Depth profiling of Organic Films using mixed C60 + and Ar + Ion-Sputtering

Size: px
Start display at page:

Download "Depth profiling of Organic Films using mixed C60 + and Ar + Ion-Sputtering"

Transcription

1 Principle of Depth Profile Depth profiling of rganic Films using mixed C6 + and Ar + Ion-puttering putter Ion Beam Jing-Jong hyue, Ph.D. Analysis Depth ".5-1 nm# Research Center for Applied ciences, Academia inica Department of Materials cience and Engineering, ational Taiwan University urface Layer ample Matrix Depth Profile Analysis 1 3 Principle of Depth Profile General Concepts of puttering composition depth profiling with surface analysis techniques?! erosion of specimen surface by energetic particle bombardment sputtering two possibilities for analysis:! freshly exposed surface (" XP, AE)! sputtered material (" IM) depth profiling! remove controlled thickness 2 4

2 XP Depth Profiling PHI 5 VersaProbe XM at inica (27/6/18) composition as a function of depth t in thin films XP signal is generated near the surface (~3nm) sputtering provides layer sectioning depth profiles are usually shown as signal intensity versus sputter time (not depth) further calibrations required! convert sputter time to depth! signal intensity to atomic concentration however, ion sputtering can causes change in the composition of the surface layers! surface segregation! preferential sputtering 5 7 puttering with C6 + Ions PHI 5 VersaProbe XM T=29ps Traditional ion sources such as Ar and Ga can impart significant damage to a samples surface C6 ions are more efficient in removing material and leave behind a relatively thin damage layer 15 kev Ga 15 kev C 6 C 6 bombardment calculations, Zbigniew Postawa; Enhancement of puttering Yields due to C 6 vs. Ga Bombardment of Ag{111} as Explored by Molecular Dynamics imulations, Z. Postawa, B. Czerwinski, M. zewczyk, E. J. miley,. Winograd and B. J. Garrison, Anal. Chem.y, 75, (23); Microscopic insights into the sputtering of Ag{111} induced by C 6 and Ga Bombardment,[ ibid., J. Phys. Chem., submitted January 24 1nm focused scanning XP microprobe (<1!m spot size) dual beam charge neutralization xyzrt five axis motorized sample manipulator floating column argon ion gun (-5kV) 1kV C6 sputter ion gun ptions:! UV light source for UP! electron gun for AE (<!m resolution)! dual anode X-ray source (Mg, Zr) 6 8

3 Depth Profile of PEDT:P on IT Glass: Ar Depth Profile of PEDT:P with Ar i2p beam voltage sputter time atomic concentration 3 kv.5 min 88%C, 3%, 9% 2 kv 1 min 88% C, 4%, 8% 1 kv 5 min 85%C, 6%, 9%.5 kv 15 min 85% C, 8%, 7% expected % C, 24%, 9% sputter time extended with lowering the beam energy significant lost of even at low beam energy! Ar is not suitable for analyzing organic films Depth Profile of PEDT:P on IT: Ar 3kV kV kV kV Depth Profile of PEDT:P on IT: C PEDT 3H P 67%C, 24%, 9% H PEDT P 67%C, 24%, 9%

4 Depth Profile of PEDT:P on IT: Peak Analysis of rganic Thin-Films with C6.5kV Ar kV C6 chemical composition is preserved through the thickness 35 3 chemical state of is preserved and the PEDT:P ratio does not change with sputtering H P PEDT PEDT 3H P it is also possible to analyze organic/inorganic hybrid thin film (i2/pedt:p)! constant i:pedt:p ratio through the thickness! uniform distribution of i2 nano-dots! preferential sputtering and sputtering-reduction did not be observed!! i2/pedt:p on IT Glass putter Depth Profile of Drug Distribution in a Biomedical Coating 1 i2p Rapamycin PLGA Coating Rapamycin Poly(lactic-co-glycolic acid) H PEDT P 67%C, 24%, 9% PEDT H P 16 Immunosuppressant Drug Biodegradable Host Polymer 14

5 putter Depth Profile of Drug Distribution in a Biomedical Coating LED Device Rapamycin PLGA Coating 1s (1x) i2p time 4 min 2 min ETL TPBi; 88%C, 11% EL CBP Host; 95%C, 5% Ir-containing Guest HTL PEDT:P; 67%C, 24%, 9% IT TPBi CBP putter time (min) C 6 + sputter depth profile reveals surface segregation of rapamycin 28 min Glass PEDT 3 H P 19 Perfluoropolyester on CaF2 LED Device: EL/HTL/IT CF 2 (~291.8eV) CF 2 - (~293 ev) x CF x 688 CF (~289.5eV) CaF C-CF x (~287.5eV) (surface) urface contaminants (surface) F(fluoride) 6 F(organic) Ca 2 C(CF2) C(CF2/CF3) 1 C(CF) C(C-CFx) (perfluoropolyester) C(CC/CH) (organic) putter time (min.) %C, 5% CBP PEDT 1s Ir4f (1x) H P 67%C, 24%, 9% 18

6 Full LED Device puttering Rate of Cluster Ion Beam 1 9 1s Ir4f7 (1x) %C, 11% TPBi 95%C, 5% 2 CBP Electron Transporting Layer: TPBi 1kV1nA C6 +.5kV22nA Ar TPBi slower sputtering rate, damage to chemical structure 22 24

