain below 0 degrees C for 2 or more years.

Extent of Periglacial = Global Permafrost Permafrost: Soil and/or rock where temperatures remain below 0 degrees C for 2 or more years. Geog 1000 - Lecture 34 Periglacial Environments and Paleoclimatology http://scholar.ulethbridge.ca/chasmer/classes/ Today s Lecture (Pgs 422-434) 1. Exam questions from last week, and today 2. Extent of

More information

We re living in the Ice Age!

We re living in the Ice Age! Chapter 18. Coping with the Weather: Causes and Consequences of Naturally Induce Climate Change 지구시스템의이해 We re living in the Ice Age! 1 Phanerozoic Climate 서늘해지고 더웠고 따뜻했고 3 Climate Rollercoaster 4 2 Time

More information

The Ice Age sequence in the Quaternary

The Ice Age sequence in the Quaternary The Ice Age sequence in the Quaternary Subdivisions of the Quaternary Period System Series Stage Age (Ma) Holocene 0 0.0117 Tarantian (Upper) 0.0117 0.126 Quaternary Ionian (Middle) 0.126 0.781 Pleistocene

More information

6. What has been the most effective erosive agent in the climate system? a. Water b. Ice c. Wind

6. What has been the most effective erosive agent in the climate system? a. Water b. Ice c. Wind Multiple Choice. 1. Heinrich Events a. Show increased abundance of warm-water species of planktic foraminifera b. Show greater intensity since the last deglaciation c. Show increased accumulation of ice-rafted

More information

History. Late 18 th /early 19 th century Europeans observed that erratic boulders dispersed due to the retention of glaciers caused by climate chance

History. Late 18 th /early 19 th century Europeans observed that erratic boulders dispersed due to the retention of glaciers caused by climate chance Ice ages What is an ice age? Geological period of long-term reduction in the temperature of the Earth's surface and atmosphere which results in the formation and expansion of continental ice sheets, polar

More information

TOPIC #12 NATURAL CLIMATIC FORCING

TOPIC #12 NATURAL CLIMATIC FORCING TOPIC #12 NATURAL CLIMATIC FORCING (Start on p 67 in Class Notes) p 67 ENERGY BALANCE (review) Global climate variability and change are caused by changes in the ENERGY BALANCE that are FORCED review FORCING

More information

Chp Spectral analysis a. Requires that the climate record must be at least 4 times longer than the cycled analyzed

Chp Spectral analysis a. Requires that the climate record must be at least 4 times longer than the cycled analyzed Chp 7 1. Earth s seasons are caused by a. The movement of the Sun from North to South of the equator and back again over a year s time b. The distance between Earth and the Sun c. The rate of Earth s movement

More information

Welcome to ATMS 111 Global Warming.

Welcome to ATMS 111 Global Warming. Welcome to ATMS 111 Global Warming http://www.atmos.washington.edu/2010q1/111 Isotopic Evidence 16 O isotopes "light 18 O isotopes "heavy" Evaporation favors light Rain favors heavy Cloud above ice is

More information

Natural Climate Variability: Longer Term

Natural Climate Variability: Longer Term Natural Climate Variability: Longer Term Natural Climate Change Today: Natural Climate Change-2: Ice Ages, and Deep Time Geologic Time Scale background: Need a system for talking about unimaginable lengths

More information

PLIO-PLEISTOCENE GLACIAL CYCLES AND MILANKOVITCH VARIABILITY

PLIO-PLEISTOCENE GLACIAL CYCLES AND MILANKOVITCH VARIABILITY PLIO-PLEISTOCENE GLACIAL CYCLES AND MILANKOVITCH VARIABILITY K. H. Nisancioglu, Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway & 29 Elsevier Ltd. All rights reserved. Introduction

More information

ENIGMA: something that is mysterious, puzzling, or difficult to understand.

