CLIMATE CHANGE OVER THE LAST TWO MILLION YEARS

Size: px
Start display at page:

Download "CLIMATE CHANGE OVER THE LAST TWO MILLION YEARS"

Transcription

1 CLIMATE CHANGE OVER THE LAST TWO MILLION YEARS 1. Introduction: forcings and feedbacks 2. Standing on the shoulders of giants: development of the Milankovitch theory 3. Evidence from the oceans, evidence from the ice 4. Pleistocene and Holocene 5. Abrupt climate change

2 Basic components of the climate system. Source: Ruddiman, 2001, p. 9.

3 Scientific ideas are continually tested and improved over time. If I have seen further, it is by standing on the shoulders of giants. Sir Isaac Newton, 1676.

4 How was this formed?? Lauterbrunnen, Switzerland. Source: J. Alean & M. Hambrey, Glaciers Online Photoglossary,

5 Why is this here?? Erratic boulders, Switzerland. Source: J. Alean & M. Hambrey, Glaciers Online Photoglossary,

6 How were these formed?? Lateral moraines, Switzerland. Source: J. Alean & M. Hambrey, Glaciers Online Photoglossary,

7 Louis Agassiz, Source: Riebeek, 2005,

8 Not to be confused with Andre Agassi.

9 Louis Agassiz, Source: Riebeek, 2005,

10 How was this formed?? Lauterbrunnen, Switzerland. Source: J. Alean & M. Hambrey, Glaciers Online Photoglossary,

11 Why is this here?? Erratic boulders, Switzerland. Source: J. Alean & M. Hambrey, Glaciers Online Photoglossary,

12 How were these formed?? Lateral moraines, Switzerland. Source: J. Alean & M. Hambrey, Glaciers Online Photoglossary,

13 Switzerland under ice. Source: Swiss Federal Office of Topography

14 The last glacial maximum ( ice age ).

15 Cyclical wobbles in the Earth s orbit: from Adhemar to Croll to Milankovitch. Source: Houghton, 2009, p. 86.

16 Source: Mann and Kump, 2009, p. 63.

17 Source: Mann and Kump, 2009, p. 63.

18 Source: Mann and Kump, 2009, p. 63.

19 Cyclical wobbles in the Earth s orbit. Source: Archer, 2012, p. 96.

20 Cyclical wobbles in the Earth s orbit. Source: Archer, 2012, p. 95.

21 Put em together and what have you got? Small differences between the extremes lead to glacial periods, roughly one every 100,000 years. Source: Encyclopedia of the Earth.

22 ATMOSPHERE The biological pump in the oceans OCEAN ~100 m mixed layer Wee beasties soak up carbon ~4900 m deep water Bodies, shells and skeletons sink to ocean floor

23 ATMOSPHERE The biological pump in the oceans OCEAN Wee beasties soak up carbon Bodies, shells and skeletons sink to ocean floor

24 Lots (and lots) of different species of zooplankton. Source: Tohoku University Museum,

25 A STEP BACK: REMINDER ABOUT THE NATURE OF MATTER

26 THE NATURE OF MATTER: Elements and compounds, atoms and molecules. Chemical element: A pure chemical substance composed of atoms with the same number of protons in the atomic nucleus. Chemical compound: A pure chemical substance consisting of two or more different chemical elements that can be separated into simpler substances by chemical reactions. Source: International Union of Pure and Applied Chemistry Compendium of Chemical Terminology (Gold Book),

27 Schematic showing the structure of an oxygen atom. 8 electrons (-) Nucleus: 8 protons (+) (= atomic number)

28

29 THE NATURE OF MATTER: Elements and compounds, atoms and molecules. Isotope: Atoms of the same element having the same atomic number but different mass numbers (atomic mass). Source: Mann and Kump, 2009, p. 201.

30 Schematic showing the structure of an oxygen atom. 8 electrons (-) Nucleus: 8 protons (+) 8, 9, or 10 neutrons Atomic number = 8 Atomic mass (mass number) = 16, 17 or 18 ( 16 O, 17 O or 18 O)

31 Two isotopes of oxygen: 16 O 18 O Which water molecules fall as snow near the poles? H 2 16 O H 2 18 O Which water molecules rain out more easily? Which water molecules evaporate more easily?

32 Bigger ice sheets separate out the isotopes More 16 O locked up in the ice sheets More 18 O remains in the oceans

33 Sea floor and ice core records of temperature. Source: Houghton, 2009, p. 83. Ocean sediments Vostok ice core

34 How ice coring works Source: Ruddiman, 2001.

35 NorthGRIP European ice coring project on Greenland. Source: NorthGRIP website,

36 Section of NorthGRIP ice core. Source: NorthGRIP website,

37

38

39 Temperature relative to present (Celsius) Temperature derived from Vostok ice core: hydrogen isotope analysis (deuterium). Years before present Source: drawn using Vostok ice core data first published by JR Petit, available from World Data Center for Paleoclimatology,

40 Sea floor and ice core records of temperature. Source: Houghton, 2009, p. 83.

41 Some problems with basic Milankovitch theory: 1. Small forcing, large response 2. Symmetrical forcing, asymmetrical (saw-toothed) response 3. Identical response in northern and southern hemispheres

42 Temperature relative to present (Celsius) Temperature derived from Vostok ice core: hydrogen isotope analysis (deuterium). Years before present Source: drawn using Vostok ice core data first published by JR Petit, available from World Data Center for Paleoclimatology,

43 Some problems with basic Milankovitch theory: 1. Small forcing, large response 2. Symmetrical forcing, asymmetrical (saw-toothed) response 3. Identical response in northern and southern hemispheres FORCING RESPONSE What general concept might help explain this??

