Abdominal DECT: How to Integrate Into Your Practice

Size: px
Start display at page:

Download "Abdominal DECT: How to Integrate Into Your Practice"

Transcription

1 Abdominal DECT: How to Integrate Into Your Practice Eric Tamm, M.D. Department of Diagnostic Radiology Division of Diagnostic Imaging MD Anderson Cancer Center Houston, TX

2 Disclosure I have no relationships with commercial interests to disclose. 2

3 Overview Background of multispectral (MSpCT) imaging Ideas for where MSpCT can be integrated into an abdominal imaging practice (applications) How to create/convert to a dual energy protocol (RSDECT, DSDECT) Workflow, scanner to PACS Workflow, an approach to reading studies 3

4 Background of MSCT Different Materials Attenuate Differently from one another at Different X-ray Energies 4

5 Types of Multispectral CT Cammin Proc SPIE 7961, 2011 DSDECT RSDECT SS Dual Layer MSCT Flux 80 kvp 140 kvp Flux 120 or 140 kvp kvp DICOM 140 kvp DICOM Raw Data Raw Data MDI, MONO, Blended PC MDI, MONO, QC image 120 kvp DICOM MDI, MONO 5

6 Two Material Decomposition= Material Density Images (GE, Phillios) Known curves (NIST) Unknown Material Iodine Curve Water Curve 70 kev Water(- iodine) ROI=1022 mg/cm3 Iodine(- water) ROI=27 mg/cm3 Each material has unique attenuation curve Each curve can be represented by combination of two curves of known materials Can decompose voxel to the amount of water and iodine needed to mimic the actual curve of that voxel 7

7 (DSDECT): 3 Material Decomposition, VNC and Iodine Image Virtual NonContrast Iodine Map 9

8 Iodine: Iodine Map and Iodine Overlay 10

9 Monochromatic Images Conventional images are formed from polychromatic sources Monochromatic images show image data as if an x-ray source of only one energy (monochromatic), i.e. 70 kev had been used Terms to know: kvp= the maximum energy in a polychromatic spectra kev= the unit of energy used to denote one energy level. Used to describe a monochromatic beam. Flux Polychromatic Dual Energy Spectra 70 kev 80 kvp Energy 140 kvp 11

10 40-140keV Monochromatic Energy Images 40keV 60keV 80keV 100keV 120keV 140keV 12

11 Blends of Polychromatic Beam (DSDECT): Low, Optimized, High Blends (80-100&140KVP) 3mm Blended Emphasizing Low Energy 3mm Blended Emphasizing Optimum Contrast 3mm Blended Emphasizing High Energy 13

12 Where Can DECT Be Integrated Into an Abdominal Imaging Practice (Applications) 14

13 Broad Classes of Applications Iodine: Increasing its conspicuity. Material composition What is it made of? Removing a material from images Removing/decreasing artifacts from metal 15

14 Hepatocellular Carcinoma 70keV ~ 120kvP 40 kev Iodine (-water) Material density *Shuman, W. P. (2014). AJR. 16

15 Small Bowel Carcinoid Tumor Late Arterial Phase 70keV 70 kev 50keV Iodine(water) 17

16 Pancreatic Cancer: Increasing Conspicuity 120 kvp image, at baseline 70 kev axial, 1 month later Iodine (-water) Material Density 1 month later 18

17 Visualizing Internal Enhancement of Cysts 70keV 50keV 20

18 Color Map to Identify Enhancement Iodine (-water) image 70 kev image Iodine overlay color map

19 Increasing Conspicuity of Vessels 50 kev axial MIP Late arterial (PP) phase* *Rauch et al. RSNA

20 Material Composition: What is it made of? 25

21 Tools Virtual unenhanced (VUE): Are several evolving types (2 MD, 3MD, MSI) May reduce dose by avoiding pre contrast Unique material decomposition Comparison against NIST values (Virtual atomic number, histogram, spectral HU curves) 26

22 Virtual Unenhanced Images: Types mono kev Energy level furthest from k-edge of iodine (33keV), minimizes iodine s impact Water(iodine)= water MINUS iodine, MDI Problem: Units are unfamiliar mg/cc, not HU Material Suppressed Imaging for Iodine ( MSI ) Substitute blood for equal volume of iodine= HU! 3 material decomposition = HU! VUE values may*, or may not, depend on contrast phase from which VUE images are derived Relationship between various VUE and true non-contrast is not simple** *Sahni, V. A. (2013). Clin Radiol, ) ** Morgan, D. E. (2013) True Unenh MSI 27

23 Lipid Rich Adenoma: Late Arterial Phase RSDECT 70kev, postcontrast, 90HU True 140 kev MSI water(iodine) fat(iodine) noncontrast 8 HU 11.8HU 16.4HU 942mg/cc 988mg/cc Lipid rich vs. poor adenoma * 9.5 sens 64% spec 94% LRA * Morgan, D. E. (2013). JCAT **Glazer AJR 2014,***Mileto Radiology 2014 * 994 sens 59% **<992 LRA * 987 sens 50% LRA *** 997 Adenoma vs Nonaden, sens 96% spec 100%

24 Ex: Renal Calculi 70keV True noncontrast 140 kev MSI water(iodine) HU mg/cc HU 30

25 Stone Analysis: Pitfall Atomic Z : Theoretical atomic number for a material behaving same as that in a given voxel at 80/140kVp, compare with knowns Pitfall: Volume averaging with iodine. Best approach: DECT on unenhanced scan (Wang, J. (2012). Eur Radiol) 31

26 Removal of a Material From Images 33

27 Angiography MIP 70 kev MIP iodine (HAP) 34

28 Pancreatic Cancer: Resected, Surgical Clips in Operative Site 120 kvp, polychromatic 86 kev, monochromatic 86 kev, monochromatic MARS (metal artifact reduction sequence)

29 Workflow: Creating Protocols Converting Existing Protocols to Dual Energy RSDECT vs DSDECT 41

30 Context: Scope of MD Anderson Operations 21 CT Scanners In 4 Separate Facilities 72 CT Technologists 53 Nurses 120 Radiologist (48 Body) 48 residents 9 Fellows pts. Per wkday 200 pts. Sat & Sun. 80% = body: AP, CAP 42

31 Creating a RSDECT Protocol RSDECT can t use tube current modulation, but does have ASIR noise reduction (can choose how strong) Manufacturer has created presets: Are combinations of tube rotation, fixed tube current, filter, and pitch for body sizes that produce a fixed CTDI These are listed in a table Based on a needed CTDI, can choose appropriate preset For abdomen, usually large body 43

