Father of Glacial theory. First investigations of glaciers and mountain geology,

Size: px
Start display at page:

Download "Father of Glacial theory. First investigations of glaciers and mountain geology,"

Transcription

1 First investigations of glaciers and mountain geology, Glaciation happens! -- Historical perspective It happens in cycles -- How do we know this? What are Milankovitch cycles? Sub-Milankovitch change Abrupt change Observation of processes -- striations and ridges of mud and boulders Father of Glacial theory Jean L. R. Agassiz, James Hutton -- identified erratics in Jura mountains Perraudin, peasent, infers alpine glaciation Venetz discussed Perraudin s ideas at Soc. Of Nat t History Charlies Lyell ( present is the key to the past ) says striations were caused by boulder-ridden ice bergs in Noah s flood. (drift!) Agassiz lectures on the great ice age (Sherman Williams style) Buckland, convinced Britain was glaciated, renounces idea of the Noah s flood Agassiz publishes idea of glaciations Edward Hitchcock, State Geologists, gave lecture on Agassiz s ideas s -- glaciation recognized throughout Europe James Croll published Astronomical theory for ice ages 1

2 Milutin Milancovitch, Serbian, published formulas calculating intensity of solar radiation based on Croll s ideas of orbital forcing Milutin Milankovicʼć( ) Changes in earths orbit around the sun. Varies <.1 % in insolation Changes in earths axial tilt between 21.8 o and 24.4 o Defines the Polar Circle Changes in distance between Earth and Sun in any season Cycles are 19 and 23 kyr, x=21 yrs Source: Zachos et al.,2001 Perihelion in NH winter Orbital changes over the last 800 ka and frequency spectrum Perihelion in NH summer + - July solar radiation anomalies at 10, 65 & 80 N for the last 250ka 2

3 Maximum Minimum LGM Cesare Emiliani O ppm in deep sea sediment foraminifera carbonates over time from 0-600,000 years. Averaged over a large number of cores in order to isolate a global signal. Solar radiation anomalies (top of atmosphere) relative to 1950 values (cal cm -2 d -1 ) Laurentide Ice Sheet extent at 18ka ( 14 C) B.P. 3

4 Laurentide Ice Sheet extent at 12.5ka ( 14 C) B.P. Laurentide Ice Sheet extent at 8ka ( 14 C) B.P. Isochrones on the disintegration of the Fennoscandian Ice sheet Laurentide Ice Sheet extent at 5ka ( 14 C) B.P. Source: Saarnisto & Lunkka

5 Global Sea-level changes (+15-20m in MIS11?) Source: Source: Waelbroeck et al., 2001 Source: Cuffey & Marshall,

6 Stage 3 Sea Level -50 to -90 m Stage 2 Sea Level at ~-135 for nearly 10 ky What do we know..? With glaciation and the build up of ice sheets on land, sea level falls, usually about m With deglaciation, sea level rises as glaciers and ice sheets melt back into the sea. If the climate gets warmer, more ice will melt and sea level will continue to rise. How might such changes in the sea level and ice sheet size be recorded in the ocean? Lambeck et al., 2002, QSR and Nature 6

7 Oxygen (8 protons) 16 O 17 O 18 O 99.8% 0.04% Hydrogen (1 proton) 0.2% 1 H 2 H (Deuterium) 3 H (tritium) 99.98% 0.016% (?bombs) So, can make 9 isotopic combinations of H 2 O, e.g., 18 ( 1 H 16 2 O) to 22 ( 2 H 18 2 O) light water heavy water General Equation: δ 18 O = 18 O/ 16 O sample - 18 O/ 16 O standard x O/ 16 O standard Expressed in per mille ( 0 / 00) Negative values = lower ratios = isotopically lighter (less 18 O than 16 O) Positive values = higher ratios = isotopically heavier (more 18 O than 16 O) In paleoclimate studies 1 H 1 H 16 O to 1 H 2 18 O 18 O isotopic depletion Evaporation of more 16 O Ice Sheet ocean 0 In Sea In Ice Glacials = enriched 18 O depleted 18 O Interglacials = depleted 18 O enriched 18 O Source: Frakes et al.,

8 Source: Zachos et al.,2001 Source: Zachos et al.,2001 Changes in δ 18 O measured can be influenced by many factors! In marine sediments: Ice Volume (enrichment of oceans) Melt water Salinity Vital effects In ice cores: Temperature at time of precipitation Distance of transport Source: Zachos et al.,2001 8

9 LR04 Benthic Stack Holocene Quaternary Pleistocene Pliocene 1st ice-rafted rocks in N. Atlantic & N. Pacific Maureen Raymo Lorraine Lisiecki Lisiecki and Raymo, 2005 in Paleoceanography v. 20, spans 5.3 Myr and is an average of 57 globally distributed benthic δ18o records (which measure global ice volume and deep ocean temperature) collected from the scientific literature. (Eastern Equatorial Atlanti Source: Zachos et al.,