7 1kV1nA C kV3nA Ar + Depth Profile with Ar + /C6 + Co-sputtering beam voltage sputter time atomic concentration min 67% C, 24%, 9% kv, 75 na.1 kv, 3 na 4.24 min 67% C, 24%, 9% 4.87 min 67% C, 24%, 9% kv, 3 na.1 kv, 6 na.2 kv, 6 na.25 kv, 6 na 3.76 min 67% C, 24%, 9% 4.87 min 67% C, 24%, 9% 4.29 min 67% C, 24%, 9% 4.3 min 7% C, 21%, 9% kv, 6 na 4.49 min 72% C, 2%, 8% kv, 6 na 5.56 min 78% C, 14%, 8% sputter time decreased with high dose and low dose Ar higher sputtering rate, no observable damage to chemical structure 25 lost of at >.25 kv Ar! dose of Ar is optimized with minimize damage and enhance sputtering rate 27 puttering with.2kv3na Ar + puttering Rate of Mixed C6 + /Ar + Ion Beam extremely slow sputtering rate, still damage the chemical structure 26 28

8 putter Damage Thickness in i (Angle-Resolved XP) putter Induced Topography (AFM) -.5 Top Layer(2.34 nm) -.5 Top Layer(1.68 nm) -.5 Top Layer(1.63 nm) Depth (nm) i2p(96 %) Ar2p(4 %) Depth (nm) i2p(83 %) (17 %) Depth (nm) i2p(83 %) (17 %) KV Ar KV C KVAr + +1KV C6 +.2KV Ar nm RM 1KV C nm RM.2 KVAr + +1KV C nm RM putter Damage Thickness in i (TEM) putter of Hard Materials (Zn4!nH2) 1 9.5KV Ar + 1 Zn2p3 9.2 KVAr + +1KV C6 + Zn2p KV Ar + 5~7 nm thick 1KV C6 + 4~6 nm thick.2 KVAr + +1KV C6 + 2~4 nm thick shallower sampling depth in hard materials overall damage thickness is comparable using cluster ion beams have no benefit 3 32

9 Depth Profile of LED Vertical Array of Ti2 anotube Polymer-based Inverted olar Cell Vertical Array of Ti2 anotube 34 36

10 Ti2 anotube Infiltrated with Polymer Conclusion XP is widely used to study the surface chemical composition of materials to probe below the surface, Ar ion sputtering is typically used to remove material but it is generally not possible to apply to organic materials because of the high level of damage C6 ion sputtering has been demonstrated to remove organic materials while causing minimal damage to the surface however, the sputtering rate decreased with sputtering time due to the C deposition Depth Profile of a olar-cell Conclusion CH 3 to avoid excessive damage to the surface while maintaining a steady sputtering rate, combination of high-energy C6 and low-energy Ar beams are used concurrently the surface is eroded by the C6 beam and the residual carbon is removed by Ar HREM and ARXP revealed thiner and more localized damage layer with co-sputtering however, the surface roughness is higher with C6 beams and interface broadening was observed thick organo-electronic devices can be analyzed with this technique 38 4

11 Acknowledgments Dr. John Hammond, Physical Electronics, UA Mr. Wensly Yip (!"#), ULVAC-PHI, Japan Prof. Jwo-Huei Jou ($%&), DME, THU Prof. Chih-Wei Chu ('()), RCA, Academia inica Dr. Bang-Ying Yu (*+,), RCA, Academia inica Miss. Ying-Yu Chen (-.!), RCA, Academia inica Mr. Wei-Ben Wang (/1), DME, THU Mr. Mao-Fen Hsu (234), DME, THU Miss. hu-ping Tsa (567), RCA, Academia inica Mr. Mark Cheng (89:), Veeco, Taiwan ponsorship by Academia inica and C (through M-2-18 and M-1-12-MY2) 41

PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy

PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy The very basic theory of XPS XPS theroy Surface Analysis Ultra High Vacuum (UHV) XPS Theory XPS = X-ray Photo-electron Spectroscopy X-ray

More information

PHI Model 06-C60 Sputter Ion Gun

PHI Model 06-C60 Sputter Ion Gun PHI Model 6-C6 Sputter Ion Gun Introduction: Physical Electronics introduced the model 6-C6 C 6 sputter ion gun and its unique capabilities for surface cleaning and depth profiling of soft materials (figure

More information

A DIVISION OF ULVAC-PHI

A DIVISION OF ULVAC-PHI A DIVISION OF ULVAC-PHI X-ray photoelectron spectroscopy (XPS/ESCA) is the most widely used surface analysis technique and has many well established industrial and research applications. XPS provides

More information

A DIVISION OF ULVAC-PHI. Quantera II. Scanning XPS Microprobe

A DIVISION OF ULVAC-PHI. Quantera II. Scanning XPS Microprobe A DIVISION OF ULVAC-PHI Quantera II Scanning XPS Microprobe X-ray Photoelectron Spectroscopy (XPS/ESCA) is the most widely used surface analysis technique and has many well established industrial and

More information

PHI. Scanning XPS Microprobe

PHI. Scanning XPS Microprobe PHI Scanning XPS Microprobe Unique Scanning XPS Microprobe X-ray photoelectron spectroscopy (XPS/ESA) is the most widely used surface analysis technique and has many well established industrial and research

More information

Reduced preferential sputtering of TiO 2 (and Ta 2 O 5 ) thin films through argon cluster ion bombardment.