32 Converting to a RSDECT Protocol Identify phase to convert to DECT e.g. late arterial phase Choose a parameter for patient size DFOV, diameter, BMI Get list of patients For each patient study, record Size dimension CTDI (tube output) Sort patients by dimension Identify convenient breakpoints for size Note the highest CTDI for each group and choose matching GSI preset Modify timing based on pitch/ rotation time, scan time for GSI At end, have a protocol for each size range. CTDI N1 CTDI N2 CTDI N3 DFOV GSI x GSI y GSI z NonDECT 44

33 Alternative: AutoGSI When technologist puts in noise index that is wanted Scanner evaluates scout Suggests GSI setting to use that will produce closest average CTDI for scan to achieve that NI Noise Index + GSI Preset 45

34 RSDECT: MDACC Scanner to PACS Workflow Dual energy data pushed to AW Server and PACS keV with full GSI data GE Advantage Windows Thin Client-Server Used for problem solving Constraints: Limited installations, user needs to be comfortable with software Scanner can automatically create & push to PACS: Water/Iodine/calcium MDI MPRs, kev monochromatic QC : Quality control= 140kVp image* AW Server *manufacturer says not for diagnosis RSDECT isite PACS 46

35 Example: Pancreas Protocol: Data to PACS 3.8mm True UE 2.5mm QC (140kVp) 0.6mm70keV DE Data 0.6mm PV phase (120kVp) 2.5mm sag PV phas mm 70kev 2.5mm 50keV 2.5mmH2O(-iod)VUE 2.5mm iod(-h2o) 2.5mm cor PV phase

36 Converting to a Dual Source DECT Protocol Tube current modulation is available as are noise reduction techniques Can choose 80 or 100kVp for lower energy, (usually 100kVp), and 140kVp for larger Limiting factor: dual energy data only available over coverage of both tubes (33 cm) Pathology needs to be within circle 48

37 Converting to a DSDECT Protocol Identify phase to convert to DECT Identify reference ma for phase For multiphasic, will be DE on those close together, e.g. Art/PV Set Tube A 80 or 100 kvp, Tube B as 140kVp Create image sets for recons (0.6-2mm, q kernel) from Tube A &Tube B Choose nature of blended polychromatic (e.g. optimum), thickness (3mm), kernels (e.g. i30 or i31, and strength (f1-3) Decide upper limit of patient size on which to do dual energy (33cm circle) Monochromatic, virtual noncontrast, iodine quantitation images all are created on workstation Radiologist uses Syngo Via thin client software Alternative: create 3mm slices of 100kVp Tube A which is of entire FOV 49

38 DSDECT: Image Sets at Scanner Pushed to PACS 0.75mm LA TubeA 100kVp 0.75mm LA TubeB 100kVp 0.75mm PV TubeA 100kVp 0.75mm PV TubeB 100kVp 3mm True UE 3mm Opt LA PC Blend 3mm OPT PV Blend 3mm Cor PV Blend 3mm Sag PV 50 Blend

39 Blends of Polychromatic Beam: Low, Optimized, High 3mm low KVP Blended PC 3mm opt Blended PC High low KVP Blended PC 52

40 100kVp Tube A versus Optimized Mono + 3mm Tube A 100 KVP 3mm Tube A 100 KVP 53

41 Virtual Unenhanced and Fused Iodine Map 54

42 Future Directions: Automated Processing Current: isite PACS Syngo Via Future: Virt Uneh, iodine, mono Syngo Via 55

43 Pitfalls/Solutions 56

44 Breast Shield: Streak Artifact Solution: No breast shields for DECT studies Decrease dose for chest portion of studies 57

45 Arm Down: Streak Artifact Use non-dect if arms, tubes, lines are anticipated as a problem DECT PP Phase Non-DECT PV Phase 58

46 Blurring (Large Patients, DFOV 48) Other solutions: Edge enh. Filters or Use Non-DECT Techniques DECT 70 kev monoch Solution: 140 kvp QC Image

47 Alternative Solve: 80 kev Monochromatic, With or Without Edge Filter 2.5mm 70 kev 3mm 80 kev 3mm 80 kev Edge Filter 140kVp QC

48 Workflow: Approach to Reading a Study

49 Image Review: Ex: Pancreatic Cancer PV Phase 70 kev PP & 120 kvp PV in same stack Iodine MDI Max conspicuity **Thin client workstation software (rarely) for problem solving on PACS stations. 50 kev Problem solver 62

50 Reviewing DSDECT Images Syngo Via & Thin Client PV Phase Opt Blend 3mm PC Mono plus 40 kev Fused iodine 63

51 Conclusion Evolving approaches to multispectral imaging Several applications are developing in the abdomen Different workflows depending on the type of scanner Must keep in mind what can be done on the scanner, ease of use of workstation software, and work volume Can constrain use of the workstation to problem solving Can create several different types of images These can be used efficiently, as in MRI 64

52 Thank you!

DUAL ENERGY of the Pancreas

DUAL ENERGY of the Pancreas DUAL ENERGY of the Pancreas Desiree E. Morgan, MD Professor and Vice Chair Clinical Research Director Human Imaging Shared Facility UAB CCC University of Alabama at Birmingham Opportunities to improve?

More information

Applications of Low KeV Imaging in Abdomen

Applications of Low KeV Imaging in Abdomen Applications of Low KeV Imaging in Abdomen Dushyant Sahani, M.D Director of CT Associate Professor of Radiology Massachusetts General Hospital Harvard Medical School Email-dsahani@partners.org Disclosure

More information

X. Allen Li. Disclosure. DECT: What, how and Why Why dual-energy CT (DECT)? 7/30/2018. Improving delineation and response assessment using DECT in RT

X. Allen Li. Disclosure. DECT: What, how and Why Why dual-energy CT (DECT)? 7/30/2018. Improving delineation and response assessment using DECT in RT Improving delineation and response assessment using DECT in RT X. Allen Li Medical College of Wisconsin MO-A-DBRA-1, AAPM, July 30 th, 2018 Disclosure Research funding support: Siemens Healthineers Elekta