44 Sea floor and ice core records of temperature. Source: Houghton, 2009, p. 83.

45 CARBON DIOXIDE/TEMPERATURE FEEDBACK Arrange the terms and connect with arrows Goes up/down ORBITAL WOBBLES (Milankovitch forcing) CO 2 IN ATMOSPHERE CO 2 RELEASED FROM OCEANS TEMPERATURE

46 CARBON DIOXIDE/TEMPERATURE FEEDBACK ORBITAL WOBBLES (Milankovitch forcing) CO 2 IN ATMOSPHERE Goes up TEMPERATURE CO 2 RELEASED FROM OCEANS

47 Carbon dioxide (ppm) Temperature relative to present (Celsius) Temperature sometimes leads carbon dioxide Temperature and CO 2 in the Vostok ice core ~800 yr. lag CO Temperature Years before present Source: data from WDC Paleoclimatology

48 CARBON DIOXIDE/TEMPERATURE FEEDBACK At multi-million year timescales, the feedback is: negative At 100,000-year timescales, the feedback is: positive

49 Temperature relative to present (Celsius) Pleistocene and Holocene Holocene: the last 10,000 years Pleistocene: from ~2.5 million to 10,000 years ago Years before present 10,000 years ago Source: drawn using Vostok ice core data first published by JR Petit, available from World Data Center for Paleoclimatology,

50 Central Greenland temperature (Celsius) Central Greenland temperature estimated from GISP 2 stable isotopes Pleistocene Holocene WARM Years before present COLD Source: drawn using GISP2 ice core data first published by Richard Alley, available from World Data Center for Paleoclimatology,

51 Central Greenland temperature (Celsius) Abrupt climate changes in the ice core record: Dansgaard-Oeschger events and the Younger Dryas GISP 2 Central Greenland temperature WARM Dansgaard-Oeschger events Younger Dryas, 12 to 10.7 kyr BP Years before present COLD Source: drawn using GISP 2 ice core data first published by Richard Alley, available from World Data Center for Paleoclimatology,

52 If you're living with an angry beast, you shouldn't poke it with a sharp stick. Is this a good idea? Wallace Broecker, 2008 The Valley of Gwangi, Warner Bros., 1969.

53 This assumes that humans can act as a forcing on the global climate system. IS THIS A REASONABLE ASSUMPTION?

CLIMATE CHANGE IN ARCTIC AND ALPINE AREAS

CLIMATE CHANGE IN ARCTIC AND ALPINE AREAS CLIMATE CHANGE IN ARCTIC AND ALPINE AREAS 1. Introduction 2. Data sources: glaciers 3. Data sources: ice cores 4. Patterns and mechanisms 5. Feedbacks and surprises Striations (evidence of glacial erosion)

More information

FOSSIL FUELS, ENERGY, AND THE PERTURBED CARBON CYCLE

FOSSIL FUELS, ENERGY, AND THE PERTURBED CARBON CYCLE FOSSIL FUELS, ENERGY, AND THE PERTURBED CARBON CYCLE 1. Introduction 2. Why are they called fossil fuels? 3. Burning buried sunshine 4. Perturbing the carbon cycle 5. Welcome to the Anthropocene A LOGICAL

More information

Paleoclimatology ATMS/ESS/OCEAN 589. Abrupt Climate Change During the Last Glacial Period

Paleoclimatology ATMS/ESS/OCEAN 589. Abrupt Climate Change During the Last Glacial Period Paleoclimatology ATMS/ESS/OCEAN 589 Ice Age Cycles Are they fundamentaly about ice, about CO2, or both? Abrupt Climate Change During the Last Glacial Period Lessons for the future? The Holocene Early Holocene

More information

Pleistocene Glaciation (Ch.14) Geologic evidence Milankovitch cycles Glacial climate feedbacks

Pleistocene Glaciation (Ch.14) Geologic evidence Milankovitch cycles Glacial climate feedbacks Pleistocene Glaciation (Ch.14) Geologic evidence Milankovitch cycles Glacial climate feedbacks End of last ice-age rise of human civilization Modern ice-ages begin Asteroid impact end of dinosaurs Cambrian

More information

/ Past and Present Climate

/ Past and Present Climate MIT OpenCourseWare http://ocw.mit.edu 12.842 / 12.301 Past and Present Climate Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Ice Sheet Paleoclimatology

More information

Climate and Environment

Climate and Environment Climate and Environment Oxygen Isotope Fractionation and Measuring Ancient Temperatures Oxygen Isotope Ratio Cycles Oxygen isotope ratio cycles are cyclical variations in the ratio of the mass of oxygen

More information

Welcome to ATMS 111 Global Warming.