ENIGMA: something that is mysterious, puzzling, or difficult to understand. Lecture 12. Attempts to solve the Eccentricity Enigma ENIGMA: something that is mysterious, puzzling, or difficult to understand. Milankovitch forcing glacier responses pre-900,000 yr BP glacier responses

More information

In the summer of 1836, Agassiz stayed with a well known geologist (Chapentier) who had been convinced by a collegue (Venetz) of extensive Alpine

In the summer of 1836, Agassiz stayed with a well known geologist (Chapentier) who had been convinced by a collegue (Venetz) of extensive Alpine 4 Cilvilization exists by geological consent, subject to change without notice, Will Durant. In 1807 the Geological Society of London had concerns that too many people would join: it was the sexy science

More information

Physics of Aquatic Systems II

Physics of Aquatic Systems II Contents of Session 5 Physics of Aquatic Systems II 5. Stable Isotopes - Applications Some examples of applications Stable isotopes as markers of water origin Stable isotopes in process studies Stable

More information

NATS 101 Section 13: Lecture 32. Paleoclimate

NATS 101 Section 13: Lecture 32. Paleoclimate NATS 101 Section 13: Lecture 32 Paleoclimate Natural changes in the Earth s climate also occur at much longer timescales The study of prehistoric climates and their variability is called paleoclimate.

More information

Glaciers and Ice Ages

Glaciers and Ice Ages ES 106 Glaciers and Ice Ages I. Glacier thick mass of ice accumulated over years, decades, centuries A. Function of recrystallization of fallen snow B. Types 1. alpine valley: a. high elevations worldwide

More information

Lecture 7: Natural Climate Change. Instructor: Prof. Johnny Luo.

Lecture 7: Natural Climate Change. Instructor: Prof. Johnny Luo. Lecture 7: Natural Climate Change Instructor: Prof. Johnny Luo http://www.sci.ccny.cuny.edu/~luo Final Exam: May 23 1-3:15pm at MR O44 Outlines (Chapter 11, Edition 1) 1. Variation in solar luminosity

More information

ATMS 321: Natural Climate Variability Chapter 11

ATMS 321: Natural Climate Variability Chapter 11 ATMS 321: Natural Climate Variability Chapter 11 Solar Variability: Total solar irradiance variability is relatively small about a tenth of a percent. Ultraviolet variability is larger, and so could affect

More information

Marine Oxygen Isotopes and Changes in Global Ice Volume

Marine Oxygen Isotopes and Changes in Global Ice Volume Marine Oxygen Isotopes and Changes in Global Ice Volume Name: You have learned about the value of marine oxygen-isotope records for understanding changes in ocean-water temperature and global ice volume

More information

Ice on Earth: An overview and examples on physical properties

Ice on Earth: An overview and examples on physical properties Ice on Earth: An overview and examples on physical properties - Ice on Earth during the Pleistocene - Present-day polar and temperate ice masses - Transformation of snow to ice - Mass balance, ice deformation,

More information

How do glaciers form?

How do glaciers form? Glaciers What is a Glacier? A large mass of moving ice that exists year round is called a glacier. Glaciers are formed when snowfall exceeds snow melt year after year Snow and ice remain on the ground

More information

TOPIC #12. Wrap Up on GLOBAL CLIMATE PATTERNS

TOPIC #12. Wrap Up on GLOBAL CLIMATE PATTERNS TOPIC #12 Wrap Up on GLOBAL CLIMATE PATTERNS POLE EQUATOR POLE Now lets look at a Pole to Pole Transect review ENERGY BALANCE & CLIMATE REGIONS (wrap up) Tropics Subtropics Subtropics Polar Extratropics

More information

Understanding past climate change

Understanding past climate change Steven J. Phipps ARC Centre of Excellence for Climate System Science Climate Change Research Centre University of New South Wales CLIM1001 Introduction to Climate Change 3 September 2013 1 Why past climates

More information

Introduction to Climate Change

Introduction to Climate Change Ch 19 Climate Change Introduction to Climate Change Throughout time, the earth's climate has always been changing produced ice ages Hence, climate variations have been noted in the past what physical processes

More information

Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework due Thursday Nov. 12. What we ll learn today:! Learning Objectives (LO)

Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework due Thursday Nov. 12. What we ll learn today:! Learning Objectives (LO) Learning Objectives (LO) Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework due Thursday Nov. 12 What we ll learn today:! 1. 1. Glaciers and where they occur! 2. 2. Compare depositional and

More information

5 Stable and radioactive isotopes

5 Stable and radioactive isotopes 5 Stable and radioactive isotopes Outline 1 Stable isotopes Measuring stable isotopic abundances Equilibrium isotope effects Kinetic isotope effects Rayleigh distillation Isotopes: a mainstay of chemical

More information

Monday, December 4, 2017 The Pleistocene Glaciations (Chapter 14) Week 14 Assessment, closes Wednesday Dec 6