More information

Data Acquisition and Image Formation Methods for Multi Energy CT

Data Acquisition and Image Formation Methods for Multi Energy CT Data Acquisition and Image Formation Methods for Multi Energy CT Cynthia H. McCollough, PhD, DABR, FAIMBE, FAAPM, FACR Professor of Medical Physics and Biomedical Engineering Director, CT Clinical Innovation

More information

Multi-Energy CT: Principles, Processing

Multi-Energy CT: Principles, Processing Multi-Energy CT: Principles, Processing and Clinical Applications Shuai Leng, PhD Associate Professor Department of Radiology Mayo Clinic, Rochester, MN Clinical Motivation CT number depends on x-ray attenuation

More information

A practical approach to the introduction of spectral imaging into a large UK acute care teaching hospital

A practical approach to the introduction of spectral imaging into a large UK acute care teaching hospital A practical approach to the introduction of spectral imaging into a large UK acute care teaching hospital Robert Loader Clinical Scientist Clinical & Radiation Physics Directorate of Healthcare Science

More information

Metal Artifact Reduction with DECT

Metal Artifact Reduction with DECT Metal Artifact Reduction with DECT Daniele Marin, MD Duke University Medical Center Metal artifacts Common clinical problem ( 20%) Boas EF et al. Radiology 2011 Beam Hardening Edge Effects Scatter Metal

More information

Carlo N. De Cecco, MD, PhD

Carlo N. De Cecco, MD, PhD New Contrast Injection Strategies in Low kv and kev Imaging Carlo N. De Cecco, MD, PhD FSCBTMR - FSCCT - FESGAR Consultant for / Research support from: Siemens Bayer Guerbet Low kv and kev imaging Rationale

More information

Detector. * All clinical images are courtesy of. University, Jerusalem. Ami Altman, Ph.D., and Raz Carmi Ph.D., CT BU, PHILIPS Healthcare

Detector. * All clinical images are courtesy of. University, Jerusalem. Ami Altman, Ph.D., and Raz Carmi Ph.D., CT BU, PHILIPS Healthcare AD Dual-Energy alenerg CT Based on A Double Layer Detector * All clinical images are courtesy of Hadassah Medical Center, The Hebrew University, Jerusalem Ami Altman, Ph.D., and Raz Carmi Ph.D., CT BU,

More information

Metal Artifact Reduction and Dose Efficiency Improvement on Photon Counting Detector CT using an Additional Tin Filter

Metal Artifact Reduction and Dose Efficiency Improvement on Photon Counting Detector CT using an Additional Tin Filter Metal Artifact Reduction and Dose Efficiency Improvement on Photon Counting Detector CT using an Additional Tin Filter Wei Zhou, Dilbar Abdurakhimova, Kishore Rajendran, Cynthia McCollough, Shuai Leng

More information

Electron density and effective atomic number images generated by dual energy imaging with a 320-detector CT system: A feasibility study

Electron density and effective atomic number images generated by dual energy imaging with a 320-detector CT system: A feasibility study Electron density and effective atomic number images generated by dual energy imaging with a 320-detector CT system: A feasibility study Poster No.: C-0403 Congress: ECR 2014 Type: Scientific Exhibit Authors:

More information

Differential Absorption Analysis of Nonmagnetic Material in the Phantom using Dual CT

Differential Absorption Analysis of Nonmagnetic Material in the Phantom using Dual CT Journal of Magnetics 21(2), 286-292 (2016) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 http://dx.doi.org/10.4283/jmag.2016.21.2.286 Differential Absorption Analysis of Nonmagnetic Material in the Phantom

More information

Two-Material Decomposition From a Single CT Scan Using Statistical Image Reconstruction

Two-Material Decomposition From a Single CT Scan Using Statistical Image Reconstruction / 5 Two-Material Decomposition From a Single CT Scan Using Statistical Image Reconstruction Yong Long and Jeffrey A. Fessler EECS Department James M. Balter Radiation Oncology Department The University

More information

The physics of medical imaging US, CT, MRI. Prof. Peter Bogner

The physics of medical imaging US, CT, MRI. Prof. Peter Bogner The physics of medical imaging US, CT, MRI Prof. Peter Bogner Clinical radiology curriculum blocks of lectures and clinical practice (7x2) Physics of medical imaging Neuroradiology Head and neck I. Head

More information

An experimental study of dual-energy CT imaging using synchrotron radiation

An experimental study of dual-energy CT imaging using synchrotron radiation Nuclear Science and Techniques 24 (2013) 020102 An experimental study of dual-energy CT imaging using synchrotron radiation HAO Jia 1,2 ZHANG Li 1,2 XING Yuxiang 1,2 KANG Kejun 1,2 1 Department of Engineering

More information

Ke Li and Guang-Hong Chen

Ke Li and Guang-Hong Chen Ke Li and Guang-Hong Chen Brief introduction of x-ray differential phase contrast (DPC) imaging Intrinsic noise relationship between DPC imaging and absorption imaging Task-based model observer studies

More information

Potentials for Dual-energy kv/mv On-board Imaging and Therapeutic Applications

Potentials for Dual-energy kv/mv On-board Imaging and Therapeutic Applications Potentials for Dual-energy kv/mv On-board Imaging and Therapeutic Applications Fang-Fang Yin Department of Radiation Oncology Duke University Medical Center Acknowledgement Dr Hao Li for his excellent

More information

Medical Applications of Compact Laser-Compton Light Source

Medical Applications of Compact Laser-Compton Light Source Medical Applications of Compact Laser-Compton Light Source Y. Hwang 1, D. J. Gibson 2, R. A. Marsh 2, G. G. Anderson 2, T. Tajima 1, C. P. J. Barty 2 1 University of California, Irvine 2 Lawrence Livermore

More information

Radionuclide Imaging MII Positron Emission Tomography (PET)

Radionuclide Imaging MII Positron Emission Tomography (PET) Radionuclide Imaging MII 3073 Positron Emission Tomography (PET) Positron (β + ) emission Positron is an electron with positive charge. Positron-emitting radionuclides are most commonly produced in cyclotron

More information

Multi-energy CT: Future Directions. Acknowledgements. Overview 7/23/2014. Taly Gilat Schmidt, PhD. Kevin Zimmerman Franco Rupcich Steven Haworth

Multi-energy CT: Future Directions. Acknowledgements. Overview 7/23/2014. Taly Gilat Schmidt, PhD. Kevin Zimmerman Franco Rupcich Steven Haworth Multi-energy CT: Future Directions Taly Gilat Schmidt, PhD Department of Biomedical Engineering Marquette University Acknowledgements Kevin Zimmerman Franco Rupcich Steven Haworth Results in this talk:

More information

Initial Certification

Initial Certification Initial Certification Medical Physics Part 1 Content Guide Part 1 Content Guides and Sample Questions PLEASE NOTE: List of Constants and Physical Values for Use on the Part 1 Physics Exam The ABR provides

More information

Coconuts, grapes, and peppers: Home-made models in the learning process of post-processing softwares used in computed-tomography (CT) imaging

Coconuts, grapes, and peppers: Home-made models in the learning process of post-processing softwares used in computed-tomography (CT) imaging Coconuts, grapes, and peppers: Home-made models in the learning process of post-processing softwares used in computed-tomography (CT) imaging Poster No.: C-3019 Congress: ECR 2010 Type: Educational Exhibit

More information

Basics of Diffusion Tensor Imaging and DtiStudio

Basics of Diffusion Tensor Imaging and DtiStudio Basics of Diffusion Tensor Imaging and DtiStudio DTI Basics 1 DTI reveals White matter anatomy Gray matter White matter DTI uses water diffusion as a probe for white matter anatomy Isotropic diffusion

More information

In today s lecture, we want to see what happens when we hit the target.

In today s lecture, we want to see what happens when we hit the target. In the previous lecture, we identified three requirements for the production of x- rays. We need a source of electrons, we need something to accelerate electrons, and we need something to slow the electrons

More information

M R I Physics Course

M R I Physics Course M R I Physics Course Some Body Techniques/Protocols Nathan Yanasak, Ph.D. Jerry Allison, Ph.D. Tom Lavin, M.S. Department of Radiology Medical College of Georgia References: 1) The Physics of Clinical

More information

Rad T 290 Worksheet 2

Rad T 290 Worksheet 2 Class: Date: Rad T 290 Worksheet 2 1. Projectile electrons travel from a. anode to cathode. c. target to patient. b. cathode to anode. d. inner shell to outer shell. 2. At the target, the projectile electrons

More information

1. Which of the following statements is true about Bremsstrahlung and Characteristic Radiation?

1. Which of the following statements is true about Bremsstrahlung and Characteristic Radiation? BioE 1330 - Review Chapters 4, 5, and 6 (X-ray and CT) 9/27/2018 Instructions: On the Answer Sheet, enter your 2-digit ID number (with a leading 0 if needed) in the boxes of the ID section. Fill in the

More information

Neural Network Approach for Photon-counting Detection The First Step: PPE Correction

Neural Network Approach for Photon-counting Detection The First Step: PPE Correction Neural Network Approach for Photon-counting Detection The First Step: PPE Correction Ruibin Feng, Ph.D. Biomedical Imaging Center, CBIS/BME, RPI fengr@rpi.edu David Rundle JairiNovus Technologies Ltd.

More information

Is there a role for robotics in PAE?

Is there a role for robotics in PAE? Is there a role for robotics in PAE? S A N D E E P B A G L A, M D V A S C U L A R I N S T I T U T E O F V I R G I N I A W O O D B R I D G E V I R G I N I A U S A A D J U N C T C L I N I C A L A S S O C

More information

An Overview of the Activities of ICS Sources in China

An Overview of the Activities of ICS Sources in China An Overview of the Activities of ICS Sources in China Chuanxiang Tang *, Yingchao Du, Wenhui Huang * tang.xuh@tsinghua.edu.cn Department of Engineering physics, Tsinghua University, Beijing 100084, China

More information

Comparison of Polychromatic and Monochromatic X-rays for Imaging

Comparison of Polychromatic and Monochromatic X-rays for Imaging Comparison of Polychromatic and Monochromatic X-rays for Imaging M. Hoheisel 1, P. Bernhardt 1, R. Lawaczeck 2, and H. Pietsch 2 1 Siemens AG Medical Solutions, Forchheim, Germany 2 Schering AG Imaging

More information

Absorption of X-rays

Absorption of X-rays Absorption of X-rays TEP Related topics Bremsstrahlung, characteristic X-radiation, Bragg scattering, law of absorption, mass absorption coefficient, absorption edges, half-value thickness, photoelectric

More information

Reducing metal artefacts and radiation dose in musculoskeletal CT imaging Wellenberg, R.H.H.

Reducing metal artefacts and radiation dose in musculoskeletal CT imaging Wellenberg, R.H.H. UvA-DARE (Digital Academic Repository) Reducing metal artefacts and radiation dose in musculoskeletal CT imaging Wellenberg, R.H.H. Link to publication Citation for published version (APA): Wellenberg,

More information

ABSOLUTE AIR-KERMA MEASUREMENT IN A SYNCHROTRON LIGHT BEAM BY IONIZATION FREE-AIR CHAMBER

ABSOLUTE AIR-KERMA MEASUREMENT IN A SYNCHROTRON LIGHT BEAM BY IONIZATION FREE-AIR CHAMBER ABSOLUTE AIR-KERMA MEASUREMENT IN A SYNCHROTRON LIGHT BEAM BY IONIZATION FREE-AIR CHAMBER M. Bovi (1), R.F. Laitano (1), M. Pimpinella (1), M. P. Toni (1), K. Casarin(2), E. Quai(2), G. Tromba(2), A. Vascotto(2),

More information

Part III Minor Option in Medical Physics 2018 Examples Sheet

Part III Minor Option in Medical Physics 2018 Examples Sheet Part III Minor Option in Medical Physics 2018 Examples Sheet Any errors or comments should be addressed sent to: seb53@cam.ac.uk URLs that may be useful: Stanford Event Generation Simulator: http://tinyurl.com/pkg476r

More information

Renal perfusion measurement with Ultrasound Contrast Agents. Emilio Quaia. Department of Radiology University of Trieste

Renal perfusion measurement with Ultrasound Contrast Agents. Emilio Quaia. Department of Radiology University of Trieste Renal perfusion measurement with Ultrasound Contrast Agents Emilio Quaia Department of Radiology University of Trieste Basics of Ultrasound Contrast Agents 1. Chemicals 2. Physics 3. Pharmacokinetics 4.