Welcome to ATMS 111 Global Warming. Welcome to ATMS 111 Global Warming http://www.atmos.washington.edu/2010q1/111 Isotopic Evidence 16 O isotopes "light 18 O isotopes "heavy" Evaporation favors light Rain favors heavy Cloud above ice is

More information

Ice Ages and Changes in Earth s Orbit. Topic Outline

Ice Ages and Changes in Earth s Orbit. Topic Outline Ice Ages and Changes in Earth s Orbit Topic Outline Introduction to the Quaternary Oxygen isotopes as an indicator of ice volume Temporal variations in ice volume Periodic changes in Earth s orbit Relationship

More information

Pleistocene Glaciations

Pleistocene Glaciations Chapter 14 Pleistocene Glaciations I. Geologic evidence 1. glacial deposits, etc. Pleistocene Glaciations 2. The Oxygen Isotope Record (1970s) II. Explanation of the glacial-interglacial periods The Milankovitch

More information

WELCOME TO PERIOD 14:CLIMATE CHANGE. Homework #13 is due today.

WELCOME TO PERIOD 14:CLIMATE CHANGE. Homework #13 is due today. WELCOME TO PERIOD 14:CLIMATE CHANGE Homework #13 is due today. Note: Homework #14 due on Thursday or Friday includes using a web site to calculate your carbon footprint. You should complete this homework

More information

NATS 101 Section 13: Lecture 32. Paleoclimate

NATS 101 Section 13: Lecture 32. Paleoclimate NATS 101 Section 13: Lecture 32 Paleoclimate Natural changes in the Earth s climate also occur at much longer timescales The study of prehistoric climates and their variability is called paleoclimate.

More information

Today s Climate in Perspective: Hendrick Avercamp ( ) ~1608; Rijksmuseum, Amsterdam

Today s Climate in Perspective: Hendrick Avercamp ( ) ~1608; Rijksmuseum, Amsterdam Today s Climate in Perspective: Paleoclimate Evidence Hendrick Avercamp (1585-1634) ~1608; Rijksmuseum, Amsterdam Observations Instrumental surface temperature records? (Le Treut et al., 2007 IPCC AR4

More information

Chapter Causes of Climate Change Part I: Milankovitch Cycles

Chapter Causes of Climate Change Part I: Milankovitch Cycles Chapter 19.1-19.3 Causes of Climate Change Part I: Milankovitch Cycles Climate Cycles =400 Milankovitch Cycles Milankovitch Cycles are created by changes in the geometry of Earth s orbit around the sun

More information

Father of Glacial theory. First investigations of glaciers and mountain geology,

Father of Glacial theory. First investigations of glaciers and mountain geology, First investigations of glaciers and mountain geology, 1750-1800 Glaciation happens! -- Historical perspective It happens in cycles -- How do we know this? What are Milankovitch cycles? Sub-Milankovitch

More information

Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework due Thursday Nov. 12. What we ll learn today:! Learning Objectives (LO)

Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework due Thursday Nov. 12. What we ll learn today:! Learning Objectives (LO) Learning Objectives (LO) Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework due Thursday Nov. 12 What we ll learn today:! 1. 1. Glaciers and where they occur! 2. 2. Compare depositional and

More information

Lecture 0 A very brief introduction

Lecture 0 A very brief introduction Lecture 0 A very brief introduction Eli Tziperman Climate variability results from a very diverse set of physical phenomena and occurs on a very wide range of time scales. It is difficult to envision a

More information

Introduction to Quaternary Geology (MA-Modul 3223) Prof. C. Breitkreuz, SS2012, TU Freiberg

Introduction to Quaternary Geology (MA-Modul 3223) Prof. C. Breitkreuz, SS2012, TU Freiberg Introduction to Quaternary Geology (MA-Modul 3223) Prof. C. Breitkreuz, SS2012, TU Freiberg 1. Introduction: - Relevance, and relations to other fields of geoscience - Lower stratigraphic boundary and

More information

Ice core-based climate research in Denmark

Ice core-based climate research in Denmark June 16, 2009 Ice core-based climate research in Denmark Sune Olander Rasmussen Center coordinator and postdoc Centre for Ice and Climate Niels Bohr Institute University of Copenhagen Temperature and CO

More information

To understand how we measure ancient temperature, you need to know about oxygen isotopes. Pleistocene Climate. Clouds, rain, and oxygen isotopes

To understand how we measure ancient temperature, you need to know about oxygen isotopes. Pleistocene Climate. Clouds, rain, and oxygen isotopes To understand how we measure ancient temperature, you need to know about oxygen isotopes Pleistocene Climate Alan R. Rogers February 20, 2014 There are several types of oxygen atoms, called isotopes The

More information

We re living in the Ice Age!

We re living in the Ice Age! Chapter 18. Coping with the Weather: Causes and Consequences of Naturally Induce Climate Change 지구시스템의이해 We re living in the Ice Age! 1 Phanerozoic Climate 서늘해지고 더웠고 따뜻했고 3 Climate Rollercoaster 4 2 Time

More information

SAMPLE PAGE. pulses. The Ice Age By: Sue Peterson

SAMPLE PAGE. pulses. The Ice Age By: Sue Peterson Page 61 Objective sight words (pulses, intermittent, isotopes, chronicle, methane, tectonic plates, volcanism, configurations, land-locked, erratic); concepts (geological evidence and specific terminology

More information

8. Climate changes Short-term regional variations

8. Climate changes Short-term regional variations 8. Climate changes 8.1. Short-term regional variations By short-term climate changes, we refer here to changes occurring over years to decades. Over this timescale, climate is influenced by interactions

More information

"Global Warming Beer" Taps Melted Arctic Ice (UPDATE)