Monday, December 4, 2017 The Pleistocene Glaciations (Chapter 14) Week 14 Assessment, closes Wednesday Dec 6 Monday, December 4, 2017 The Pleistocene Glaciations (Chapter 14) Week 14 Assessment, closes Wednesday Dec 6 Week 15 Assessment will be last one, closes Wednesday Dec 13 Homework 5 due Wednesday, Dec 6

More information

PCC 589 Paleoclimatology

PCC 589 Paleoclimatology PCC 589 Paleoclimatology 1. Oxygen Isotopes, Temperature and Ice Volume First of four lectures covering: 1) Oxygen isotope in carbonate shells, and how they reflect a combination of ice volume (or sea

More information

Chapter 14: Climate Change

Chapter 14: Climate Change Chapter 14: Climate Change Goals of Period 14 Section 14.1: To review the energy balance of the Earth and the enhanced greenhouse effect Section 14.2: To examine evidence for climate change Section 14.3:

More information

Ice Age research. Milankovitch cycles, Milankovitch curves, Milankovitch insolation, Milankovitch theory, Milankovitch hypothesis.?

Ice Age research. Milankovitch cycles, Milankovitch curves, Milankovitch insolation, Milankovitch theory, Milankovitch hypothesis.? Ice Age research Rev. Prof. Buckland Milankovitch cycles, Milankovitch curves, Milankovitch insolation, Milankovitch theory, Milankovitch hypothesis.? Milutin Milankovitch Milutin Milankovitch (1879-1958)

More information

Solar Insolation and Earth Radiation Budget Measurements

Solar Insolation and Earth Radiation Budget Measurements Week 13: November 19-23 Solar Insolation and Earth Radiation Budget Measurements Topics: 1. Daily solar insolation calculations 2. Orbital variations effect on insolation 3. Total solar irradiance measurements

More information

4 Changes in Climate. TAKE A LOOK 2. Explain Why is more land exposed during glacial periods than at other times?

4 Changes in Climate. TAKE A LOOK 2. Explain Why is more land exposed during glacial periods than at other times? Name Class CHAPTER 3 Date Climate 4 Changes in Climate SECTION National Science Education Standards BEFORE YOU READ After you read this section, you should be able to answer these questions: ES 1k, 2a

More information

Glacial Cycles: from Aristotle to Hogg and Back to Budyko

Glacial Cycles: from Aristotle to Hogg and Back to Budyko Glacial Cycles: from Aristotle to Hogg and Back to Budyko Richard McGehee School of Mathematics University of Minnesota Climate Change Summer School Mathematical Sciences Research Institute July 28, 2008

More information

Paleoclimate indicators

Paleoclimate indicators Paleoclimate indicators Rock types as indicators of climate Accumulation of significant thicknesses of limestone and reef-bearing limestone is restricted to ~20º + - equator Gowganda tillite, Ontario

More information

"Global Warming Beer" Taps Melted Arctic Ice (UPDATE)

Global Warming Beer Taps Melted Arctic Ice (UPDATE) "Global Warming Beer" Taps Melted Arctic Ice (UPDATE) The brewery filed for bankruptcy in Aug 2008 The Greenland Brewhouse is the world's first Inuit microbrewery. The water, the brewers say, is the beer's

More information

Today we will discuss global climate: how it has changed in the past, and how the current status and possible future look.

Today we will discuss global climate: how it has changed in the past, and how the current status and possible future look. Global Climate Change Today we will discuss global climate: how it has changed in the past, and how the current status and possible future look. If you live in an area such as the Mississippi delta (pictured)

More information

Glaciers. A glacier is a persistent mass of ice: snow accumulation exceeds melting. generally occur in two areas: high latitudes, or high elevations

Glaciers. A glacier is a persistent mass of ice: snow accumulation exceeds melting. generally occur in two areas: high latitudes, or high elevations Page 1 of7 Glaciers A glacier is a persistent mass of ice: snow accumulation exceeds melting generally occur in two areas: high latitudes, or high elevations hence CONTINENTAL and ALPINE glaciation Glaciers

More information

Global climate change

Global climate change Global climate change What is climate change? This winter was really cold! Temp difference ( C): Jan 2004 vs. Jan 2002-2003 Make your own maps at: http://www.giss.nasa.gov/data/update/gistemp/maps/ 1 What

More information

Early Earth. Geologic Time. Rise of Oxygen. Early Life. Scott Denning CSU Atmospheric Science 1