More information

BREAST SEED LOCALIZATION

BREAST SEED LOCALIZATION BREAST SEED LOCALIZATION AN RSO PERSPECTIVE PRESENTED BY JON ARO JUNE 2017 www.ottawahospital.on.ca OUTLINE What is seed localization? Program Overview Licensing Training Staff Exposures Patient Exposures

More information

Proposed Room Requirements for CT System

Proposed Room Requirements for CT System Siemens Proposed Room Requirements for CT System Semarang, 4-5 May 2017 Restricted Siemens Healthcare GmbH, 2016 Page 1 Roles of Medical Physicist CT Image Quality Radiation Protection Optimization Medical

More information

Konzepte zur Charakterisierung klinischer CT-Systeme unter Einbeziehung von Bildqualität und Dosis

Konzepte zur Charakterisierung klinischer CT-Systeme unter Einbeziehung von Bildqualität und Dosis Konzepte zur Charakterisierung klinischer CT-Systeme unter Einbeziehung von Bildqualität und Dosis Characterization of clinical CT systems using a dose efficiency index (DEI) Aktenzeichen / FKZ : BfS AG-F

More information

Projection Radiography

Projection Radiography Projection Radiography Yao Wang Polytechnic University, Brooklyn, NY 11201 Based on J. L. Prince and J. M. Links, Medical Imaging Signals and Systems, and lecture notes by Prince. Figures are from the

More information

REFAAT E. GABR, PHD Fannin Street, MSE R102D, Houston, Texas 77030

REFAAT E. GABR, PHD Fannin Street, MSE R102D, Houston, Texas 77030 NAME: Refaat Elsayed Gabr REFAAT E. GABR, PHD 3-Jul-13 5 pages PRESENT TITLE: ADDRESS: BIRTHDATE: CITIZENSHIP: Assistant Professor of Radiology Department of Diagnostic and Interventional Imaging University

More information

What is Albira and How Does the System Work and Why is it Differentiated Technology? Page 1

What is Albira and How Does the System Work and Why is it Differentiated Technology? Page 1 What is Albira and How Does the System Work and Why is it Differentiated Technology? Page 1 Why Albira? Tri-modality: PET, SPECT, CT Modular and state-of-the-art electronics 6 configurations Novel, Proprietary

More information

Doppler Ultrasound: from basics to practice

Doppler Ultrasound: from basics to practice Doppler Ultrasound: from basics to practice Poster No.: C-1643 Congress: ECR 2016 Type: Educational Exhibit Authors: J. A. Abreu, A. Vasquez, J. Romero, H. Rivera; Bogota/CO Keywords: Ultrasound physics,

More information

Rad Tech 4912 MRI Registry Review. Outline of the Registry Exam: Certification Fees

Rad Tech 4912 MRI Registry Review. Outline of the Registry Exam: Certification Fees Rad Tech 4912 MRI Registry Review Outline of the Registry Exam: Category: # of questions: A. Patient Care 30 B. Imaging Procedures 62 C. Data Acquisition and Processing 65 D. Physical Principles of Image

More information

CLINICALLY USEFUL RADIONUCLIDES:

CLINICALLY USEFUL RADIONUCLIDES: INTRODUCTION It is important that Nuclear Medicine Technologists be familiar with the imaging properties of all commonly used radionuclides to insure correct choice of isotope for a particular study as

More information

Assessment of an Advanced Monoenergetic Reconstruction Technique in Dual-Energy Computed Tomography of Head and Neck Cancer

Assessment of an Advanced Monoenergetic Reconstruction Technique in Dual-Energy Computed Tomography of Head and Neck Cancer DOI 10.1007/s00330-015-3627-1 HEAD AND NECK Assessment of an Advanced Monoenergetic Reconstruction Technique in Dual-Energy Computed Tomography of Head and Neck Cancer Moritz H. Albrecht & Jan-Erik Scholtz

More information

HOW TO ANALYZE SYNCHROTRON DATA

HOW TO ANALYZE SYNCHROTRON DATA HOW TO ANALYZE SYNCHROTRON DATA 1 SYNCHROTRON APPLICATIONS - WHAT Diffraction data are collected on diffractometer lines at the world s synchrotron sources. Most synchrotrons have one or more user facilities

More information

PERFORMANCE EVALUATION OF MATERIAL DECOMPOSITION USING RAPID KVP-SWITCHING DUAL-ENERGY CT FOR ASSESSING BONE MINERAL DENSITY

PERFORMANCE EVALUATION OF MATERIAL DECOMPOSITION USING RAPID KVP-SWITCHING DUAL-ENERGY CT FOR ASSESSING BONE MINERAL DENSITY Texas Medical Center Library DigitalCommons@TMC UT GSBS Dissertations and Theses (Open Access) Graduate School of Biomedical Sciences 5-2014 PERFORMANCE EVALUATION OF MATERIAL DECOMPOSITION USING RAPID

More information

Diffusion Tensor Imaging quality control : artifacts assessment and correction. A. Coste, S. Gouttard, C. Vachet, G. Gerig. Medical Imaging Seminar

Diffusion Tensor Imaging quality control : artifacts assessment and correction. A. Coste, S. Gouttard, C. Vachet, G. Gerig. Medical Imaging Seminar Diffusion Tensor Imaging quality control : artifacts assessment and correction A. Coste, S. Gouttard, C. Vachet, G. Gerig Medical Imaging Seminar Overview Introduction DWI DTI Artifact Assessment Artifact

More information

CT-PET calibration : physical principles and operating procedures F.Bonutti. Faustino Bonutti Ph.D. Medical Physics, Udine University Hospital.

CT-PET calibration : physical principles and operating procedures F.Bonutti. Faustino Bonutti Ph.D. Medical Physics, Udine University Hospital. CT-PET calibration : physical principles and operating procedures Faustino Bonutti Ph.D. Medical Physics, Udine University Hospital Topics Introduction to PET physics F-18 production β + decay and annichilation

More information

AstroBITS: Open Cluster Project

AstroBITS: Open Cluster Project AstroBITS: Open Cluster Project I. Introduction The observational data that astronomers have gathered over many years indicate that all stars form in clusters. In a cloud of hydrogen gas, laced with helium

More information

ESTIMATION OF 90 SCATTERING COEFFICIENT IN THE SHIELDING CALCULATION OF DIAGNOSTIC X-RAY EQUIPMENT

ESTIMATION OF 90 SCATTERING COEFFICIENT IN THE SHIELDING CALCULATION OF DIAGNOSTIC X-RAY EQUIPMENT Proceedings of the Eleventh EGS4 Users' Meeting in Japan, KEK Proceedings 2003-15, p.107-113 ESTIMATION OF 90 SCATTERING COEFFICIENT IN THE SHIELDING CALCULATION OF DIAGNOSTIC X-RAY EQUIPMENT K. Noto and