Reduced preferential sputtering of TiO 2 (and Ta 2 O 5 ) thin films through argon cluster ion bombardment. NATIOMEM Reduced preferential sputtering of TiO 2 (and Ta 2 O 5 ) thin films through argon cluster ion bombardment. R. Grilli *, P. Mack, M.A. Baker * * University of Surrey, UK ThermoFisher Scientific

More information

ToF-SIMS or XPS? Xinqi Chen Keck-II

ToF-SIMS or XPS? Xinqi Chen Keck-II ToF-SIMS or XPS? Xinqi Chen Keck-II 1 Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) Not ToF MS (laser, solution) X-ray Photoelectron Spectroscopy (XPS) 2 3 Modes of SIMS 4 Secondary Ion Sputtering

More information

Surface and Interface Analysis. Investigations of Molecular Depth Profiling with Dual Beam Sputtering. Journal: Surface and Interface Analysis

Surface and Interface Analysis. Investigations of Molecular Depth Profiling with Dual Beam Sputtering. Journal: Surface and Interface Analysis Surface and Interface Analysis Investigations of Molecular Depth Profiling with Dual Beam Sputtering Journal: Surface and Interface Analysis Manuscript ID: Draft Wiley - Manuscript type: SIMS proceedings

More information

The Benefit of Wide Energy Range Spectrum Acquisition During Sputter Depth Profile Measurements

The Benefit of Wide Energy Range Spectrum Acquisition During Sputter Depth Profile Measurements The Benefit of Wide Energy Range Spectrum Acquisition During Sputter Depth Profile Measurements Uwe Scheithauer, 82008 Unterhaching, Germany E-Mail: scht.uhg@googlemail.com Internet: orcid.org/0000-0002-4776-0678;

More information

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu X-ray Photoelectron Spectroscopy Introduction Qualitative analysis Quantitative analysis Charging compensation Small area analysis and XPS imaging

More information

X-Ray Photoelectron Spectrometry (XPS) Electron Spectroscopy for Chemical Analysis (ECSA) Principle of XPS. Comparison of Surface Analysis Techniques

X-Ray Photoelectron Spectrometry (XPS) Electron Spectroscopy for Chemical Analysis (ECSA) Principle of XPS. Comparison of Surface Analysis Techniques Comparison of Surface Analysis Techniques X-Ray Photoelectron Spectrometry (XPS) Electron Spectroscopy for Chemical Analysis (ECSA)!! AES! XPS! TOF-SIMS! D-SIMS Probe Beam!! Electrons! Photons! Ions! Ions!

More information

Multi-technique photoelectron spectrometer for micro-area spectroscopy and imaging

Multi-technique photoelectron spectrometer for micro-area spectroscopy and imaging Multi-technique photoelectron spectrometer for micro-area spectroscopy and imaging U. Manju, M. Sreemony and A. K. Chakraborty In this note we present the new multipurpose photoelectron spectroscopy facility

More information

Supplementary information Y-shaped Meal-Free D-π-(A) 2 Sensitizers for High-Performance Dye-Sensitized Solar Cells

Supplementary information Y-shaped Meal-Free D-π-(A) 2 Sensitizers for High-Performance Dye-Sensitized Solar Cells Electronic upplementary Material (EI) for Journal of Materials Chemistry A This journal is The Royal ociety of Chemistry 2013 upplementary information Y-shaped Meal-Free D-π-(A) 2 ensitizers for High-Performance

More information

Imaging Methods: Scanning Force Microscopy (SFM / AFM)

Imaging Methods: Scanning Force Microscopy (SFM / AFM) Imaging Methods: Scanning Force Microscopy (SFM / AFM) The atomic force microscope (AFM) probes the surface of a sample with a sharp tip, a couple of microns long and often less than 100 Å in diameter.

More information

Auger Electron Spectroscopy

Auger Electron Spectroscopy Auger Electron Spectroscopy Auger Electron Spectroscopy is an analytical technique that provides compositional information on the top few monolayers of material. Detect all elements above He Detection

More information

Supporting Information

Supporting Information Supporting Information Modulation of PEDOT:PSS ph for Efficient Inverted Perovskite Solar Cells with Reduced Potential Loss and Enhanced Stability Qin Wang 1,2, Chu-Chen Chueh 1, Morteza Eslamian 2 * and

More information

Applications of XPS, AES, and TOF-SIMS

Applications of XPS, AES, and TOF-SIMS Applications of XPS, AES, and TOF-SIMS Scott R. Bryan Physical Electronics 1 Materials Characterization Techniques Microscopy Optical Microscope SEM TEM STM SPM AFM Spectroscopy Energy Dispersive X-ray

More information

SURFACE PROCESSING WITH HIGH-ENERGY GAS CLUSTER ION BEAMS

SURFACE PROCESSING WITH HIGH-ENERGY GAS CLUSTER ION BEAMS SURFACE PROCESSING WITH HIGH-ENERGY GAS CLUSTER ION BEAMS Toshio Seki and Jiro Matsuo, Quantum Science and Engineering Center, Kyoto University, Gokasyo, Uji, Kyoto 611-0011, Japan Abstract Gas cluster

More information

IONTOF. Latest Developments in 2D and 3D TOF-SIMS Analysis. Surface Analysis Innovations and Solutions for Industry 2017 Coventry

IONTOF. Latest Developments in 2D and 3D TOF-SIMS Analysis. Surface Analysis Innovations and Solutions for Industry 2017 Coventry Latest Developments in 2D and 3D TOF-SIMS Analysis Surface Analysis Innovations and Solutions for Industry 2017 Coventry 12.10.2017 Matthias Kleine-Boymann Regional Sales Manager matthias.kleine-boymann@iontof.com

More information

Surface analysis techniques

Surface analysis techniques Experimental methods in physics Surface analysis techniques 3. Ion probes Elemental and molecular analysis Jean-Marc Bonard Academic year 10-11 3. Elemental and molecular analysis 3.1.!Secondary ion mass

More information

The deposition of these three layers was achieved without breaking the vacuum. 30 nm Ni

The deposition of these three layers was achieved without breaking the vacuum. 30 nm Ni Transfer-free Growth of Atomically Thin Transition Metal Disulfides using a Solution Precursor by a Laser Irradiation Process and their Application in Low-power Photodetectors Chi-Chih Huang 1, Henry Medina

More information

Accelerated Neutral Atom Beam (ANAB)