Global Warming Beer Taps Melted Arctic Ice (UPDATE) "Global Warming Beer" Taps Melted Arctic Ice (UPDATE) The brewery filed for bankruptcy in Aug 2008 The Greenland Brewhouse is the world's first Inuit microbrewery. The water, the brewers say, is the beer's

More information

IMA. Celestial Influences on Glacial Cycles. Math and Climate Seminar

IMA. Celestial Influences on Glacial Cycles. Math and Climate Seminar Math and Climate Seminar IMA Celestial Influences on Richard McGehee Joint MCRN/IMA Math and Climate Seminar Tuesdays 11:15 1:5 streaming video available at www.ima.umn.edu Seminar on the Mathematics of

More information

History. Late 18 th /early 19 th century Europeans observed that erratic boulders dispersed due to the retention of glaciers caused by climate chance

History. Late 18 th /early 19 th century Europeans observed that erratic boulders dispersed due to the retention of glaciers caused by climate chance Ice ages What is an ice age? Geological period of long-term reduction in the temperature of the Earth's surface and atmosphere which results in the formation and expansion of continental ice sheets, polar

More information

ATOC OUR CHANGING ENVIRONMENT

ATOC OUR CHANGING ENVIRONMENT ATOC 1060-002 OUR CHANGING ENVIRONMENT Class 22 (Chp 15, Chp 14 Pages 288-290) Objectives of Today s Class Chp 15 Global Warming, Part 1: Recent and Future Climate: Recent climate: The Holocene Climate

More information

Glacial-Interglacial Cycling: Ice, orbital theory, and climate. Dr. Tracy M. Quan IMCS

Glacial-Interglacial Cycling: Ice, orbital theory, and climate. Dr. Tracy M. Quan IMCS Glacial-Interglacial Cycling: Ice, orbital theory, and climate Dr. Tracy M. Quan IMCS quan@marine.rutgers.edu Outline -The past - discovery of glacial periods - introduction of orbital theory -The present

More information

How do glaciers form?

How do glaciers form? Glaciers What is a Glacier? A large mass of moving ice that exists year round is called a glacier. Glaciers are formed when snowfall exceeds snow melt year after year Snow and ice remain on the ground

More information

0.5cm Eocene Foram

0.5cm Eocene Foram Eocene Foram 0.5cm Eocene Foram Bubbles in ice 5 µm Tree rings Tree rings Reconstructing past climate Talk outline: A trip through geologic time Take away points: Climate change through time What past

More information

CORRELATION OF CLIMATIC AND SOLAR VARIATIONS OVER THE PAST 500 YEARS AND PREDICTING GLOBAL CLIMATE CHANGES FROM RECURRING CLIMATE CYCLES

CORRELATION OF CLIMATIC AND SOLAR VARIATIONS OVER THE PAST 500 YEARS AND PREDICTING GLOBAL CLIMATE CHANGES FROM RECURRING CLIMATE CYCLES Easterbrook, D.J., 2008, Correlation of climatic and solar variations over the past 500 years and predicting global climate changes from recurring climate cycles: International Geological Congress, Oslo,

More information

Quarternary Climate Variations

Quarternary Climate Variations Quarternary Climate Variations EAS 303 Lecture 34 Background and History Louis Agassiz (1840): recognition of Ice Ages Harold Urey (1947): The Thermodynamic Properties of Isotopic Substances calculated

More information

Reminders: Week 14 Assessment closes tonight Watch for Week 15 Assessment (will close Wednesday, Dec. 13)

Reminders: Week 14 Assessment closes tonight Watch for Week 15 Assessment (will close Wednesday, Dec. 13) Wednesday, December 6, 2017 The Pleistocene Glaciations, Continued (Chapter 14) Reminders: Week 14 Assessment closes tonight Watch for Week 15 Assessment (will close Wednesday, Dec. 13) Homework 5 due

More information

HUMAN FINGERPRINTS (1): OBSERVATIONS

HUMAN FINGERPRINTS (1): OBSERVATIONS HUMAN FINGERPRINTS (1): OBSERVATIONS 1. Introduction: the story so far. 2. Global warming: the last 150 years 3. Is it really warming? 4. Fingerprints: the stratosphere, the hockey sticks Radiance (mw.m

More information

Climate Change Lecture Notes

Climate Change Lecture Notes Climate Change Lecture Notes (Topic 12A) page 1 Climate Change Lecture Notes Learning Outcomes for the Climate Change Unit 1. Students can list observations which suggest that the world is warming, and

More information

From Isotopes to Temperature: Using Ice Core Data!

From Isotopes to Temperature: Using Ice Core Data! From Isotopes to Temperature: Using Ice Core Data! Spruce W. Schoenemann schoes@uw.edu UWHS Atmospheric Sciences 211 May 2013 Dept. of Earth and Space Sciences University of Washington Seattle http://www.uwpcc.washington.edu

More information

lecture 12 Paleoclimate

lecture 12 Paleoclimate lecture 12 Paleoclimate OVERVIEW OF EARTH S CLIMATIC HISTORY Geologic time scales http://www.snowballearth.org/index.html Features of the climate during the Cretaceous period the land-sea distribution

More information

Global Paleogeography

Global Paleogeography Global Paleogeography Overview of Global Paleogeography Paleogeography is the study of how the Earth s geography has changed during the course of history. Using geological data, scientists reconstruct

More information

In the summer of 1836, Agassiz stayed with a well known geologist (Chapentier) who had been convinced by a collegue (Venetz) of extensive Alpine