More information

Bioimage Informatics. Lecture 23, Spring Emerging Applications: Molecular Imaging

Bioimage Informatics. Lecture 23, Spring Emerging Applications: Molecular Imaging Bioimage Informatics Lecture 23, Spring 2012 Emerging Applications: Molecular Imaging Lecture 23 April 25, 2012 1 Outline Overview of molecular imaging Molecular imaging modalities Molecular imaging applications

More information

1-D Fourier Transform Pairs

1-D Fourier Transform Pairs 1-D Fourier Transform Pairs The concept of the PSF is most easily explained by considering a very small point source being placed in the imaging field-of-view The relationship between the image, I, and

More information

Solid State LightBurst New PET Technology GE PET/CT and PET/MR

Solid State LightBurst New PET Technology GE PET/CT and PET/MR Solid State LightBurst New PET Technology GE PET/CT and PET/MR Osama Mawlawi PhD. Dept. of Imaging Physics MD Anderson Cancer Center Disclosures SIEMENS Research grant GE research grant Discovery MI LYSO

More information

Part 01 Introduction to X-ray imaging. Overview Module 07 Part 1 X-ray

Part 01 Introduction to X-ray imaging. Overview Module 07 Part 1 X-ray 1 Introduction to Medical Image Processing (5XSA0), Module 07 Part 01 Introduction to X-ray imaging Peter H.N. de With (p.h.n.de.with@tue.nl ) With Contributions from D. Ruijters of Philips Healthcare

More information

A Transverse Profile Imager for SwissFEL Rasmus Ischebeck

A Transverse Profile Imager for SwissFEL Rasmus Ischebeck PAUL SCHERRER INSTITUT observer s virtual image d scnitillating crystal primary beam A Transverse Profile Imager for SwissFEL A Transverse Profile Imager for SwissFEL > Profile measurement in FELs observer

More information

Midterm Review. Yao Wang Polytechnic University, Brooklyn, NY 11201

Midterm Review. Yao Wang Polytechnic University, Brooklyn, NY 11201 Midterm Review Yao Wang Polytechnic University, Brooklyn, NY 11201 Based on J. L. Prince and J. M. Links, Medical maging Signals and Systems, and lecture notes by Prince. Figures are from the textbook.

More information

A comparison of methods for monitoring photon beam energy constancy

A comparison of methods for monitoring photon beam energy constancy JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 17, NUMBER 6, 2016 A comparison of methods for monitoring photon beam energy constancy Song Gao, 1a Peter A. Balter, 1 Mark Rose, 2 and William E. Simon

More information

Radiation Safety and Protection for I-125 Seeding localization: A Day in the Life of a Seed 2013 Update

Radiation Safety and Protection for I-125 Seeding localization: A Day in the Life of a Seed 2013 Update Radiation Safety and Protection for I-125 Seeding localization: A Day in the Life of a Seed 2013 Update Department of Education and Clinical Practice High Impact Learning for Remarkable, Compassionate

More information

Health Physics Services Ltd

Health Physics Services Ltd 1 Title: Adept Medical STARTable: Scatter Radiation Shielding Grid Format Methodology 2 Background: Adept Medical STARTable Shield is embedded with 0.5mm Lead (Pb), offering protection from scatter radiation

More information

It is important. It is important. MTR: Imaging Clinical Trials. Isn t t it obvious? then why do we ask the question?

It is important. It is important. MTR: Imaging Clinical Trials. Isn t t it obvious? then why do we ask the question? Isn t t it obvious? Image Treatment Response Assessment: How Important is Quantification? It is important Mitchell chnall MD, PhD Mathew J Wilson Professor of Radiology University of Pennsylvania Chair,

More information

arxiv: v2 [physics.med-ph] 29 May 2015

arxiv: v2 [physics.med-ph] 29 May 2015 The Proton Therapy Nozzles at Samsung Medical Center: A Monte Carlo Simulation Study using TOPAS Kwangzoo Chung, Jinsung Kim, Dae-Hyun Kim, Sunghwan Ahn, and Youngyih Han Department of Radiation Oncology,

More information

Overview and Status of the Austrian Particle Therapy Facility MedAustron. Peter Urschütz

Overview and Status of the Austrian Particle Therapy Facility MedAustron. Peter Urschütz Overview and Status of the Austrian Particle Therapy Facility MedAustron Peter Urschütz MedAustron Centre for ion beam therapy and non-clinical research Treatment of 1200 patients/year in full operation

More information

Varian Galaxie Chromatography Data System for Preparative HPLC

Varian Galaxie Chromatography Data System for Preparative HPLC Varian Galaxie Chromatography Data System for Preparative HPLC By Gary Burce Varian, Inc. 2700 Mitchell Drive, Walnut Creek, CA 95498 USA Abstract Galaxie is an ideal chromatography data system for the

More information

Proposed Room Requirements for CT System

Proposed Room Requirements for CT System Siemens Proposed Room Requirements for CT System Semarang, 4-5 May 2017 Restricted Siemens Healthcare GmbH, 2016 Page 1 Roles of Medical Physicist CT Image Quality Radiation Protection Optimization Medical

More information

Prompt gamma measurements for the verification of dose deposition in proton therapy. Contents. Two Proton Beam Facilities for Therapy and Research

Prompt gamma measurements for the verification of dose deposition in proton therapy. Contents. Two Proton Beam Facilities for Therapy and Research Prompt gamma measurements for the verification of dose deposition in proton therapy Two Proton Beam Facilities for Therapy and Research Ion Beam Facilities in Korea 1. Proton therapy facility at National

More information

31545 Medical Imaging systems

31545 Medical Imaging systems Simulation of ultrasound systems and non-linear imaging 545 Medical Imaging systems Lecture 9: Simulation of ultrasound systems and non-linear imaging Jørgen Arendt Jensen Department of Electrical Engineering

More information

H e a l t h P h y s i c s S e r v i c e s L t d

H e a l t h P h y s i c s S e r v i c e s L t d 1 Title: Adept Medical X-Ray Shield: Scatter Radiation Shielding Grid Format Methodology 2 Background: Adept Medical X-Ray Shield (X-Ray Shield) is embedded with 0.5mm Lead (pb), offering protection from