Accelerated Neutral Atom Beam (ANAB) Accelerated Neutral Atom Beam (ANAB) Development and Commercialization July 2015 1 Technological Progression Sometimes it is necessary to develop a completely new tool or enabling technology to meet future

More information

Auger Electron Spectrometry. EMSE-515 F. Ernst

Auger Electron Spectrometry. EMSE-515 F. Ernst Auger Electron Spectrometry EMSE-515 F. Ernst 1 Principle of AES electron or photon in, electron out radiation-less transition Auger electron electron energy properties of atom 2 Brief History of Auger

More information

Repeatability of Spectral Intensity Using an Auger Electron Spectroscopy Instrument Equipped with a Cylindrical Mirror Analyzer

Repeatability of Spectral Intensity Using an Auger Electron Spectroscopy Instrument Equipped with a Cylindrical Mirror Analyzer A. Kurokawa et al. Repeatability of Spectral Intensity Using an Auger lectron Spectroscopy Instrument quipped with a Cylindrical Mirror Analyzer Paper Repeatability of Spectral Intensity Using an Auger

More information

Chapter III: III: Sputtering and secondary electron emission

Chapter III: III: Sputtering and secondary electron emission References [1] Handbook of putter deposition technology, Kiyotaka Wasa, Noyes publications, NJ 1992. IN: 0-8155-1280-5 [2] old Plasma in Materials Fabrications,. Grill, IEEE Press, NY(1993). IN: 0-7803-1055-1.

More information

Highly efficient SERS test strips

Highly efficient SERS test strips Electronic Supplementary Information (ESI) for Highly efficient SERS test strips 5 Ran Zhang, a Bin-Bin Xu, a Xue-Qing Liu, a Yong-Lai Zhang, a Ying Xu, a Qi-Dai Chen, * a and Hong-Bo Sun* a,b 5 10 Experimental

More information

Chemical Reactions Induced by Ionizing and Electron-beam Irradiation in Freon/Water (Ice) Films

Chemical Reactions Induced by Ionizing and Electron-beam Irradiation in Freon/Water (Ice) Films Chemical Reactions Induced by Ionizing and Electron-beam Irradiation in Freon/Water (Ice) Films Johns Hopkins University (founded in 1876) Dr. C.C. Perry Prof. D.H. Fairborther School of Arts & Sciences

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Exfoliated semiconducting pure 2H-MoS 2 and 2H-WS 2 assisted

More information

Reduced Preferential Sputtering of TiO 2 using Massive Argon Clusters

Reduced Preferential Sputtering of TiO 2 using Massive Argon Clusters Paper Reduced Preferential Sputtering of TiO 2 using Massive Argon Clusters J. D. P. Counsell, 1 * A. J. Roberts, 1 W. Boxford, 1 C. Moffitt 2 and K. Takahashi 3 1 Kratos Analytical Ltd, Trafford Wharf

More information

XPS & Scanning Auger Principles & Examples

XPS & Scanning Auger Principles & Examples XPS & Scanning Auger Principles & Examples Shared Research Facilities Lunch Talk Contact info: dhu Pujari & Han Zuilhof Lab of rganic Chemistry Wageningen University E-mail: dharam.pujari@wur.nl Han.Zuilhof@wur.nl

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

Gaetano L Episcopo. Scanning Electron Microscopy Focus Ion Beam and. Pulsed Plasma Deposition

Gaetano L Episcopo. Scanning Electron Microscopy Focus Ion Beam and. Pulsed Plasma Deposition Gaetano L Episcopo Scanning Electron Microscopy Focus Ion Beam and Pulsed Plasma Deposition Hystorical background Scientific discoveries 1897: J. Thomson discovers the electron. 1924: L. de Broglie propose

More information

Surface Defects on Natural MoS 2

Surface Defects on Natural MoS 2 Supporting Information: Surface Defects on Natural MoS 2 Rafik Addou 1*, Luigi Colombo 2, and Robert M. Wallace 1* 1 Department of Materials Science and Engineering, The University of Texas at Dallas,

More information

An Introduction to Auger Electron Spectroscopy

An Introduction to Auger Electron Spectroscopy An Introduction to Auger Electron Spectroscopy Spyros Diplas MENA3100 SINTEF Materials & Chemistry, Department of Materials Physics & Centre of Materials Science and Nanotechnology, Department of Chemistry,

More information

A Novel Electroless Method for the Deposition of Single-Crystalline Platinum Nanoparticle Films On

A Novel Electroless Method for the Deposition of Single-Crystalline Platinum Nanoparticle Films On Supplementary Information A Novel Electroless Method for the Deposition of Single-Crystalline Platinum Nanoparticle Films On an Organic Solid Matrix in the Presence of Gold Single Crystals Khaleda Banu,,,*

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Enhanced photocurrent of ZnO nanorods array sensitized with graphene. quantum dots

Enhanced photocurrent of ZnO nanorods array sensitized with graphene. quantum dots Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Enhanced photocurrent of ZnO nanorods array sensitized with graphene quantum dots Bingjun Yang,

More information

Segregated chemistry and structure on (001) and (100) surfaces of

Segregated chemistry and structure on (001) and (100) surfaces of Supporting Information Segregated chemistry and structure on (001) and (100) surfaces of (La 1-x Sr x ) 2 CoO 4 override the crystal anisotropy in oxygen exchange kinetics Yan Chen a, Helena Téllez b,c,

More information

Supporting information

Supporting information Supporting information A Facile and Large-area Fabrication Method of Superhydrophobic Self-cleaning Flourinated Polysiloxane/TiO 2 Nanocomposite Coatings with Long-term Durability Xiaofeng Ding, Shuxue