10 Marine isotope stages Marine isotope stages a b c d e a b c d e Termination 1 Termination 2 High sea-level Wisconsin/ Weichselian Würm glaciation Low sea-level interstade stade Last Glacial Maximum (LGM) Source: Martinson et al., 1987 Holocene interglacial (Flandrian) Last interglacial: Sangamon/Eemian (Isotope stage 5e) Source: Martinson et al., 1987 Marine isotope stages a b c d e High sea-level Termination 1 Termination 2 Stadials & interstadials Low sea-level Holocene Interglacial Wisconsinan/Weichselian Glacial Eemian/Sangamon Interglacial Last Glacial Maximum (LGM) Source: Martinson et al., 1987 Source: North Grip Project Members

11 Are there thresholds, or feedbacks, in the climate system, beyond which climate will abruptly (& possibly irreversibly) change? (..& how will increased levels of CO 2 affect these?) Source: Petit et al., 1999 Greenland Summit oxygen isotopes ~6 Source: Stuiver and Grootes 2000 Source: Overpeck et al.,

12 4 more Glacia/IG cycles in Epica cores Source: Rahmstorf, Wikipedia art 12

Climate and Environment

Climate and Environment Climate and Environment Oxygen Isotope Fractionation and Measuring Ancient Temperatures Oxygen Isotope Ratio Cycles Oxygen isotope ratio cycles are cyclical variations in the ratio of the mass of oxygen

More information

IMA. Celestial Influences on Glacial Cycles. Math and Climate Seminar

IMA. Celestial Influences on Glacial Cycles. Math and Climate Seminar Math and Climate Seminar IMA Celestial Influences on Richard McGehee Joint MCRN/IMA Math and Climate Seminar Tuesdays 11:15 1:5 streaming video available at www.ima.umn.edu Seminar on the Mathematics of

More information

Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework due Thursday Nov. 12. What we ll learn today:! Learning Objectives (LO)

Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework due Thursday Nov. 12. What we ll learn today:! Learning Objectives (LO) Learning Objectives (LO) Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework due Thursday Nov. 12 What we ll learn today:! 1. 1. Glaciers and where they occur! 2. 2. Compare depositional and

More information

Today s Climate in Perspective: Hendrick Avercamp ( ) ~1608; Rijksmuseum, Amsterdam

Today s Climate in Perspective: Hendrick Avercamp ( ) ~1608; Rijksmuseum, Amsterdam Today s Climate in Perspective: Paleoclimate Evidence Hendrick Avercamp (1585-1634) ~1608; Rijksmuseum, Amsterdam Observations Instrumental surface temperature records? (Le Treut et al., 2007 IPCC AR4

More information

lecture 12 Paleoclimate

lecture 12 Paleoclimate lecture 12 Paleoclimate OVERVIEW OF EARTH S CLIMATIC HISTORY Geologic time scales http://www.snowballearth.org/index.html Features of the climate during the Cretaceous period the land-sea distribution

More information

Ice Ages and Changes in Earth s Orbit. Topic Outline

Ice Ages and Changes in Earth s Orbit. Topic Outline Ice Ages and Changes in Earth s Orbit Topic Outline Introduction to the Quaternary Oxygen isotopes as an indicator of ice volume Temporal variations in ice volume Periodic changes in Earth s orbit Relationship

More information

Math /29/2014. Richard McGehee, University of Minnesota 1. Math 5490 September 29, Glacial Cycles

Math /29/2014. Richard McGehee, University of Minnesota 1. Math 5490 September 29, Glacial Cycles Math 9 September 29, 21 Topics in Applied Mathematics: Introduction to the Mathematics of Climate Mondays and Wednesdays 2: : http://www.math.umn.edu/~mcgehee/teaching/math9-21-2fall/ Streaming video is

More information

Introduction to Quaternary Geology (MA-Modul 3223) Prof. C. Breitkreuz, SS2012, TU Freiberg

Introduction to Quaternary Geology (MA-Modul 3223) Prof. C. Breitkreuz, SS2012, TU Freiberg Introduction to Quaternary Geology (MA-Modul 3223) Prof. C. Breitkreuz, SS2012, TU Freiberg 1. Introduction: - Relevance, and relations to other fields of geoscience - Lower stratigraphic boundary and

More information

Welcome to ATMS 111 Global Warming.

Welcome to ATMS 111 Global Warming. Welcome to ATMS 111 Global Warming http://www.atmos.washington.edu/2010q1/111 Isotopic Evidence 16 O isotopes "light 18 O isotopes "heavy" Evaporation favors light Rain favors heavy Cloud above ice is

More information

Geol. 656 Isotope Geochemistry

Geol. 656 Isotope Geochemistry STABLE ISOTOPES IN PALEOCLIMATOLOGY I INTRODUCTION At least since the classic work of Louis Agassiz in 1840, geologists have contemplated the question of how the Earth s climate might have varied in the

More information

Quarternary Climate Variations

Quarternary Climate Variations Quarternary Climate Variations EAS 303 Lecture 34 Background and History Louis Agassiz (1840): recognition of Ice Ages Harold Urey (1947): The Thermodynamic Properties of Isotopic Substances calculated

More information

Recent Developments in the Theory of Glacial Cycles

Recent Developments in the Theory of Glacial Cycles Recent Developments in the Theory of Richard McGehee Seminar on the Mathematics of Climate Change School of Mathematics October 6, 010 Hansen, et al, Target atmospheric CO: Where should humanity aim? Open