More information

Initial Studies in Proton Computed Tomography

Initial Studies in Proton Computed Tomography SCIPP Initial Studies in Proton Computed Tomography L. R. Johnson, B. Keeney, G. Ross, H. F.-W. Sadrozinski, A. Seiden, D.C. Williams, L. Zhang Santa Cruz Institute for Particle Physics, UC Santa Cruz,

More information

Dosimetric Consequences of Uncorrected Rotational Setup Errors During Stereotactic Body Radiation Therapy Case Study Pancreatic Cancers

Dosimetric Consequences of Uncorrected Rotational Setup Errors During Stereotactic Body Radiation Therapy Case Study Pancreatic Cancers + Dosimetric Consequences of Uncorrected Rotational Setup Errors During Stereotactic Body Radiation Therapy Case Study Pancreatic Cancers AAPM 2014 Undergraduate Fellow Lianna Di Maso DePaul University,

More information

FEEDBACK GMDH-TYPE NEURAL NETWORK AND ITS APPLICATION TO MEDICAL IMAGE ANALYSIS OF LIVER CANCER. Tadashi Kondo and Junji Ueno

FEEDBACK GMDH-TYPE NEURAL NETWORK AND ITS APPLICATION TO MEDICAL IMAGE ANALYSIS OF LIVER CANCER. Tadashi Kondo and Junji Ueno International Journal of Innovative Computing, Information and Control ICIC International c 2012 ISSN 1349-4198 Volume 8, Number 3(B), March 2012 pp. 2285 2300 FEEDBACK GMDH-TYPE NEURAL NETWORK AND ITS

More information

AQA Physics /7408

AQA Physics /7408 AQA Physics - 7407/7408 Module 10: Medical physics You should be able to demonstrate and show your understanding of: 10.1 Physics of the eye 10.1.1 Physics of vision The eye as an optical refracting system,

More information

Wavelet-Based Preprocessing Methods for Mass Spectrometry Data

Wavelet-Based Preprocessing Methods for Mass Spectrometry Data Wavelet-Based Preprocessing Methods for Mass Spectrometry Data Jeffrey S. Morris Department of Biostatistics and Applied Mathematics UT M.D. Anderson Cancer Center Overview Background and Motivation Preprocessing

More information

TECHNICAL DESCRIPTION SPECTRAFLOW ON LINE ANALYZER for BELT CONVEYOR APPLICATION

TECHNICAL DESCRIPTION SPECTRAFLOW ON LINE ANALYZER for BELT CONVEYOR APPLICATION TECHNICAL DESCRIPTION SPECTRAFLOW ON LINE ANALYZER for BELT CONVEYOR APPLICATION TECHNICAL SPECIFICATION SPECTRAFLOW ON LINE ANALYZER FOR BELT CONVEYOR CONTENTS 1. SpectraFlow Technical Description...

More information

1Meherun Nahar, Sazzad, 3Abdus Sattar Mollah and 4Mir Mohammad Akramuzzaman Correspondence Address INTRODUCTION MATERIALS AND METHODS Mathematical

1Meherun Nahar, Sazzad, 3Abdus Sattar Mollah and 4Mir Mohammad Akramuzzaman Correspondence Address INTRODUCTION MATERIALS AND METHODS Mathematical ORIGINAL ARTICLE Development of MGDA Software for Calculation of Patient Specific Mean Glandular Dose during Mammography 1Meherun Nahar, 2 M Sazzad, 3 Abdus Sattar Mollah and 4 Mir Mohammad Akramuzzaman

More information

Technical University of Denmark

Technical University of Denmark Technical University of Denmark Page 1 of 10 pages Written test, 12 December 2012 Course name: Introduction to medical imaging Course no. 31540 Aids allowed: None. Pocket calculator not allowed "Weighting":

More information

Critical Dimension Uniformity using Reticle Inspection Tool

Critical Dimension Uniformity using Reticle Inspection Tool Critical Dimension Uniformity using Reticle Inspection Tool b Mark Wylie, b Trent Hutchinson, b Gang Pan, b Thomas Vavul, b John Miller, b Aditya Dayal, b Carl Hess a Mike Green, a Shad Hedges, a Dan Chalom,

More information

Radiation protection in the endosuite and the importance of correct use of shields

Radiation protection in the endosuite and the importance of correct use of shields Radiation protection in the endosuite and the importance of correct use of shields Anders Wanhainen Professor of Surgery Chief dep. of Vascular Surgery Uppsala University Hospital Sweden High radiation

More information

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9 Module 9 This module presents information on what X-rays are and how they are produced. Introduction Module 9, Page 2 X-rays are a type of electromagnetic radiation. Other types of electromagnetic radiation

More information

Calculations of Neutron Yield and Gamma Rays Intensity by GEANT4

Calculations of Neutron Yield and Gamma Rays Intensity by GEANT4 Armenian Journal of Physics, 2016, vol. 9, issue 4, pp. 315-323 Calculations of Neutron Yield and Gamma Rays Intensity by GEANT4 R. Avagyan, R. Avetisyan, V. Ivanyan*, I. Kerobyan A.I. Alikhanyan National

More information

Calibration of the IXPE Instrument

Calibration of the IXPE Instrument Calibration of the IXPE Instrument Fabio Muleri (INAF-IAPS) On behalf of the IXPE Italian Team 13th IACHEC Meeting 2018 Avigliano Umbro (Italy), 9-12 April 2018 IXPE MISSION IXPE will (re-)open the polarimetric

More information

Acknowledgements. PET Fundamentals: Ideal Case. Why Are We Excited About PET/CT? PET Fundamentals: Real Case

Acknowledgements. PET Fundamentals: Ideal Case. Why Are We Excited About PET/CT? PET Fundamentals: Real Case PET/CT and Fusion Issues Jon A. Anderson Department of Radiology The University of Texas Southwestern Medical Center at Dallas American Associate of Physicists in Medicine 2003 Annual Meeting Acknowledgements

More information

Combined neutron and X-ray imaging on different length scales

Combined neutron and X-ray imaging on different length scales More Info at Open Access Database www.ndt.net/?id=18740 Combined neutron and X-ray imaging on different length scales Anders Kaestner, David Mannes, Jan Hovind, Pierre Boillat, and Eberhard Lehmann Neutron

More information

Physics 210 Medical Physics Midterm Exam Winter 2015 February 13, 2015

Physics 210 Medical Physics Midterm Exam Winter 2015 February 13, 2015 Physics 210 Medical Physics Midterm Exam Winter 2015 February 13, 2015 Name Problem 1 /24 Problem 2 /24 Problem 3 /24 Total /76 I affirm that I have carried out my academic endeavors with full academic