More information

Surface and Interface Characterization of Polymer Films

Surface and Interface Characterization of Polymer Films Surface and Interface Characterization of Polymer Films Jeff Shallenberger, Evans Analytical Group 104 Windsor Center Dr., East Windsor NJ Copyright 2013 Evans Analytical Group Outline Introduction to

More information

Auger Electron Spectroscopy Overview

Auger Electron Spectroscopy Overview Auger Electron Spectroscopy Overview Also known as: AES, Auger, SAM 1 Auger Electron Spectroscopy E KLL = E K - E L - E L AES Spectra of Cu EdN(E)/dE Auger Electron E N(E) x 5 E KLL Cu MNN Cu LMM E f E

More information

Dual Beam Helios Nanolab 600 and 650

Dual Beam Helios Nanolab 600 and 650 Dual Beam Helios Nanolab 600 and 650 In the Clean Room facilities of the INA LMA, several lithography facilities permit to pattern structures at the micro and nano meter scale and to create devices. In

More information

Supporting Information

Supporting Information Supporting Information Spatially-resolved imaging on photocarrier generations and band alignments at perovskite/pbi2 hetero-interfaces of perovskite solar cells by light-modulated scanning tunneling microscopy

More information

Supporting Information

Supporting Information Supporting Information Enhanced Photocatalytic Activity of Titanium Dioxide: Modification with Graphene Oxide and Reduced Graphene Oxide Xuandong Li,* Meirong Kang, Xijiang Han, Jingyu Wang, and Ping Xu

More information

Outlines 3/12/2011. Vacuum Chamber. Inside the sample chamber. Nano-manipulator. Focused ion beam instrument. 1. Other components of FIB instrument

Outlines 3/12/2011. Vacuum Chamber. Inside the sample chamber. Nano-manipulator. Focused ion beam instrument. 1. Other components of FIB instrument Focused ion beam instruments Outlines 1. Other components of FIB instrument 1.a Vacuum chamber 1.b Nanomanipulator 1.c Gas supply for deposition 1.d Detectors 2. Capabilities of FIB instrument Lee Chow

More information

MSN551 LITHOGRAPHY II

MSN551 LITHOGRAPHY II MSN551 Introduction to Micro and Nano Fabrication LITHOGRAPHY II E-Beam, Focused Ion Beam and Soft Lithography Why need electron beam lithography? Smaller features are required By electronics industry:

More information

Secondary Ion Mass Spectrometry (SIMS)

Secondary Ion Mass Spectrometry (SIMS) CHEM53200: Lecture 10 Secondary Ion Mass Spectrometry (SIMS) Major reference: Surface Analysis Edited by J. C. Vickerman (1997). 1 Primary particles may be: Secondary particles can be e s, neutral species

More information

Scanning Tunneling Microscopy Studies of the Ge(111) Surface

Scanning Tunneling Microscopy Studies of the Ge(111) Surface VC Scanning Tunneling Microscopy Studies of the Ge(111) Surface Anna Rosen University of California, Berkeley Advisor: Dr. Shirley Chiang University of California, Davis August 24, 2007 Abstract: This

More information

raw materials C V Mn Mg S Al Ca Ti Cr Si G H Nb Na Zn Ni K Co A B C D E F

raw materials C V Mn Mg S Al Ca Ti Cr Si G H Nb Na Zn Ni K Co A B C D E F Today s advanced batteries require a range of specialized analytical tools to better understand the electrochemical processes that occur during battery cycling. Evans Analytical Group (EAG) offers a wide-range

More information

Fig 1: Auger Electron Generation (a) Step 1 and (b) Step 2

Fig 1: Auger Electron Generation (a) Step 1 and (b) Step 2 Auger Electron Spectroscopy (AES) Physics of AES: Auger Electrons were discovered in 1925 but were used in surface analysis technique in 1968. Auger Electron Spectroscopy (AES) is a very effective method

More information

Effects of plasma treatment on the precipitation of fluorine-doped silicon oxide

Effects of plasma treatment on the precipitation of fluorine-doped silicon oxide ARTICLE IN PRESS Journal of Physics and Chemistry of Solids 69 (2008) 555 560 www.elsevier.com/locate/jpcs Effects of plasma treatment on the precipitation of fluorine-doped silicon oxide Jun Wu a,, Ying-Lang

More information

Extrel Application Note

Extrel Application Note Extrel Application Note Real-Time Plasma Monitoring and Detection of Trace H 2 O and HF Species in an Argon Based Plasma Jian Wei, 575 Epsilon Drive, Pittsburgh, PA 15238. (Presented at the 191st Electrochemical

More information

The Effect of Water and Confinement on Self-Assembly of

The Effect of Water and Confinement on Self-Assembly of Supporting Information: The Effect of Water and Confinement on Self-Assembly of Imidazolium Based Ionic Liquids at Mica Interface H.-W. Cheng, J.-N. Dienemann, P. Stock, C. Merola, Y.-J. Chen and M. Valtiner*

More information

Application of the GD-Profiler 2 to the PV domain

Application of the GD-Profiler 2 to the PV domain Application of the GD-Profiler 2 to the PV domain GD Profiler 2 RF GDOES permits to follow the distribution of the elements as function of depth. This is an ultra fast characterisation technique capable

More information

HOW TO APPROACH SCANNING ELECTRON MICROSCOPY AND ENERGY DISPERSIVE SPECTROSCOPY ANALYSIS. SCSAM Short Course Amir Avishai

HOW TO APPROACH SCANNING ELECTRON MICROSCOPY AND ENERGY DISPERSIVE SPECTROSCOPY ANALYSIS. SCSAM Short Course Amir Avishai HOW TO APPROACH SCANNING ELECTRON MICROSCOPY AND ENERGY DISPERSIVE SPECTROSCOPY ANALYSIS SCSAM Short Course Amir Avishai RESEARCH QUESTIONS Sea Shell Cast Iron EDS+SE Fe Cr C Objective Ability to ask the