In the summer of 1836, Agassiz stayed with a well known geologist (Chapentier) who had been convinced by a collegue (Venetz) of extensive Alpine 4 Cilvilization exists by geological consent, subject to change without notice, Will Durant. In 1807 the Geological Society of London had concerns that too many people would join: it was the sexy science

More information

The Ice Age sequence in the Quaternary

The Ice Age sequence in the Quaternary The Ice Age sequence in the Quaternary Subdivisions of the Quaternary Period System Series Stage Age (Ma) Holocene 0 0.0117 Tarantian (Upper) 0.0117 0.126 Quaternary Ionian (Middle) 0.126 0.781 Pleistocene

More information

Geol. 656 Isotope Geochemistry

Geol. 656 Isotope Geochemistry STABLE ISOTOPES IN PALEOCLIMATOLOGY I INTRODUCTION At least since the classic work of Louis Agassiz in 1840, geologists have contemplated the question of how the Earth s climate might have varied in the

More information

Chapter 14: The Changing Climate

Chapter 14: The Changing Climate Chapter 14: The Changing Climate Detecting Climate Change Natural Causes of Climate Change Anthropogenic Causes of Climate Change Possible Consequences of Global Warming Climate Change? -Paleo studies

More information

Global climate change

Global climate change Global climate change What is climate change? This winter was really cold! Temp difference ( C): Jan 2004 vs. Jan 2002-2003 Make your own maps at: http://www.giss.nasa.gov/data/update/gistemp/maps/ 1 What

More information

Today we will discuss global climate: how it has changed in the past, and how the current status and possible future look.

Today we will discuss global climate: how it has changed in the past, and how the current status and possible future look. Global Climate Change Today we will discuss global climate: how it has changed in the past, and how the current status and possible future look. If you live in an area such as the Mississippi delta (pictured)

More information

Any Questions? Glacier

Any Questions? Glacier Geology of the Hawaiian Islands Class 25 13 April 2004 Any Questions? Earth Systems Today CD Click on Weather and Climate Look at the sections on El Niño Ozone Hole Glaciers Why do we care? They help control

More information

Glaciers. Geology of the Hawaiian Islands. Any Questions? Earth Systems Today CD. Class April Why do we care?

Glaciers. Geology of the Hawaiian Islands. Any Questions? Earth Systems Today CD. Class April Why do we care? Geology of the Hawaiian Islands Class 25 13 April 2004 Any Questions? Earth Systems Today CD Click on Weather and Climate Look at the sections on El Niño Ozone Hole Glaciers Why do we care? They help control

More information

Rapid climate change in ice cores

Rapid climate change in ice cores Rapid climate change in ice cores Liz Thomas British Antarctic Survey Overview Introduction to ice cores Evidence of rapid climate change in the Greenland ice cores DO events Younger Dryas 8.2 kyr cold

More information

Correlation of Late-Pleistocene Lake-Level Oscillations in Mono Lake, California, with North Atlantic Climate Events

Correlation of Late-Pleistocene Lake-Level Oscillations in Mono Lake, California, with North Atlantic Climate Events University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 1997 Correlation of Late-Pleistocene Lake-Level Oscillations in Mono

More information

Ruddiman CHAPTER 13. Earth during the LGM ca. 20 ka BP

Ruddiman CHAPTER 13. Earth during the LGM ca. 20 ka BP Ruddiman CHAPTER 13 Earth during the LGM ca. 20 ka BP The Last Glacial Maximum When? How much more ice than today? How much colder was it than today (global average)? How much lower were snowlines? Did

More information

Chapter 14: Climate Change

Chapter 14: Climate Change Chapter 14: Climate Change Goals of Period 14 Section 14.1: To review the energy balance of the Earth and the enhanced greenhouse effect Section 14.2: To examine evidence for climate change Section 14.3:

More information

Outline 23: The Ice Ages-Cenozoic Climatic History

Outline 23: The Ice Ages-Cenozoic Climatic History Outline 23: The Ice Ages-Cenozoic Climatic History Continental Glacier in Antarctica Valley Glaciers in Alaska, note the moraines Valley Glaciers in Alaska, note the moraines Mendenhall Glacier, Juneau,

More information

Natural Climate Variability: Longer Term

Natural Climate Variability: Longer Term Natural Climate Variability: Longer Term Natural Climate Change Today: Natural Climate Change-2: Ice Ages, and Deep Time Geologic Time Scale background: Need a system for talking about unimaginable lengths

More information

Ice on Earth: An overview and examples on physical properties

Ice on Earth: An overview and examples on physical properties Ice on Earth: An overview and examples on physical properties - Ice on Earth during the Pleistocene - Present-day polar and temperate ice masses - Transformation of snow to ice - Mass balance, ice deformation,

More information

A bit of background on carbonates. CaCO 3 (solid)

A bit of background on carbonates. CaCO 3 (solid) A bit of background on carbonates CaCO 3 (solid) Organisms need both carbon dioxide and carbonate Kleypas et al 2005 The two pumps put CO 2 into the deep ocean The long term record of climate change Or:

More information

An Orbital Theory for Glacial Cycles

An Orbital Theory for Glacial Cycles An Orbital Theory for Glacial Cycles Peter Bogenschutz March 2006 1. Introduction In the late 1800's, when ice ages were first discovered, variations in Earth's orbital mechanics were hypothesized to be