More information

Evaluation and Measurements of Radioactive Air Emission and Off-Site Doses at SLAC

Evaluation and Measurements of Radioactive Air Emission and Off-Site Doses at SLAC SLAC-PUB-15365 Evaluation and Measurements of Radioactive Air Emission and Off-Site Doses at SLAC I.Chan, J.Liu, H.Tran SLAC National Accelerator Laboratory, M.S. 48, 2575 Sand Hill Road, Menlo Park, CA,

More information

Development of new educational apparatus to visualize scattered X-rays

Development of new educational apparatus to visualize scattered X-rays Development of new educational apparatus to visualize scattered X-rays Poster No.: C-0073 Congress: ECR 2015 Type: Scientific Exhibit Authors: H. Hayashi, K. Takegami, H. Okino, K. Nakagawa, Y. 1 2 1 1

More information

Biomedical Imaging. X ray imaging. Patrícia Figueiredo IST

Biomedical Imaging. X ray imaging. Patrícia Figueiredo IST Biomedical Imaging X ray imaging Patrícia Figueiredo IST 2013-2014 Overview Production of X rays Interaction of electrons with matter X ray spectrum X ray tube Interaction of X rays with matter Photoelectric

More information

Magnetic Resonance Imaging

Magnetic Resonance Imaging Magnetic Resonance Imaging History Nuclear magnetic resonance was first described by Isidor Rabi in 1938 - Columbia University, New York City, (Nobel Prize Nobel Prize in Physics 1944) 1946 - Edward Mills

More information

IEEE Ultrasonic symposium 2002

IEEE Ultrasonic symposium 2002 IEEE Ultrasonic symposium 2002 Short Course 6: Flow Measurements Hans Torp Department of Circulation and Medical Imaging TU, orway Internet-site for short course: http://www.ifbt.ntnu.no/~hanst/flowmeas02/index.html

More information

Physics. Sunday, March 4, :30 a.m. 10:00 a.m.

Physics. Sunday, March 4, :30 a.m. 10:00 a.m. Physics Sunday, March 4, 2018 9:30 a.m. 10:00 a.m. Social Q&A Use your phone, tablet, or laptop to Submit questions to speakers and moderators Answer interactive questions / audience response polls astro.org/refreshersocialqa

More information

USE OF DLP FOR ESTABLISHING THE SHIELDING OF MULTI- DETECTOR COMPUTED TOMOGRAPHY ROOMS

USE OF DLP FOR ESTABLISHING THE SHIELDING OF MULTI- DETECTOR COMPUTED TOMOGRAPHY ROOMS USE OF DLP FOR ESTABLISHING THE SHIELDING OF MULTI- DETECTOR COMPUTED TOMOGRAPHY ROOMS F.R. Verdun 1, A. Aroua 1, P.R. Trueb 2, F.O. Bochud 1* 1 University Institute for Radiation Physics, Switzerland

More information

Radionuclides in Brachytherapy. Dr Irfan Ahmad Resident, Deptt of Radiation Oncology

Radionuclides in Brachytherapy. Dr Irfan Ahmad Resident, Deptt of Radiation Oncology Radionuclides in Brachytherapy Dr Irfan Ahmad Resident, Deptt of Radiation Oncology 1 Radionuclides Radium 226 Cobalt 60 Cesium 137 Iridium 192 Gold 198 Iodine 125 Palladium 103 Others Radon 222, Thulium

More information

11/19/2014. Chapter 3: Interaction of Radiation with Matter in Radiology and Nuclear Medicine. Nuclide Families. Family Nuclides with Same: Example

11/19/2014. Chapter 3: Interaction of Radiation with Matter in Radiology and Nuclear Medicine. Nuclide Families. Family Nuclides with Same: Example 2014-2015 Residents' Core Physics Lectures Mondays 7:00-8:00 am in VA Radiology and UCSDMC Lasser Conference Rooms Topic Chapters Date Faculty 1 Introduction and Basic Physics 1, 2 M 11/17 Andre 2 Interaction

More information

3.8 Combining Spatial Enhancement Methods 137

3.8 Combining Spatial Enhancement Methods 137 3.8 Combining Spatial Enhancement Methods 137 a b FIGURE 3.45 Optical image of contact lens (note defects on the boundary at 4 and 5 o clock). (b) Sobel gradient. (Original image courtesy of Mr. Pete Sites,

More information

Agilent MassHunter Profinder: Solving the Challenge of Isotopologue Extraction for Qualitative Flux Analysis

Agilent MassHunter Profinder: Solving the Challenge of Isotopologue Extraction for Qualitative Flux Analysis Agilent MassHunter Profinder: Solving the Challenge of Isotopologue Extraction for Qualitative Flux Analysis Technical Overview Introduction Metabolomics studies measure the relative abundance of metabolites

More information

FOOD IRRADIATION TECHNOLOGY. BAEN-625- Advances in Food Engineering

FOOD IRRADIATION TECHNOLOGY. BAEN-625- Advances in Food Engineering FOOD IRRADIATION TECHNOLOGY BAEN-625- Advances in Food Engineering Food irradiation KE produced by accelerators system is limited by regulation to 10 MeV for direct electron irradiation 5 or 7.5 MeV for

More information

Spectral Filtering for Improving Quality of Material Discrimination Using Dual Energy X-rays

Spectral Filtering for Improving Quality of Material Discrimination Using Dual Energy X-rays Spectral Filtering for Improving Quality of Material Discrimination Using Dual X-rays Y. M. Gil, Y. S. Lee, M. H. Cho, and W. Namgung POSTECH, PAL POSTECH Abstract The well-known dual energy method of

More information

PHY138Y Nuclear and Radiation Section

PHY138Y Nuclear and Radiation Section PHY138Y Supplementary Notes II: X rays. A.W. Key Page 1 of 13 PHY138Y Nuclear and Radiation Section Supplementary Notes II X-rays - Production, Characteristics, & Use Contents. 2.1 Introduction 2.2 Production

More information

The Physics of PET/CT scanners

The Physics of PET/CT scanners The Physics of PET/CT scanners Ruth E. Schmitz, Adam M. Alessio, and Paul E. Kinahan Imaging Research Laboratory Department of Radiology University of Washington What Makes PET Useful? Positron emission

More information