More information

Molecular Depth Profiling with Cluster Ion Beams

Molecular Depth Profiling with Cluster Ion Beams 1 2 3 4 5 Molecular Depth Profiling with Cluster Ion Beams Juan Cheng, Andreas Wucher, and Nicholas Winograd*, Chemistry Department, PennsylVania State UniVersity, 104 Chemistry Building, UniVersity Park,

More information

Keywords: Abstract. Uwe Scheithauer. Unterhaching

Keywords: Abstract. Uwe Scheithauer. Unterhaching Sputter Induced Cross Contaminations in Analytical AES and XPS Instrumentation: Utilization of the effect for the In situ Deposition of Ultrathin Functional Layers Uwe Scheithauer Unterhaching Phone: +49

More information

Opportunities for Advanced Plasma and Materials Research in National Security

Opportunities for Advanced Plasma and Materials Research in National Security Opportunities for Advanced Plasma and Materials Research in National Security Prof. J.P. Allain allain@purdue.edu School of Nuclear Engineering Purdue University Outline: Plasma and Materials Research

More information

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2 Nanostructure Materials Growth Characterization Fabrication More see Waser, chapter 2 Materials growth - deposition deposition gas solid Physical Vapor Deposition Chemical Vapor Deposition Physical Vapor

More information

AP5301/ Name the major parts of an optical microscope and state their functions.

AP5301/ Name the major parts of an optical microscope and state their functions. Review Problems on Optical Microscopy AP5301/8301-2015 1. Name the major parts of an optical microscope and state their functions. 2. Compare the focal lengths of two glass converging lenses, one with

More information

Resolving Questions of Biological Interface Chemistry with TOF-SIMS and FIB-TOF Tomography

Resolving Questions of Biological Interface Chemistry with TOF-SIMS and FIB-TOF Tomography Resolving Questions of Biological Interface Chemistry with TOF-SIMS and FIB-TOF Tomography Gregory L. Fisher, John S. Hammond & Scott R. Bryan, Physical Electronics With acknowledgements to: Prof. Reinhard

More information

IV. Surface analysis for chemical state, chemical composition

IV. Surface analysis for chemical state, chemical composition IV. Surface analysis for chemical state, chemical composition Probe beam Detect XPS Photon (X-ray) Photoelectron(core level electron) UPS Photon (UV) Photoelectron(valence level electron) AES electron

More information

The Controlled Evolution of a Polymer Single Crystal

The Controlled Evolution of a Polymer Single Crystal Supporting Online Material The Controlled Evolution of a Polymer Single Crystal Xiaogang Liu, 1 Yi Zhang, 1 Dipak K. Goswami, 2 John S. Okasinski, 2 Khalid Salaita, 1 Peng Sun, 1 Michael J. Bedzyk, 2 Chad

More information

Table of Content. Mechanical Removing Techniques. Ultrasonic Machining (USM) Sputtering and Focused Ion Beam Milling (FIB)

Table of Content. Mechanical Removing Techniques. Ultrasonic Machining (USM) Sputtering and Focused Ion Beam Milling (FIB) Table of Content Mechanical Removing Techniques Ultrasonic Machining (USM) Sputtering and Focused Ion Beam Milling (FIB) Ultrasonic Machining In ultrasonic machining (USM), also called ultrasonic grinding,

More information

Methods of surface analysis

Methods of surface analysis Methods of surface analysis Nanomaterials characterisation I RNDr. Věra Vodičková, PhD. Surface of solid matter: last monoatomic layer + absorbed monolayer physical properties are effected (crystal lattice

More information

XPS/UPS and EFM. Brent Gila. XPS/UPS Ryan Davies EFM Andy Gerger

XPS/UPS and EFM. Brent Gila. XPS/UPS Ryan Davies EFM Andy Gerger XPS/UPS and EFM Brent Gila XPS/UPS Ryan Davies EFM Andy Gerger XPS/ESCA X-ray photoelectron spectroscopy (XPS) also called Electron Spectroscopy for Chemical Analysis (ESCA) is a chemical surface analysis

More information

Spontaneous Pattern Formation from Focused and Unfocused Ion Beam Irradiation

Spontaneous Pattern Formation from Focused and Unfocused Ion Beam Irradiation Mat. Res. Soc. Symp. Proc. Vol. 696 2002 Materials Research Society Spontaneous Pattern Formation from Focused and Unfocused Ion Beam Irradiation Alexandre Cuenat and Michael J. Aziz Division of Engineering

More information

Keywords. 1=magnetron sputtering, 2= rotatable cathodes, 3=substrate temperature, 4=anode. Abstract

Keywords. 1=magnetron sputtering, 2= rotatable cathodes, 3=substrate temperature, 4=anode. Abstract Managing Anode Effects and Substrate Heating from Rotatable Sputter Targets. F. Papa*, V. Bellido-Gonzalez**, Alex Azzopardi**, Dr. Dermot Monaghan**, *Gencoa Technical & Business Support in US, Davis,

More information

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped gold substrate. (a) Spin coating of hydrogen silsesquioxane (HSQ) resist onto the silicon substrate with a thickness

More information

Highly Efficient Flexible Solar Cells Based on Room-Temperature

Highly Efficient Flexible Solar Cells Based on Room-Temperature Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry Please do 2018 not adjust margins Supporting Information Highly Efficient Flexible

More information

Steady-State Statistical Sputtering Model for Extracting Depth Profiles from Molecular Dynamics Simulations of Dynamic SIMS