More information

Marine Oxygen Isotopes and Changes in Global Ice Volume

Marine Oxygen Isotopes and Changes in Global Ice Volume Marine Oxygen Isotopes and Changes in Global Ice Volume Name: You have learned about the value of marine oxygen-isotope records for understanding changes in ocean-water temperature and global ice volume

More information

Introduction to Climate Change

Introduction to Climate Change Ch 19 Climate Change Introduction to Climate Change Throughout time, the earth's climate has always been changing produced ice ages Hence, climate variations have been noted in the past what physical processes

More information

Ice Age Canada. Is Canada a nation without a future? The oxygen-18 profile shapes the answer

Ice Age Canada. Is Canada a nation without a future? The oxygen-18 profile shapes the answer Ice Age Canada Is Canada a nation without a future? The oxygen-18 profile shapes the answer By Rolf A. F. Witzsche 2013 Published by Cygni Communications Ltd. Canada In love with our humanity: This is

More information

ATMS 321: Natural Climate Variability Chapter 11

ATMS 321: Natural Climate Variability Chapter 11 ATMS 321: Natural Climate Variability Chapter 11 Solar Variability: Total solar irradiance variability is relatively small about a tenth of a percent. Ultraviolet variability is larger, and so could affect

More information

The Current Major Interglacial

The Current Major Interglacial The Current Major Interglacial L. David Roper Contents Contents... 1 Figures... 2 Chapter 1. Introduction... 3 Chapter 2. Antarctica and Greenland Temperatures for the Current Major Interglacial... 5 Chapter

More information

Math /29/2014. Richard McGehee, University of Minnesota 1. Math 5490 September 29, Glacial Cycles

Math /29/2014. Richard McGehee, University of Minnesota 1. Math 5490 September 29, Glacial Cycles Math 9 September 29, 21 Topics in Applied Mathematics: Introduction to the Mathematics of Climate Mondays and Wednesdays 2: : http://www.math.umn.edu/~mcgehee/teaching/math9-21-2fall/ Streaming video is

More information

Lecture 10. Orbital-scale changes in greenhouse gases Ruddiman Chapter 11

Lecture 10. Orbital-scale changes in greenhouse gases Ruddiman Chapter 11 Lecture 10. Orbital-scale changes in greenhouse gases Ruddiman Chapter 11 The key questions: 1) Role of GHGs in ice ages? 2) Does Milankovitch explain the timing of the ice ages? Bill Ruddiman Main points:

More information

Glaciers. A glacier is a persistent mass of ice: snow accumulation exceeds melting. generally occur in two areas: high latitudes, or high elevations

Glaciers. A glacier is a persistent mass of ice: snow accumulation exceeds melting. generally occur in two areas: high latitudes, or high elevations Page 1 of7 Glaciers A glacier is a persistent mass of ice: snow accumulation exceeds melting generally occur in two areas: high latitudes, or high elevations hence CONTINENTAL and ALPINE glaciation Glaciers

More information

Monday, December 4, 2017 The Pleistocene Glaciations (Chapter 14) Week 14 Assessment, closes Wednesday Dec 6

Monday, December 4, 2017 The Pleistocene Glaciations (Chapter 14) Week 14 Assessment, closes Wednesday Dec 6 Monday, December 4, 2017 The Pleistocene Glaciations (Chapter 14) Week 14 Assessment, closes Wednesday Dec 6 Week 15 Assessment will be last one, closes Wednesday Dec 13 Homework 5 due Wednesday, Dec 6

More information

Pleistocene Epoch & Biological Dynamics

Pleistocene Epoch & Biological Dynamics Pleistocene Epoch & Biological Dynamics Lomolino et al. (2010) Chapter 9 160225 1 Pleistos most Keinos - new 160225 2 1 Pleistocene CondiEons Wisconsin glaciaeon 160225 3 Blue indicates ice extent during

More information

Temperature Over Time

Temperature Over Time Temperature Over Time 1 Module Overview In this module, you will investigate whether Earth is warming. First, you will review the causes of seasonal and daily temperature changes at different latitudes

More information

Natural and anthropogenic climate change Lessons from ice cores

Natural and anthropogenic climate change Lessons from ice cores Natural and anthropogenic climate change Lessons from ice cores Eric Wolff British Antarctic Survey, Cambridge ewwo@bas.ac.uk ASE Annual Conference 2011; ESTA/ESEU lecture Outline What is British Antarctic

More information

Chapter 6: Global Climate Change

Chapter 6: Global Climate Change Chapter 6: Global Climate Change Section 1: Paleoclimate The cross section of a tree trunk shows numerous rings. What do you think the light and dark rings represent? What can you infer about climate from

More information

Deep Ocean Circulation & implications for Earth s climate

Deep Ocean Circulation & implications for Earth s climate Deep Ocean Circulation & implications for Earth s climate I. Ocean Layers and circulation types 1) Ocean Layers Ocean is strongly Stratified Consists of distinct LAYERS controlled by density takes huge

More information

Our Geologic Backdrop: Ice Age Cycles

Our Geologic Backdrop: Ice Age Cycles Introduction to Earth s Climate System Our Geologic Backdrop: Ice Age Cycles MODULE 2.4 2.4 Our Geologic Backdrop: Ice Age Cycles Lesson Goals»» Describe Earth s geologic variability over the past million

More information

ENIGMA: something that is mysterious, puzzling, or difficult to understand.