More information

8. Climate changes Short-term regional variations

8. Climate changes Short-term regional variations 8. Climate changes 8.1. Short-term regional variations By short-term climate changes, we refer here to changes occurring over years to decades. Over this timescale, climate is influenced by interactions

More information

History. Late 18 th /early 19 th century Europeans observed that erratic boulders dispersed due to the retention of glaciers caused by climate chance

History. Late 18 th /early 19 th century Europeans observed that erratic boulders dispersed due to the retention of glaciers caused by climate chance Ice ages What is an ice age? Geological period of long-term reduction in the temperature of the Earth's surface and atmosphere which results in the formation and expansion of continental ice sheets, polar

More information

Pleistocene Glaciations

Pleistocene Glaciations Chapter 14 Pleistocene Glaciations I. Geologic evidence 1. glacial deposits, etc. Pleistocene Glaciations 2. The Oxygen Isotope Record (1970s) II. Explanation of the glacial-interglacial periods The Milankovitch

More information

Glacial-Interglacial Cycling: Ice, orbital theory, and climate. Dr. Tracy M. Quan IMCS

Glacial-Interglacial Cycling: Ice, orbital theory, and climate. Dr. Tracy M. Quan IMCS Glacial-Interglacial Cycling: Ice, orbital theory, and climate Dr. Tracy M. Quan IMCS quan@marine.rutgers.edu Outline -The past - discovery of glacial periods - introduction of orbital theory -The present

More information

Speleothems and Climate Models

Speleothems and Climate Models Earth and Life Institute Georges Lemaître Centre for Earth and Climate Research Université catholique de Louvain, Belgium Speleothems and Climate Models Qiuzhen YIN Summer School on Speleothem Science,

More information

ERS 121 Study Guide for Exam 1. Lecture 1. Ice Age Theory 1. Where did the ice age theory originate?

ERS 121 Study Guide for Exam 1. Lecture 1. Ice Age Theory 1. Where did the ice age theory originate? Lecture 1. Ice Age Theory 1. Where did the ice age theory originate? ERS 121 Study Guide for Exam 1 2. Where did J. P. Perraudin live? What did he suggest? 3. Who was Ignace Venetz? 4. Who was Jean de

More information

Ice on Earth: An overview and examples on physical properties

Ice on Earth: An overview and examples on physical properties Ice on Earth: An overview and examples on physical properties - Ice on Earth during the Pleistocene - Present-day polar and temperate ice masses - Transformation of snow to ice - Mass balance, ice deformation,

More information

Chapter Causes of Climate Change Part I: Milankovitch Cycles

Chapter Causes of Climate Change Part I: Milankovitch Cycles Chapter 19.1-19.3 Causes of Climate Change Part I: Milankovitch Cycles Climate Cycles =400 Milankovitch Cycles Milankovitch Cycles are created by changes in the geometry of Earth s orbit around the sun

More information

We re living in the Ice Age!

We re living in the Ice Age! Chapter 18. Coping with the Weather: Causes and Consequences of Naturally Induce Climate Change 지구시스템의이해 We re living in the Ice Age! 1 Phanerozoic Climate 서늘해지고 더웠고 따뜻했고 3 Climate Rollercoaster 4 2 Time

More information

How do glaciers form?

How do glaciers form? Glaciers What is a Glacier? A large mass of moving ice that exists year round is called a glacier. Glaciers are formed when snowfall exceeds snow melt year after year Snow and ice remain on the ground

More information

Paleoceanography II Telluric Effects on Oceanography

Paleoceanography II Telluric Effects on Oceanography Paleoceanography II Telluric Effects on Oceanography Geological Oceanography OCN 622 Gary McMurtry Telluric Effects Tellus = Earth Distribution of Continents at 100 Ma BP and Present Comparison of Earth

More information

A brief lesson on oxygen isotopes. more ice less ice

A brief lesson on oxygen isotopes. more ice less ice A brief lesson on oxygen isotopes Figure from Raymo and Huybers, 2008 more ice less ice The Pleistocene (1) δ 18 O in sediments is directly related to ice volume. Because ice sheets deplete the supply

More information

Natural Climate Variability: Longer Term

Natural Climate Variability: Longer Term Natural Climate Variability: Longer Term Natural Climate Change Today: Natural Climate Change-2: Ice Ages, and Deep Time Geologic Time Scale background: Need a system for talking about unimaginable lengths

More information

An Orbital Theory for Glacial Cycles

An Orbital Theory for Glacial Cycles An Orbital Theory for Glacial Cycles Peter Bogenschutz March 2006 1. Introduction In the late 1800's, when ice ages were first discovered, variations in Earth's orbital mechanics were hypothesized to be

More information

In the summer of 1836, Agassiz stayed with a well known geologist (Chapentier) who had been convinced by a collegue (Venetz) of extensive Alpine

In the summer of 1836, Agassiz stayed with a well known geologist (Chapentier) who had been convinced by a collegue (Venetz) of extensive Alpine 4 Cilvilization exists by geological consent, subject to change without notice, Will Durant. In 1807 the Geological Society of London had concerns that too many people would join: it was the sexy science

More information

Pleistocene Glaciation (Ch.14) Geologic evidence Milankovitch cycles Glacial climate feedbacks