Steady-State Statistical Sputtering Model for Extracting Depth Profiles from Molecular Dynamics Simulations of Dynamic SIMS pubs.acs.org/jpcc Steady-State Statistical Sputtering Model for Extracting Depth Profiles from Molecular Dynamics Simulations of Dynamic SIMS Robert J. Paruch, Zbigniew Postawa, Andreas Wucher, and Barbara

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

Atmospheric pressure Plasma Enhanced CVD for large area deposition of TiO 2-x electron transport layers for PV. Heather M. Yates

Atmospheric pressure Plasma Enhanced CVD for large area deposition of TiO 2-x electron transport layers for PV. Heather M. Yates Atmospheric pressure Plasma Enhanced CVD for large area deposition of TiO 2-x electron transport layers for PV Heather M. Yates Why the interest? Perovskite solar cells have shown considerable promise

More information

( 1+ A) 2 cos2 θ Incident Ion Techniques for Surface Composition Analysis Ion Scattering Spectroscopy (ISS)

( 1+ A) 2 cos2 θ Incident Ion Techniques for Surface Composition Analysis Ion Scattering Spectroscopy (ISS) 5.16 Incident Ion Techniques for Surface Composition Analysis 5.16.1 Ion Scattering Spectroscopy (ISS) At moderate kinetic energies (few hundred ev to few kev) ion scattered from a surface in simple kinematic

More information

Energy fluxes in plasmas for fabrication of nanostructured materials

Energy fluxes in plasmas for fabrication of nanostructured materials Energy fluxes in plasmas for fabrication of nanostructured materials IEAP, Universität Kiel 2nd Graduate Summer Institute "Complex Plasmas" August 5-13, 2010 in Greifswald (Germany) AG 1 Outline Motivation

More information

Electron beam scanning

Electron beam scanning Electron beam scanning The Electron beam scanning operates through an electro-optical system which has the task of deflecting the beam Synchronously with cathode ray tube which create the image, beam moves

More information

A. Optimizing the growth conditions of large-scale graphene films

A. Optimizing the growth conditions of large-scale graphene films 1 A. Optimizing the growth conditions of large-scale graphene films Figure S1. Optical microscope images of graphene films transferred on 300 nm SiO 2 /Si substrates. a, Images of the graphene films grown

More information

Impact of Contact Evolution on the Shelf Life of Organic Solar Cells

Impact of Contact Evolution on the Shelf Life of Organic Solar Cells Impact of Contact Evolution on the Shelf Life of Organic Solar Cells By Matthew T. Lloyd, Dana C. Olson, Ping Lu, Erica Fang, Diana L. Moore, Matthew S. White, Matthew O. Reese, David S. Ginley, and Julia

More information

Chapter 12. Nanometrology. Oxford University Press All rights reserved.

Chapter 12. Nanometrology. Oxford University Press All rights reserved. Chapter 12 Nanometrology Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands in relation to a meter and sub divisions of meter. Nanometrology

More information

Large Area TOF-SIMS Imaging of the Antibacterial Distribution in Frozen-Hydrated Contact Lenses

Large Area TOF-SIMS Imaging of the Antibacterial Distribution in Frozen-Hydrated Contact Lenses Large Area TOF-SIMS Imaging of the Antibacterial Distribution in Frozen-Hydrated Contact Lenses Overview: Imaging by time-of-flight secondary ion mass spectrometry (TOF-SIMS) is accomplished in a vacuum

More information

planar heterojunction perovskite solar cells to 19%

planar heterojunction perovskite solar cells to 19% Supporting Information Carbon quantum dots/tio x electron transport layer boosts efficiency of planar heterojunction perovskite solar cells to 19% Hao Li a, Weina Shi a, Wenchao Huang b, En-ping Yao b,

More information

Chapter 10. Nanometrology. Oxford University Press All rights reserved.

Chapter 10. Nanometrology. Oxford University Press All rights reserved. Chapter 10 Nanometrology Oxford University Press 2013. All rights reserved. 1 Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands

More information

ETCHING Chapter 10. Mask. Photoresist

ETCHING Chapter 10. Mask. Photoresist ETCHING Chapter 10 Mask Light Deposited Substrate Photoresist Etch mask deposition Photoresist application Exposure Development Etching Resist removal Etching of thin films and sometimes the silicon substrate

More information

Lecture 5-8 Instrumentation

Lecture 5-8 Instrumentation Lecture 5-8 Instrumentation Requirements 1. Vacuum Mean Free Path Contamination Sticking probability UHV Materials Strength Stability Permeation Design considerations Pumping speed Virtual leaks Leaking

More information

Auger Electron Spectroscopy (AES) Prof. Paul K. Chu

Auger Electron Spectroscopy (AES) Prof. Paul K. Chu Auger Electron Spectroscopy (AES) Prof. Paul K. Chu Auger Electron Spectroscopy Introduction Principles Instrumentation Qualitative analysis Quantitative analysis Depth profiling Mapping Examples The Auger

More information

UNIT 3. By: Ajay Kumar Gautam Asst. Prof. Dev Bhoomi Institute of Technology & Engineering, Dehradun

UNIT 3. By: Ajay Kumar Gautam Asst. Prof. Dev Bhoomi Institute of Technology & Engineering, Dehradun UNIT 3 By: Ajay Kumar Gautam Asst. Prof. Dev Bhoomi Institute of Technology & Engineering, Dehradun 1 Syllabus Lithography: photolithography and pattern transfer, Optical and non optical lithography, electron,

More information

A DIVISION OF ULVAC-PHI. Time-of-Flight Secondary Ion Mass Spectrometer with Parallel Imaging MS/MS for Confident Molecular Identification