ENIGMA: something that is mysterious, puzzling, or difficult to understand. Lecture 12. Attempts to solve the Eccentricity Enigma ENIGMA: something that is mysterious, puzzling, or difficult to understand. Milankovitch forcing glacier responses pre-900,000 yr BP glacier responses

More information

Climate Change. Unit 3

Climate Change. Unit 3 Climate Change Unit 3 Aims Is global warming a recent short term phenomenon or should it be seen as part of long term climate change? What evidence is there of long-, medium-, and short- term climate change?

More information

GSC 107 Lab # 3 Calculating sea level changes

GSC 107 Lab # 3 Calculating sea level changes GSC 107 Lab # 3 Calculating sea level changes Student name Student ID Background Glacial-Interglacial Cycles Climate-related sea-level changes of the last century are very minor compared with the large

More information

Think about It. Goals In this activity you will: The cross section of a tree trunk shows numerous rings.

Think about It. Goals In this activity you will: The cross section of a tree trunk shows numerous rings. Activity 2 Paleoclimates Goals In this activity you will: Understand the significance of growth rings in trees as indicators of environmental change. Understand the significance of ice cores from glaciers

More information

On the (Nonlinear) Causes of Abrupt Climate Change During the Last Ice Age

On the (Nonlinear) Causes of Abrupt Climate Change During the Last Ice Age On the (Nonlinear) Causes of Abrupt Climate Change During the Last Ice Age J.A. Rial Wave Propagation Lab, University of North Carolina-Chapel Chapel Hill The Astronomical Theory of the Ice Ages Precession

More information

Weather - the physiochemical state of the atmosphere during any short period of time.

Weather - the physiochemical state of the atmosphere during any short period of time. Weather - the physiochemical state of the atmosphere during any short period of time. Climate - the average physiochemical state of the atmosphere over the course of the year. Surface Ocean Temperatures

More information

Scholarship 2015 Earth and Space Science

Scholarship 2015 Earth and Space Science S 93104R Scholarship 2015 Earth and Space Science 2.00 p.m. Tuesday 1 December 2015 RESOURCE BOOKLET Refer to this booklet to answer the questions for Scholarship Earth and Space Science 93104. Check that

More information

Physics of Aquatic Systems II

Physics of Aquatic Systems II Contents of Session 5 Physics of Aquatic Systems II 5. Stable Isotopes - Applications Some examples of applications Stable isotopes as markers of water origin Stable isotopes in process studies Stable

More information

Glaciers and Ice Ages

Glaciers and Ice Ages ES 106 Glaciers and Ice Ages I. Glacier thick mass of ice accumulated over years, decades, centuries A. Function of recrystallization of fallen snow B. Types 1. alpine valley: a. high elevations worldwide

More information

Prof. Dr. Anders Levermann Junior Professor for climate modelling on long timescales, Potsdam Institute for Climate Impact Research, Potsdam, Germany

Prof. Dr. Anders Levermann Junior Professor for climate modelling on long timescales, Potsdam Institute for Climate Impact Research, Potsdam, Germany Prof. Dr. Anders Levermann Junior Professor for climate modelling on long timescales, Potsdam Institute for Climate Impact Research, Potsdam, Germany Points for discussion: The state of global climate;

More information

Paleoceanography Spring 2008

Paleoceanography Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 12.740 Paleoceanography Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. PALEOCEANOGRAPHY 12.740 SPRING

More information

Math 5490 October 8, 2014

Math 5490 October 8, 2014 Math 5490 October 8, 204 Topics in Applied Mathematics: Introduction to the Mathematics of Climate Mondays and Wednesdays 2:30 3:45 http://www.math.umn.edu/~mcgehee/teaching/math5490-204-2fall/ Streaming

More information

Outline 24: The Holocene Record

Outline 24: The Holocene Record Outline 24: The Holocene Record Climate Change in the Late Cenozoic New York Harbor in an ice-free world (= Eocene sea level) Kenneth Miller, Rutgers University An Ice-Free World: eastern U.S. shoreline

More information

Benjamin P. Flower 1. Search and Discovery Article # (2009) Posted September 8, Abstract

Benjamin P. Flower 1. Search and Discovery Article # (2009) Posted September 8, Abstract AV Relationships between CO 2 and Temperature in Glacial-Interglacial Transitions of the Past 800,000 Years* Benjamin P. Flower 1 Search and Discovery Article #110116 (2009) Posted September 8, 2009 *Adapted

More information

Mr. Carpenter s Biology Biochemistry. Name Pd

Mr. Carpenter s Biology Biochemistry. Name Pd Mr. Carpenter s Biology Biochemistry Name Pd Chapter 2 Vocabulary Atom Element Compound Molecule Ion Cohesion Adhesion Solution Acid Base Carbohydrate Monosaccharide Lipid Protein Amino acid Nucleic acid

More information

Extent of Periglacial = Global Permafrost Permafrost: Soil and/or rock where temperatures remain below 0 degrees C for 2 or more years.