Pleistocene Glaciation (Ch.14) Geologic evidence Milankovitch cycles Glacial climate feedbacks Pleistocene Glaciation (Ch.14) Geologic evidence Milankovitch cycles Glacial climate feedbacks End of last ice-age rise of human civilization Modern ice-ages begin Asteroid impact end of dinosaurs Cambrian

More information

Paleoclimatology ATMS/ESS/OCEAN 589. Abrupt Climate Change During the Last Glacial Period

Paleoclimatology ATMS/ESS/OCEAN 589. Abrupt Climate Change During the Last Glacial Period Paleoclimatology ATMS/ESS/OCEAN 589 Ice Age Cycles Are they fundamentaly about ice, about CO2, or both? Abrupt Climate Change During the Last Glacial Period Lessons for the future? The Holocene Early Holocene

More information

ATMS 321: Natural Climate Variability Chapter 11

ATMS 321: Natural Climate Variability Chapter 11 ATMS 321: Natural Climate Variability Chapter 11 Solar Variability: Total solar irradiance variability is relatively small about a tenth of a percent. Ultraviolet variability is larger, and so could affect

More information

Outline 23: The Ice Ages-Cenozoic Climatic History

Outline 23: The Ice Ages-Cenozoic Climatic History Outline 23: The Ice Ages-Cenozoic Climatic History Continental Glacier in Antarctica Valley Glaciers in Alaska, note the moraines Valley Glaciers in Alaska, note the moraines Mendenhall Glacier, Juneau,

More information

ENIGMA: something that is mysterious, puzzling, or difficult to understand.

ENIGMA: something that is mysterious, puzzling, or difficult to understand. Lecture 12. Attempts to solve the Eccentricity Enigma ENIGMA: something that is mysterious, puzzling, or difficult to understand. Milankovitch forcing glacier responses pre-900,000 yr BP glacier responses

More information

The Ice Age sequence in the Quaternary

The Ice Age sequence in the Quaternary The Ice Age sequence in the Quaternary Subdivisions of the Quaternary Period System Series Stage Age (Ma) Holocene 0 0.0117 Tarantian (Upper) 0.0117 0.126 Quaternary Ionian (Middle) 0.126 0.781 Pleistocene

More information

Present and Past Warming of the Arctic Morten Hald Department of Geology, University of Tromsø, Norway

Present and Past Warming of the Arctic Morten Hald Department of Geology, University of Tromsø, Norway Lectures to the workshop Approaching Arctic Frontiers Areas for Petroleum exploration, 12-13 Nov. 2008 Univ. Tromsø Present and Past Warming of the Arctic Morten Hald Department of Geology, University

More information

/ Past and Present Climate

/ Past and Present Climate MIT OpenCourseWare http://ocw.mit.edu 12.842 / 12.301 Past and Present Climate Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Ice Sheet Paleoclimatology

More information

Ruddiman CHAPTER 13. Earth during the LGM ca. 20 ka BP

Ruddiman CHAPTER 13. Earth during the LGM ca. 20 ka BP Ruddiman CHAPTER 13 Earth during the LGM ca. 20 ka BP The Last Glacial Maximum When? How much more ice than today? How much colder was it than today (global average)? How much lower were snowlines? Did

More information

Energy Balance Models

Energy Balance Models Richard McGehee School of Mathematics University of Minnesota NCAR - MSRI July, 2010 Earth s Energy Balance Gary Stix, Scientific American September 2006, pp.46-49 Earth s Energy Balance Historical Overview

More information

Chp Spectral analysis a. Requires that the climate record must be at least 4 times longer than the cycled analyzed

Chp Spectral analysis a. Requires that the climate record must be at least 4 times longer than the cycled analyzed Chp 7 1. Earth s seasons are caused by a. The movement of the Sun from North to South of the equator and back again over a year s time b. The distance between Earth and the Sun c. The rate of Earth s movement

More information

Lake Levels and Climate Change in Maine and Eastern North America during the last 12,000 years

Lake Levels and Climate Change in Maine and Eastern North America during the last 12,000 years Maine Geologic Facts and Localities December, 2000 Lake Levels and Climate Change in Maine and Eastern North America during the last 12,000 years Text by Robert A. Johnston, Department of Agriculture,

More information

1. Deglacial climate changes

1. Deglacial climate changes Review 3 Major Topics Deglacial climate changes (last 21,000 years) Millennial oscillations (thousands of years) Historical Climate Change (last 1000 years) Climate Changes Since the 1800s Climate Change

More information

6. What has been the most effective erosive agent in the climate system? a. Water b. Ice c. Wind

6. What has been the most effective erosive agent in the climate system? a. Water b. Ice c. Wind Multiple Choice. 1. Heinrich Events a. Show increased abundance of warm-water species of planktic foraminifera b. Show greater intensity since the last deglaciation c. Show increased accumulation of ice-rafted

More information

Glaciers and Ice Ages

Glaciers and Ice Ages ES 106 Glaciers and Ice Ages I. Glacier thick mass of ice accumulated over years, decades, centuries A. Function of recrystallization of fallen snow B. Types 1. alpine valley: a. high elevations worldwide

More information

Today we will discuss global climate: how it has changed in the past, and how the current status and possible future look.