A DIVISION OF ULVAC-PHI. Time-of-Flight Secondary Ion Mass Spectrometer with Parallel Imaging MS/MS for Confident Molecular Identification A DIVISION OF ULVAC-PHI Time-of-Flight Secondary Ion Mass Spectrometer with Parallel Imaging MS/MS for Confident Molecular Identification Designed for Confident Molecular Identification and Superior Imaging

More information

Supplementary Materials

Supplementary Materials Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation Yi Wei Chen 1, Jonathan D. Prange 2, Simon Dühnen 2, Yohan Park 1, Marika Gunji 1, Christopher E. D. Chidsey 2, and

More information

Hiden SIMS Secondary Ion Mass Spectrometers. Analysers for surface, elemental and molecular analysis

Hiden SIMS Secondary Ion Mass Spectrometers. Analysers for surface, elemental and molecular analysis Hiden SIMS Secondary Ion Mass Spectrometers Analysers for surface, elemental and molecular analysis vacuum analysis surface science plasma diagnostics gas analysis SIMS Versatility SIMS is a high sensitivity

More information

A comparison of molecular dynamic simulations and experimental observations: the sputtering of gold {1 0 0} by 20 kev argon

A comparison of molecular dynamic simulations and experimental observations: the sputtering of gold {1 0 0} by 20 kev argon Applied Surface Science 231 232 (2004) 39 43 A comparison of molecular dynamic simulations and experimental observations: the sputtering of gold {1 0 0} by 20 kev argon C.M. McQuaw *, E.J. Smiley, B.J.

More information

Case Study of Electronic Materials Packaging with Poor Metal Adhesion and the Process for Performing Root Cause Failure Analysis

Case Study of Electronic Materials Packaging with Poor Metal Adhesion and the Process for Performing Root Cause Failure Analysis Case Study of Electronic Materials Packaging with Poor Metal Adhesion and the Process for Performing Root Cause Failure Analysis Dr. E. A. Leone BACKGRUND ne trend in the electronic packaging industry

More information

Molecular Ordering at the Interface Between Liquid Water and Rutile TiO 2 (110)

Molecular Ordering at the Interface Between Liquid Water and Rutile TiO 2 (110) Molecular Ordering at the Interface Between Liquid Water and Rutile TiO 2 (110) B E A T R I C E B O N A N N I D i p a r t i m e n t o d i F i s i c a, U n i v e r s i t a di R o m a T o r V e r g a t a

More information

NUCLEAR TRANSMUTATION IN DEUTERED PD FILMS IRRADIATED BY AN UV LASER

NUCLEAR TRANSMUTATION IN DEUTERED PD FILMS IRRADIATED BY AN UV LASER Castellano, et al. Nuclear Transmutation in Deutered Pd Films Irradiated by an UV Laser. in 8th International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna,

More information

Interfacial Chemistry and Adhesion Phenomena: How to Analyse and How to Optimise

Interfacial Chemistry and Adhesion Phenomena: How to Analyse and How to Optimise Interfacial Chemistry and Adhesion Phenomena: How to Analyse and How to Optimise John F Watts Department of Mechanical Engineering Sciences The Role of Surface Analysis in Adhesion Studies Assessing surface

More information

Enhanced High Aspect Ratio Etch Performance With ANAB Technology. Keywords: High Aspect Ratio, Etch, Neutral Particles, Neutral Beam I.

Enhanced High Aspect Ratio Etch Performance With ANAB Technology. Keywords: High Aspect Ratio, Etch, Neutral Particles, Neutral Beam I. Enhanced High Aspect Ratio Etch Performance With ANAB Technology. Keywords: High Aspect Ratio, Etch, Neutral Particles, Neutral Beam I. INTRODUCTION As device density increases according to Moore s law,

More information

ph-depending Enhancement of Electron Transfer by {001} Facet-Dominating TiO 2 Nanoparticles for Photocatalytic H 2 Evolution under Visible Irradiation

ph-depending Enhancement of Electron Transfer by {001} Facet-Dominating TiO 2 Nanoparticles for Photocatalytic H 2 Evolution under Visible Irradiation S1 ph-depending Enhancement of Electron Transfer by {001} Facet-Dominating TiO 2 Nanoparticles for Photocatalytic H 2 Evolution under Visible Irradiation Masato M. Maitani a *, Zhan Conghong a,b, Dai Mochizuki

More information

In-situ probing of near and below sputter-threshold ion-induced nanopatterning on GaSb(1 0 0)

In-situ probing of near and below sputter-threshold ion-induced nanopatterning on GaSb(1 0 0) Purdue University Purdue e-pubs Birck and NCN Publications Birck Nanotechnology Center 2-1-2012 In-situ probing of near and below sputter-threshold ion-induced nanopatterning on GaSb(1 0 0) Osman El-Atwani

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012830 TITLE: XPS Study of Cu-Clusters and Atoms in Cu/SiO2 Composite Films DISTRIBUTION: Approved for public release, distribution

More information

Supporting Information

Supporting Information Supporting Information Visible Light-Driven BiOI-Based Janus Micromotors in Pure Water Renfeng Dong, a Yan Hu, b Yefei Wu, b Wei Gao, c Biye Ren, b* Qinglong Wang, a Yuepeng Cai a* a School of Chemistry

More information

Size-selected Metal Cluster Deposition on Oxide Surfaces: Impact Dynamics and Supported Cluster Chemistry

Size-selected Metal Cluster Deposition on Oxide Surfaces: Impact Dynamics and Supported Cluster Chemistry Size-selected Metal Cluster Deposition on Oxide Surfaces: Impact Dynamics and Supported Cluster Chemistry Sungsik Lee, Masato Aizawa, Chaoyang Fan, Tianpin Wu, and Scott L. Anderson Support: AFOSR, DOE

More information