Early Earth. Geologic Time. Rise of Oxygen. Early Life. Scott Denning CSU Atmospheric Science 1 Geologic Time Precambrian, and then everything else! (It s always down there) Primary, Secondary, Tertiary Fossils told this story Early Earth Formed by accretion ~ 4.7 billion years ago Solar constant

More information

2/18/2013 Estimating Climate Sensitivity From Past Climates Outline

2/18/2013 Estimating Climate Sensitivity From Past Climates Outline Estimating Climate Sensitivity From Past Climates Outline Zero-dimensional model of climate system Climate sensitivity Climate feedbacks Forcings vs. feedbacks Paleocalibration vs. paleoclimate modeling

More information

1. Deglacial climate changes

1. Deglacial climate changes Review 3 Major Topics Deglacial climate changes (last 21,000 years) Millennial oscillations (thousands of years) Historical Climate Change (last 1000 years) Climate Changes Since the 1800s Climate Change

More information

Topic 6: Insolation and the Seasons

Topic 6: Insolation and the Seasons Topic 6: Insolation and the Seasons Solar Radiation and Insolation Insolation: In Sol ation The Sun is the primary source of energy for the earth. The rate at which energy is radiated is called Intensity

More information

Energy Balance Models

Energy Balance Models Richard McGehee School of Mathematics University of Minnesota NCAR - MSRI July, 2010 Earth s Energy Balance Gary Stix, Scientific American September 2006, pp.46-49 Earth s Energy Balance Historical Overview

More information

The oxygen isotope sweet simulation Demonstrating how the oxygen isotope proxy records past Earth temperatures

The oxygen isotope sweet simulation Demonstrating how the oxygen isotope proxy records past Earth temperatures The oxygen isotope sweet simulation Demonstrating how the oxygen isotope proxy records past Earth temperatures Oxygen has two common isotopes; 16 O has an atomic mass of 16 and is the common oxygen molecule

More information

Our Geologic Backdrop: Ice Age Cycles

Our Geologic Backdrop: Ice Age Cycles Introduction to Earth s Climate System Our Geologic Backdrop: Ice Age Cycles MODULE 2.4 2.4 Our Geologic Backdrop: Ice Age Cycles Lesson Goals»» Describe Earth s geologic variability over the past million

More information

The ocean s overall role in climate

The ocean s overall role in climate The ocean s overall role in climate - moderates climate in time (diurnally, annually) - redistributes heat spatially in the largescale ocean circulation - lower albedo (sea ice higher albedo) - dry atmosphere

More information

CLIMATE CHANGE OVER THE LAST TWO MILLION YEARS

CLIMATE CHANGE OVER THE LAST TWO MILLION YEARS CLIMATE CHANGE OVER THE LAST TWO MILLION YEARS 1. Introduction: forcings and feedbacks 2. Standing on the shoulders of giants: development of the Milankovitch theory 3. Evidence from the oceans, evidence

More information

Agronomy 406 World Climates

Agronomy 406 World Climates Agronomy 406 World Climates April 3, 2018 Causes of natural climate changes (finish). Schedule is being adjusted. No change to due dates. Bring IPCC Fifth Assessment Report Summary for Policymakers to

More information

How long will the precession epoch last in terms of Pleistocene glacial cycles?

How long will the precession epoch last in terms of Pleistocene glacial cycles? RUSSIAN JOURNAL OF EARTH SCIENCES, VOL. 10, ES3004, doi:10.2205/2008es000299, 2008 How long will the precession epoch last in terms of Pleistocene glacial cycles? V. A. Bol shakov 1 Received 6 March 2008;

More information

Orbital- Scale Climate Changes. GEOG 401: Climatology Dr. John Abatzoglou

Orbital- Scale Climate Changes. GEOG 401: Climatology Dr. John Abatzoglou Orbital- Scale Climate Changes GEOG 401: Climatology Dr. John Abatzoglou Ice Core Sampling Typically performed at top of ice dome where less lateral spreading occurs Diffusion issue can make high- resoluion

More information

Today s Climate in Perspective: Hendrick Avercamp ( ) ~1608; Rijksmuseum, Amsterdam

Today s Climate in Perspective: Hendrick Avercamp ( ) ~1608; Rijksmuseum, Amsterdam Today s Climate in Perspective: Paleoclimate Evidence Hendrick Avercamp (1585-1634) ~1608; Rijksmuseum, Amsterdam Observations Instrumental surface temperature records? (Le Treut et al., 2007 IPCC AR4