Today we will discuss global climate: how it has changed in the past, and how the current status and possible future look. Global Climate Change Today we will discuss global climate: how it has changed in the past, and how the current status and possible future look. If you live in an area such as the Mississippi delta (pictured)

More information

Orbital-Scale Interactions in the Climate System. Speaker:

Orbital-Scale Interactions in the Climate System. Speaker: Orbital-Scale Interactions in the Climate System Speaker: Introduction First, many orbital-scale response are examined.then return to the problem of interactions between atmospheric CO 2 and the ice sheets

More information

Any Questions? Glacier

Any Questions? Glacier Geology of the Hawaiian Islands Class 25 13 April 2004 Any Questions? Earth Systems Today CD Click on Weather and Climate Look at the sections on El Niño Ozone Hole Glaciers Why do we care? They help control

More information

Glaciers. Geology of the Hawaiian Islands. Any Questions? Earth Systems Today CD. Class April Why do we care?

Glaciers. Geology of the Hawaiian Islands. Any Questions? Earth Systems Today CD. Class April Why do we care? Geology of the Hawaiian Islands Class 25 13 April 2004 Any Questions? Earth Systems Today CD Click on Weather and Climate Look at the sections on El Niño Ozone Hole Glaciers Why do we care? They help control

More information

Ice Age research. Milankovitch cycles, Milankovitch curves, Milankovitch insolation, Milankovitch theory, Milankovitch hypothesis.?

Ice Age research. Milankovitch cycles, Milankovitch curves, Milankovitch insolation, Milankovitch theory, Milankovitch hypothesis.? Ice Age research Rev. Prof. Buckland Milankovitch cycles, Milankovitch curves, Milankovitch insolation, Milankovitch theory, Milankovitch hypothesis.? Milutin Milankovitch Milutin Milankovitch (1879-1958)

More information

Monday, December 4, 2017 The Pleistocene Glaciations (Chapter 14) Week 14 Assessment, closes Wednesday Dec 6

Monday, December 4, 2017 The Pleistocene Glaciations (Chapter 14) Week 14 Assessment, closes Wednesday Dec 6 Monday, December 4, 2017 The Pleistocene Glaciations (Chapter 14) Week 14 Assessment, closes Wednesday Dec 6 Week 15 Assessment will be last one, closes Wednesday Dec 13 Homework 5 due Wednesday, Dec 6

More information

ATOC OUR CHANGING ENVIRONMENT

ATOC OUR CHANGING ENVIRONMENT ATOC 1060-002 OUR CHANGING ENVIRONMENT Class 22 (Chp 15, Chp 14 Pages 288-290) Objectives of Today s Class Chp 15 Global Warming, Part 1: Recent and Future Climate: Recent climate: The Holocene Climate

More information

CLIMATE CHANGE OVER THE LAST TWO MILLION YEARS

CLIMATE CHANGE OVER THE LAST TWO MILLION YEARS CLIMATE CHANGE OVER THE LAST TWO MILLION YEARS 1. Introduction: forcings and feedbacks 2. Standing on the shoulders of giants: development of the Milankovitch theory 3. Evidence from the oceans, evidence

More information

Agronomy 406 World Climates

Agronomy 406 World Climates Agronomy 406 World Climates April 3, 2018 Causes of natural climate changes (finish). Schedule is being adjusted. No change to due dates. Bring IPCC Fifth Assessment Report Summary for Policymakers to

More information

Development of the Global Environment

Development of the Global Environment Development of the Global Environment G302: Spring 2004 A course focused on exploration of changes in the Earth system through geological history Simon C. Brassell Geological Sciences simon@indiana.edu

More information

An Arctic Perspective on Climate Change

An Arctic Perspective on Climate Change An Arctic Perspective on Climate Change 23 Oct 2012 Gifford Miller (and many others) University of Colorado Boulder The Earth is warming How do we know? Temperature Anomaly ( C) It s a fact Global Land

More information

The Distribution of Cold Environments

The Distribution of Cold Environments The Distribution of Cold Environments Over 25% of the surface of our planet can be said to have a cold environment, but defining what we actually mean by that can be very challenging. This is because cold

More information

WELCOME TO PERIOD 14:CLIMATE CHANGE. Homework #13 is due today.

WELCOME TO PERIOD 14:CLIMATE CHANGE. Homework #13 is due today. WELCOME TO PERIOD 14:CLIMATE CHANGE Homework #13 is due today. Note: Homework #14 due on Thursday or Friday includes using a web site to calculate your carbon footprint. You should complete this homework

More information

PLIO-PLEISTOCENE GLACIAL CYCLES AND MILANKOVITCH VARIABILITY

PLIO-PLEISTOCENE GLACIAL CYCLES AND MILANKOVITCH VARIABILITY PLIO-PLEISTOCENE GLACIAL CYCLES AND MILANKOVITCH VARIABILITY K. H. Nisancioglu, Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway & 29 Elsevier Ltd. All rights reserved. Introduction

More information

Orbital- Scale Climate Changes. GEOG 401: Climatology Dr. John Abatzoglou

Orbital- Scale Climate Changes. GEOG 401: Climatology Dr. John Abatzoglou Orbital- Scale Climate Changes GEOG 401: Climatology Dr. John Abatzoglou Ice Core Sampling Typically performed at top of ice dome where less lateral spreading occurs Diffusion issue can make high- resoluion