Extent of Periglacial = Global Permafrost Permafrost: Soil and/or rock where temperatures remain below 0 degrees C for 2 or more years. Geog 1000 - Lecture 34 Periglacial Environments and Paleoclimatology http://scholar.ulethbridge.ca/chasmer/classes/ Today s Lecture (Pgs 422-434) 1. Exam questions from last week, and today 2. Extent of

More information

A GEOLOGICAL VIEW OF CLIMATE CHANGE AND GLOBAL WARMING

A GEOLOGICAL VIEW OF CLIMATE CHANGE AND GLOBAL WARMING A GEOLOGICAL VIEW OF CLIMATE CHANGE AND GLOBAL WARMING Compiled by William D. Pollard, M Ray Thomasson PhD, and Lee Gerhard PhD THE ISSUE - Does the increase of carbon dioxide in the atmosphere, resulting

More information

Climate Change. April 21, 2009

Climate Change. April 21, 2009 Climate Change Chapter 16 April 21, 2009 Reconstructing Past Climates Techniques Glacial landscapes (fossils) CLIMAP (ocean sediment) Ice cores (layering of precipitation) p Otoliths (CaCO 3 in fish sensory

More information

Loess and dust. Jonathan A. Holmes Environmental Change Research Centre

Loess and dust. Jonathan A. Holmes Environmental Change Research Centre Loess and dust Jonathan A. Holmes Environmental Change Research Centre Why is dust important? Mineral dust is an important constituent of the solid load in Earth's atmosphere, the total atmospheric aerosol

More information

The oxygen isotope sweet simulation Demonstrating how the oxygen isotope proxy records past Earth temperatures

The oxygen isotope sweet simulation Demonstrating how the oxygen isotope proxy records past Earth temperatures The oxygen isotope sweet simulation Demonstrating how the oxygen isotope proxy records past Earth temperatures Oxygen has two common isotopes; 16 O has an atomic mass of 16 and is the common oxygen molecule

More information

Milankovitch Theory of the Ice Ages

Milankovitch Theory of the Ice Ages Ruddiman CHAPTER 10 Insolation Control of Ice Sheets Milankovitch Theory of the Ice Ages margin of Greenland ice sheet Today s main points: 1) Review of glaciology basics. 2) Orbital changes affecting

More information

ERS 121 Study Guide for Exam 1. Lecture 1. Ice Age Theory 1. Where did the ice age theory originate?

ERS 121 Study Guide for Exam 1. Lecture 1. Ice Age Theory 1. Where did the ice age theory originate? Lecture 1. Ice Age Theory 1. Where did the ice age theory originate? ERS 121 Study Guide for Exam 1 2. Where did J. P. Perraudin live? What did he suggest? 3. Who was Ignace Venetz? 4. Who was Jean de

More information

Evidence of Climate Change in Glacier Ice and Sea Ice

Evidence of Climate Change in Glacier Ice and Sea Ice Evidence of Climate Change in Glacier Ice and Sea Ice John J. Kelley Institute of Marine Science School of Fisheries and Ocean Sciences University of Alaska Fairbanks Evidence for warming of the Arctic

More information

Glacial Modification of Terrain

Glacial Modification of Terrain Glacial Modification Part I Stupendous glaciers and crystal snowflakes -- every form of animate or inanimate existence leaves its impress upon the soul of man. 1 -Orison Swett Marden Glacial Modification

More information

Climate Changes: Past & Future (Ch 16) Iceberg 100km east of Dunedin, South Island, New Zealand, 2006

Climate Changes: Past & Future (Ch 16) Iceberg 100km east of Dunedin, South Island, New Zealand, 2006 Climate Changes: Past & Future (Ch 16) Climate change change in any statistical property of earth-atmosphere climate system in response to alteration of an external boundary condition or as an internal

More information

Climate change: How do we know?

Climate change: How do we know? Climate change: How do we know? This graph, based on the comparison of atmospheric samples contained in ice cores and more recent direct measurements, provides evidence that atmospheric CO2 has increased

More information

DIAGRAM 1: Ocean Carbon Cycle DIAGRAM 2: Terrestrial Carbon Cycle

DIAGRAM 1: Ocean Carbon Cycle DIAGRAM 2: Terrestrial Carbon Cycle DIAGRAM 1: Ocean Carbon Cycle DIAGRAM 2: Terrestrial Carbon Cycle DIAGRAM 3: Ocean Monthly CO 2 Flux Molecules of CO 2 enter the ocean by diffusing into the sea surface waters and dissolving a physio-chemical

More information

Natural Climate Change: A Geological Perspective

Natural Climate Change: A Geological Perspective Natural Climate Change: A Geological Perspective A presentation to the Seminar on Sustainable Development NBA 573, BEE 673 Sage Hall B-11 March 4, 2005 by L. M. Cathles Earth and Atmospheric Sciences Truth

More information

ESS15 Lecture 16. Deep past, ice ages, the global carbon cycle.

ESS15 Lecture 16. Deep past, ice ages, the global carbon cycle. ESS15 Lecture 16 Deep past, ice ages, the global carbon cycle. Half a billion years ago - Gondwana glaciation. Continents bunched up at South Pole about 500 million years ago Huge ice sheets left deposits

More information

1. Deglacial climate changes

1. Deglacial climate changes Review 3 Major Topics Deglacial climate changes (last 21,000 years) Millennial oscillations (thousands of years) Historical Climate Change (last 1000 years) Climate Changes Since the 1800s Climate Change

More information

Lecture Outline Lecture Outline Monday April 9-16, 2018 Questions? Announcements:

Lecture Outline Lecture Outline Monday April 9-16, 2018 Questions? Announcements: Lecture Outline Lecture Outline Monday April 9-16, 2018 Questions? Announcements: Geology 101 Night Video: The Day After Tomorrow Hollywood disaster movie about the onset of a glacial period When: Monday

More information