More information

Major climate change triggers

Major climate change triggers Major climate change triggers Variations in solar output Milankovitch cycles Elevation & distribution of continents Ocean interactions Atmospheric composition change (CO 2 and other volcanic gasses) Biological

More information

ATOC OUR CHANGING ENVIRONMENT

ATOC OUR CHANGING ENVIRONMENT ATOC 1060-002 OUR CHANGING ENVIRONMENT Class 22 (Chp 15, Chp 14 Pages 288-290) Objectives of Today s Class Chp 15 Global Warming, Part 1: Recent and Future Climate: Recent climate: The Holocene Climate

More information

Temperature Over Time

Temperature Over Time Temperature Over Time 1 Module Overview In this module, you will investigate whether Earth is warming. First, you will review the causes of seasonal and daily temperature changes at different latitudes

More information

Lab 3. Orbital Configurations and Milankovitch Cycles

Lab 3. Orbital Configurations and Milankovitch Cycles Lab 3. Orbital Configurations and Milankovitch Cycles Vostok Isotope Record & Orbital Forcing Worksheet Chapter 14: Pleistocene Glaciation/Milankovitch 1. Review the effects of seasons on incoming insolation.

More information

ERS 121 Study Guide for Exam 1. Lecture 1. Ice Age Theory 1. Where did the ice age theory originate?

ERS 121 Study Guide for Exam 1. Lecture 1. Ice Age Theory 1. Where did the ice age theory originate? Lecture 1. Ice Age Theory 1. Where did the ice age theory originate? ERS 121 Study Guide for Exam 1 2. Where did J. P. Perraudin live? What did he suggest? 3. Who was Ignace Venetz? 4. Who was Jean de

More information

CLIMATE. SECTION 14.1 Defining Climate

CLIMATE. SECTION 14.1 Defining Climate Date Period Name CLIMATE SECTION.1 Defining Climate In your textbook, read about climate and different types of climate data. Put a check ( ) next to the types of data that describe climate. 1. annual

More information

Systems? Climate Systems. Earth Systems. Earth Interior Systems. Atmospheric/Biospheric Systems: Human Impact Hydrologic Cycle.

Systems? Climate Systems. Earth Systems. Earth Interior Systems. Atmospheric/Biospheric Systems: Human Impact Hydrologic Cycle. Chapter 15 Climate Systems Systems? What is a system? Geologic phenomena are complex. All processes are related to, and interact with, other processes. So it is useful to think of geologic processes as

More information

Introduction to Quaternary Geology (MA-Modul 3223) Prof. C. Breitkreuz, SS2012, TU Freiberg

Introduction to Quaternary Geology (MA-Modul 3223) Prof. C. Breitkreuz, SS2012, TU Freiberg Introduction to Quaternary Geology (MA-Modul 3223) Prof. C. Breitkreuz, SS2012, TU Freiberg 1. Introduction: - Relevance, and relations to other fields of geoscience - Lower stratigraphic boundary and

More information

The Distribution of Cold Environments

The Distribution of Cold Environments The Distribution of Cold Environments Over 25% of the surface of our planet can be said to have a cold environment, but defining what we actually mean by that can be very challenging. This is because cold

More information

Chapter 6: Global Climate Change

Chapter 6: Global Climate Change Chapter 6: Global Climate Change Section 1: Paleoclimate The cross section of a tree trunk shows numerous rings. What do you think the light and dark rings represent? What can you infer about climate from

More information

Climate. What is climate? STUDY GUIDE FOR CONTENT MASTERY. Name Class Date

Climate. What is climate? STUDY GUIDE FOR CONTENT MASTERY. Name Class Date Climate SECTION 14.1 What is climate? In your textbook, read about climate and different types of climate data. Put a check ( ) next to the types of data that describe climate. 1. annual wind speed 4.