More information

CLIMATE CHANGE IN ARCTIC AND ALPINE AREAS

CLIMATE CHANGE IN ARCTIC AND ALPINE AREAS CLIMATE CHANGE IN ARCTIC AND ALPINE AREAS 1. Introduction 2. Data sources: glaciers 3. Data sources: ice cores 4. Patterns and mechanisms 5. Feedbacks and surprises Striations (evidence of glacial erosion)

More information

Global climate change

Global climate change Global climate change What is climate change? This winter was really cold! Temp difference ( C): Jan 2004 vs. Jan 2002-2003 Make your own maps at: http://www.giss.nasa.gov/data/update/gistemp/maps/ 1 What

More information

Physics of Aquatic Systems II

Physics of Aquatic Systems II Contents of Session 5 Physics of Aquatic Systems II 5. Stable Isotopes - Applications Some examples of applications Stable isotopes as markers of water origin Stable isotopes in process studies Stable

More information

Natural and anthropogenic climate change Lessons from ice cores

Natural and anthropogenic climate change Lessons from ice cores Natural and anthropogenic climate change Lessons from ice cores Eric Wolff British Antarctic Survey, Cambridge ewwo@bas.ac.uk ASE Annual Conference 2011; ESTA/ESEU lecture Outline What is British Antarctic

More information

common time scale developed for Greenland and Antarctic ice core records. Central to this

common time scale developed for Greenland and Antarctic ice core records. Central to this 1 Supplemental Material Age scale: For the dating of the EDML and EDC ice cores (Figure S1) we used for the first time a new common time scale developed for Greenland and Antarctic ice core records. Central

More information

Paleoclimate indicators

Paleoclimate indicators Paleoclimate indicators Rock types as indicators of climate Accumulation of significant thicknesses of limestone and reef-bearing limestone is restricted to ~20º + - equator Gowganda tillite, Ontario

More information

Early Earth. Geologic Time. Rise of Oxygen. Early Life. Scott Denning CSU Atmospheric Science 1

Early Earth. Geologic Time. Rise of Oxygen. Early Life. Scott Denning CSU Atmospheric Science 1 Geologic Time Precambrian, and then everything else! (It s always down there) Primary, Secondary, Tertiary Fossils told this story Early Earth Formed by accretion ~ 4.7 billion years ago Solar constant

More information

Understanding past climate change

Understanding past climate change Steven J. Phipps ARC Centre of Excellence for Climate System Science Climate Change Research Centre University of New South Wales CLIM1001 Introduction to Climate Change 3 September 2013 1 Why past climates

More information

Arctic Paleoclimates

Arctic Paleoclimates Arctic Paleoclimates The geologic time scale [from the Geological Society of America, product code CTS004, compiled by A.R. Palmer and J. Geissman, by permission of Geological Society of America]. Paleoclimate

More information

Paleoclimate: What can the past tell us about the present and future? Global Warming Science February 14, 2012 David McGee

Paleoclimate: What can the past tell us about the present and future? Global Warming Science February 14, 2012 David McGee Paleoclimate: What can the past tell us about the present and future? 12.340 Global Warming Science February 14, 2012 David McGee 1 Recent observed trends: Greenhouse gases Image courtesy of NOAA. 2 Recent

More information

Ocean & climate: an introduction and paleoceanographic perspective

Ocean & climate: an introduction and paleoceanographic perspective Ocean & climate: an introduction and paleoceanographic perspective Edouard BARD Chaire de l évolution du climat et de l'océan du Collège de France CEREGE, UMR CNRS, AMU, IRD, CdF Aix-en-Provence The ocean

More information

Proxy-based reconstructions of Arctic paleoclimate

Proxy-based reconstructions of Arctic paleoclimate Proxy-based reconstructions of Arctic paleoclimate TODAY THE PAST Boothia Peninsula, Nunavut Prof. Sarah Finkelstein Earth Sciences, University of Toronto Finkelstein@es.utoronto.ca Outline Why does climate

More information

Chapter 14: The Changing Climate

Chapter 14: The Changing Climate Chapter 14: The Changing Climate Detecting Climate Change Natural Causes of Climate Change Anthropogenic Causes of Climate Change Possible Consequences of Global Warming Climate Change? -Paleo studies

More information

Glaciers. A glacier is a persistent mass of ice: snow accumulation exceeds melting. generally occur in two areas: high latitudes, or high elevations

Glaciers. A glacier is a persistent mass of ice: snow accumulation exceeds melting. generally occur in two areas: high latitudes, or high elevations Page 1 of7 Glaciers A glacier is a persistent mass of ice: snow accumulation exceeds melting generally occur in two areas: high latitudes, or high elevations hence CONTINENTAL and ALPINE glaciation Glaciers

More information

NATS 101 Section 13: Lecture 32. Paleoclimate

NATS 101 Section 13: Lecture 32. Paleoclimate NATS 101 Section 13: Lecture 32 Paleoclimate Natural changes in the Earth s climate also occur at much longer timescales The study of prehistoric climates and their variability is called paleoclimate.

More information

"Global Warming Beer" Taps Melted Arctic Ice (UPDATE)

Global Warming Beer Taps Melted Arctic Ice (UPDATE) "Global Warming Beer" Taps Melted Arctic Ice (UPDATE) The brewery filed for bankruptcy in Aug 2008 The Greenland Brewhouse is the world's first Inuit microbrewery. The water, the brewers say, is the beer's

More information

Chapter 14: Climate Change

Chapter 14: Climate Change Chapter 14: Climate Change Goals of Period 14 Section 14.1: To review the energy balance of the Earth and the enhanced greenhouse effect Section 14.2: To examine evidence for climate change Section 14.3:

More information

4 Changes in Climate. TAKE A LOOK 2. Explain Why is more land exposed during glacial periods than at other times?

4 Changes in Climate. TAKE A LOOK 2. Explain Why is more land exposed during glacial periods than at other times? Name Class CHAPTER 3 Date Climate 4 Changes in Climate SECTION National Science Education Standards BEFORE YOU READ After you read this section, you should be able to answer these questions: ES 1k, 2a

More information

THE TENDENCY OF CLIMATE CHANGE OVER THE PAST SEVERAL MILLIONS OF YEARS AND THE CURRENT INTERGLACIAL DURATION. V.A. Dergachev

THE TENDENCY OF CLIMATE CHANGE OVER THE PAST SEVERAL MILLIONS OF YEARS AND THE CURRENT INTERGLACIAL DURATION. V.A. Dergachev THE TENDENCY OF CLIMATE CHANGE OVER THE PAST SEVERAL MILLIONS OF YEARS AND THE CURRENT INTERGLACIAL DURATION V.A. Dergachev Ioffe Physical-Technical Institute, St. Petersburg, 194021, Russia, e-mail: v.dergachev@mail.ioffe.ru

More information

Atlantic Meridional Overturning Circulation (AMOC) = thermohaline circulation in N Atlantic. Wikipedia

Atlantic Meridional Overturning Circulation (AMOC) = thermohaline circulation in N Atlantic. Wikipedia Last time. Atlantic Meridional Overturning Circulation (AMOC) = thermohaline circulation in N Atlantic Wikipedia Dansgaard-Oeschger events HOLOCENE ice record smeared out here Last interglacial Dansgaard-Oeschger

More information

Marine Oxygen Isotopes and Changes in Global Ice Volume

Marine Oxygen Isotopes and Changes in Global Ice Volume Marine Oxygen Isotopes and Changes in Global Ice Volume Name: You have learned about the value of marine oxygen-isotope records for understanding changes in ocean-water temperature and global ice volume

More information

REVISITING THE ANALOGUE FOR THE COMING ICE AGE

REVISITING THE ANALOGUE FOR THE COMING ICE AGE REVISITING THE ANALOGUE FOR THE COMING ICE AGE When paleoclimatologists gathered in 1972 to discuss how and when the present warm climate would end, termination of this warm climate we call the Holocene

More information

0.5cm Eocene Foram

0.5cm Eocene Foram Eocene Foram 0.5cm Eocene Foram Bubbles in ice 5 µm Tree rings Tree rings Reconstructing past climate Talk outline: A trip through geologic time Take away points: Climate change through time What past

More information

Questions we would like to learn (scattered through the whole lecture)

Questions we would like to learn (scattered through the whole lecture) Climate Impacts on the Baltic Sea: From Science to Policy Bornholm, July 2009 (Paleo) Climate Modelling Eduardo Zorita GK SS Research Centre, Geesthacht, Germany Questions we would like to learn (scattered

More information

To understand how we measure ancient temperature, you need to know about oxygen isotopes. Pleistocene Climate. Clouds, rain, and oxygen isotopes

To understand how we measure ancient temperature, you need to know about oxygen isotopes. Pleistocene Climate. Clouds, rain, and oxygen isotopes To understand how we measure ancient temperature, you need to know about oxygen isotopes Pleistocene Climate Alan R. Rogers February 20, 2014 There are several types of oxygen atoms, called isotopes The

More information

Tracers. 1. Conservative tracers. 2. Non-conservative tracers. Temperature, salinity, SiO 2, Nd, 18 O. dissolved oxygen, phosphate, nitrate

Tracers. 1. Conservative tracers. 2. Non-conservative tracers. Temperature, salinity, SiO 2, Nd, 18 O. dissolved oxygen, phosphate, nitrate Tracers 1. Conservative tracers Temperature, salinity, SiO 2, Nd, 18 O 2. Non-conservative tracers dissolved oxygen, phosphate, nitrate Temperature itself is a tracer but other tracers (like oxygen isotopes)

More information

TOPIC #12 NATURAL CLIMATIC FORCING

TOPIC #12 NATURAL CLIMATIC FORCING TOPIC #12 NATURAL CLIMATIC FORCING (Start on p 67 in Class Notes) p 67 ENERGY BALANCE (review) Global climate variability and change are caused by changes in the ENERGY BALANCE that are FORCED review FORCING

More information

Ice Sheets and Glaciers

Ice Sheets and Glaciers Ice Sheets and Glaciers Technical University of Denmark Kees van der Veen Department of Geography University of Kansas Why are glaciers and ice sheets important? Large volume of fresh water stored in ice

More information

Systems? Climate Systems. Earth Systems. Earth Interior Systems. Atmospheric/Biospheric Systems: Human Impact Hydrologic Cycle.