More information

/ Past and Present Climate

/ Past and Present Climate MIT OpenCourseWare http://ocw.mit.edu 12.842 / 12.301 Past and Present Climate Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Ice Sheet Paleoclimatology

More information

Chapter 2 Planet Earth

Chapter 2 Planet Earth Chapter 2 Planet Earth Section Notes Earth and the Sun s Energy Water on Earth The Land Close-up The Water Cycle World Almanac Major Eruptions in the Ring of Fire Quick Facts Chapter 2 Visual Summary Video

More information

REVISITING THE ANALOGUE FOR THE COMING ICE AGE

REVISITING THE ANALOGUE FOR THE COMING ICE AGE REVISITING THE ANALOGUE FOR THE COMING ICE AGE When paleoclimatologists gathered in 1972 to discuss how and when the present warm climate would end, termination of this warm climate we call the Holocene

More information

Name Date Class. growth rings of trees, fossilized pollen, and ocean. in the northern hemisphere.

Name Date Class. growth rings of trees, fossilized pollen, and ocean. in the northern hemisphere. Lesson Outline LESSON 2 A. Long-Term Cycles 1. A(n) climate cycle takes much longer than a lifetime to complete. a. To learn about long-term climate cycles, scientists study natural records, such as growth

More information

Lecture 16 - Stable isotopes

Lecture 16 - Stable isotopes Lecture 16 - Stable isotopes 1. The fractionation of different isotopes of oxygen and their measurement in sediment cores has shown scientists that: (a) ice ages are common and lasted for hundreds of millions

More information

PTYS 214 Spring Announcements. Get exam from Kyle!

PTYS 214 Spring Announcements. Get exam from Kyle! PTYS 214 Spring 2018 Announcements Get exam from Kyle! 1 Midterm #3 Total Students: 24 Class Average: 78 Low: 32 High: 100 If you have questions see one of us! 2 All exams Top 2 exams 3 Previously Feedbacks

More information

Question #1: What are some ways that you think the climate may have changed in the area where you live over the past million years?

Question #1: What are some ways that you think the climate may have changed in the area where you live over the past million years? Reading 5.2 Environmental Change Think about the area where you live. You may see changes in the landscape in that area over a year. Some of those changes are weather related. Others are due to how the

More information

Section 3. Climate and the General Circulation Causes of Climate Change

Section 3. Climate and the General Circulation Causes of Climate Change Section 3. Climate and the General Circulation Causes of Climate Change Why the earth s climate changes is not totally understood. Many theories attempt to explain the changing climate, but no single theory

More information

Climate Change. Unit 3

Climate Change. Unit 3 Climate Change Unit 3 Aims Is global warming a recent short term phenomenon or should it be seen as part of long term climate change? What evidence is there of long-, medium-, and short- term climate change?

More information

Evaluator: Eric Pyle James Madison University

Evaluator: Eric Pyle James Madison University Building Core Knowledge Reconstructing Earth History Transforming Undergraduate Instruction by Bringing Ocean Drilling Science on Earth History and Global Climate Change into the Classroom This NSF-funded,

More information

Glaciers. (Shaping Earth s Surface, Part 6) Science 330 Summer 2005

Glaciers. (Shaping Earth s Surface, Part 6) Science 330 Summer 2005 Glaciers (Shaping Earth s Surface, Part 6) Science 330 Summer 2005 1 Glaciers Glaciers are parts of two basic cycles Hydrologic cycle Rock cycle Glacier a thick mass of ice that originates on land from

More information

Ice core-based climate research in Denmark

Ice core-based climate research in Denmark June 16, 2009 Ice core-based climate research in Denmark Sune Olander Rasmussen Center coordinator and postdoc Centre for Ice and Climate Niels Bohr Institute University of Copenhagen Temperature and CO

More information

Land Surface Sea Ice Land Ice. (from Our Changing Planet)

Land Surface Sea Ice Land Ice. (from Our Changing Planet) Lecture 5: Land Surface and Cryosphere (Outline) Land Surface Sea Ice Land Ice (from Our Changing Planet) Earth s s Climate System Solar forcing Atmosphere Ocean Land Solid Earth Energy, Water, and Biochemistry

More information

Earth s Climate System. Surface Albedo. Climate Roles of Land Surface. Lecture 5: Land Surface and Cryosphere (Outline) Land Surface Sea Ice Land Ice

Earth s Climate System. Surface Albedo. Climate Roles of Land Surface. Lecture 5: Land Surface and Cryosphere (Outline) Land Surface Sea Ice Land Ice Lecture 5: Land Surface and Cryosphere (Outline) Earth s Climate System Solar forcing Land Surface Sea Ice Land Ice Atmosphere Ocean Land Solid Earth Energy, Water, and Biochemistry Cycles (from Our Changing

More information