Systems? Climate Systems. Earth Systems. Earth Interior Systems. Atmospheric/Biospheric Systems: Human Impact Hydrologic Cycle. Chapter 15 Climate Systems Systems? What is a system? Geologic phenomena are complex. All processes are related to, and interact with, other processes. So it is useful to think of geologic processes as

More information

Milankovitch Cycles. Milankovitch Cycles. Milankovitch Cycles. Milankovitch Cycles. Milankovitch Cycles. Milankovitch Cycles.

Milankovitch Cycles. Milankovitch Cycles. Milankovitch Cycles. Milankovitch Cycles. Milankovitch Cycles. Milankovitch Cycles. Richard McGehee Temperatures in the Cenozoic ra Seminar on the Mathematics of Climate Change School of Mathematics March 4, 9 http://www.tqnyc.org/nyc5141/beginningpage.html Hansen, et al, 8, p. 7 Recent

More information

XII. Heidelberger Graduiertenkurse Physik. Climate Research. Werner Aeschbach-Hertig Pier-Luigi Vidale

XII. Heidelberger Graduiertenkurse Physik. Climate Research. Werner Aeschbach-Hertig Pier-Luigi Vidale XII. Heidelberger Graduiertenkurse Physik Climate Research Werner Aeschbach-Hertig Pier-Luigi Vidale Part 1: Paleoclimate Session 1 (Tuesday): Introduction and motivation Basics of the Earth's climate

More information

Lecture 0 A very brief introduction

Lecture 0 A very brief introduction Lecture 0 A very brief introduction Eli Tziperman Climate variability results from a very diverse set of physical phenomena and occurs on a very wide range of time scales. It is difficult to envision a

More information

3.13Glaciers past and present

3.13Glaciers past and present 3.13Glaciers past and present We start with a headline from The Scotsman newspaper that rocked Britain s scientific establishment on the morning of 7 October 1840: 3 Discovery of the Former Existence of

More information

Variations in the Earth's Orbit: Pacemaker of the Ice Ages

Variations in the Earth's Orbit: Pacemaker of the Ice Ages Variations in the Earth's Orbit: Pacemaker of the Ice Ages For 500,000 years, major climatic changes have followed variations in obliquity and precession. J. D. Hays, John Imbrie, N. J. Shackleton Science,

More information

Stable Isotope Tracers OCN 623 Chemical Oceanography

Stable Isotope Tracers OCN 623 Chemical Oceanography Stable Isotope Tracers OCN 623 Chemical Oceanography 21 March 2017 Reading: Emerson and Hedges, Chapter 5, p.134-153 2017 Frank Sansone and David Ho Student Learning Outcomes At the completion of this

More information

Lessons from the past: interpreting the paleorecord & modelling

Lessons from the past: interpreting the paleorecord & modelling Agenda ATLAB WP5 Workshop - June 11-13, 2014 Lessons from the past: interpreting the paleorecord & modelling ING PAN, Research Centre in Kraków 1. DAY - Wednesday - 11.06.2014 General introduction into

More information

Ice core-based climate research in Denmark

Ice core-based climate research in Denmark June 16, 2009 Ice core-based climate research in Denmark Sune Olander Rasmussen Center coordinator and postdoc Centre for Ice and Climate Niels Bohr Institute University of Copenhagen Temperature and CO

More information

Rapid climate change in ice cores

Rapid climate change in ice cores Rapid climate change in ice cores Liz Thomas British Antarctic Survey Overview Introduction to ice cores Evidence of rapid climate change in the Greenland ice cores DO events Younger Dryas 8.2 kyr cold

More information

Temperature Over Time

Temperature Over Time Temperature Over Time 1 Module Overview In this module, you will investigate whether Earth is warming. First, you will review the causes of seasonal and daily temperature changes at different latitudes

More information

Our Geologic Backdrop: Ice Age Cycles

Our Geologic Backdrop: Ice Age Cycles Introduction to Earth s Climate System Our Geologic Backdrop: Ice Age Cycles MODULE 2.4 2.4 Our Geologic Backdrop: Ice Age Cycles Lesson Goals»» Describe Earth s geologic variability over the past million

More information

Chapter 6: Global Climate Change

Chapter 6: Global Climate Change Chapter 6: Global Climate Change Section 1: Paleoclimate The cross section of a tree trunk shows numerous rings. What do you think the light and dark rings represent? What can you infer about climate from

More information

Land Surface Sea Ice Land Ice. (from Our Changing Planet)

Land Surface Sea Ice Land Ice. (from Our Changing Planet) Lecture 5: Land Surface and Cryosphere (Outline) Land Surface Sea Ice Land Ice (from Our Changing Planet) Earth s s Climate System Solar forcing Atmosphere Ocean Land Solid Earth Energy, Water, and Biochemistry

More information

Earth s Climate System. Surface Albedo. Climate Roles of Land Surface. Lecture 5: Land Surface and Cryosphere (Outline) Land Surface Sea Ice Land Ice

Earth s Climate System. Surface Albedo. Climate Roles of Land Surface. Lecture 5: Land Surface and Cryosphere (Outline) Land Surface Sea Ice Land Ice Lecture 5: Land Surface and Cryosphere (Outline) Earth s Climate System Solar forcing Land Surface Sea Ice Land Ice Atmosphere Ocean Land Solid Earth Energy, Water, and Biochemistry Cycles (from Our Changing

More information