Development of new educational apparatus to visualize scattered X-rays

Size: px
Start display at page:

Download "Development of new educational apparatus to visualize scattered X-rays"

Transcription

1 Development of new educational apparatus to visualize scattered X-rays Poster No.: C-0073 Congress: ECR 2015 Type: Scientific Exhibit Authors: H. Hayashi, K. Takegami, H. Okino, K. Nakagawa, Y Kanazawa ; Tokushima/JP, Kyoto/JP Keywords: Radiation physics, Radioprotection / Radiation dose, Conventional radiography, Digital radiography, Experimental, Education, Safety, Physics, Education and training DOI: /ecr2015/C-0073 Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to thirdparty sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR's endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file. As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method ist strictly prohibited. You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages. Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations. Page 1 of 27

2 Aims and objectives At X-ray inspections, management of scattered X-ray is important for a reduction of unneeded exposure doses. For people such as medical staff, patients and assistants, inessential exposure doses caused by scattered X-rays should be reduced (Fig.1). It is easy to reduce exposure doses for well-educated radiologists and radiological technologists, because the mechanism of scattered X-ray generation is completely clarified by theory. For the education of beginning radiologists and radiological technologists, to visualize scattered X-rays is effective. In physics textbooks [1,2], the Klein-Nishina formula (eq. (1)) is introduced as presented in Fig.2. Here, ds/dw is a differential cross-section, r0 is a 2 classical electron radius, a is hn/mc, and # is an angle between an incident and scattered directions. We can see that the differential cross-section (provability) is determined as functions of incident X-ray energy hn and an angle q. In general, provability is plotted by a two-dimensional graph (see Fig.2, Fig.3) in which the provability is normalized by a scattering angle of 0 degree. This two-dimensional graph is common and easy to understand for engineering students, but it seems that for students taking medical course it is difficult. Recently, Kishida et al. proposed a primary idea to visualize the scattered X-ray in a diagnostic X-ray region [3]. The aim of the present study is to introduce that idea, and to disclose the detail experimental and analytic methodologies. Our apparatus is made with a shielded box including a clinically-used computed radiography (CR) system, which is commonly used in the world. We hope that our educational methodology (idea) will be used extensively. Images for this section: Page 2 of 27

3 Fig. 1: Background of our study. Understanding of scattered X-rays is important for reducing exposure doses. Page 3 of 27

4 Fig. 2: Klein-Nishina formula. In physics textbooks, the generation of scattered X-ray is explained by an equation, and a two-dimensional plot. Page 4 of 27

5 Fig. 3: Some examples of descriptions in textbook. For students who belong to a medical course, these descriptions were difficult to understand, because the graphs and schematic drawings are not familiar to them. Page 5 of 27

6 Methods and materials #Development and experiments# Figure 4 shows a newly developed experimental apparatus by our group. The main body of the apparatus is made with a lead-shield box. A size of the box is 300 mm width, 340 mm length and 270 mm high. The thickness of the wall is 14 mm, consisting of 10 mm acrylic, 2 mm lead and 2 mm aluminum plates. Most of the background X-rays are absorbed by the 2 mm thick lead plate. At the side walls, there are four guides to insert a phosphor plate as shown in Fig.4. The distance (Z) between the phosphor plate and a sample can be set at 15 mm, 40 mm, 100 mm and 210 mm. We design these sizes based on the condition using a inch plate. The sample for generating the scattered X-rays is set at the center of the underside. The incident X-ray is well-collimated by the three lead plates having through holes of 6 mm. An experimental setup is summarized in Fig.5. For obtaining the scattered X-ray image, a phosphor plate (RP-3S) commercialized by Konica Minolta Healthcare was used. To generate the X-ray, diagnostic X-ray equipment commercialized by Toshiba Medical Systems Corporation was used. A typical irradiation condition was Vp =100 kv and tube current-time product of mas. A distance between the X-ray source and the foreground of our apparatus was set to be 750 mm. #Analytic procedure# The chart of the analytic procedure is presented in Fig.6. In the experiment, we determined the intensity of each angle as described later. These data were measured with a condition of a newly defined polar coordinate (angle of #) that differs from the definition of # used in the Klein-Nishina formula. Therefore, we changed the coordinate and theoretically predicted values that were calculated based on the Klein-Nishina formula. Figure 7 shows a schematic drawing of the change of coordinate to convert a variable # to #. In order to match the experimental conditions, we newly defined a polar coordinate on the phosphor plate. A variable Z in the figure shows a distance between a sample and the phosphor plate. Here, an arbitrary point on the polar coordinate is described by two variables of r and #. Then, focusing attention on the triangle (OO'P) area, a relationship between # and # can be summarized by the equation (2). In this equation, a relation between cos# and cos# is obviously written, but the relation between # and # is not clear. Page 6 of 27

7 The Klein-Nishina formula (eq.(1)) is described by cos#, so that the above changing of cos# to cos# can be sufficiently applied to our analysis. From equation (2), the following two considerations are carried out so as to reduce differences between ideal (#) and real (#) coordinates; first, Z closing in on zero, and second, r closing in on infinity. Figure 8 shows an example to calculate theoretically predicted values based on the angle #. Spreadsheet software such as Microsoft Excel is used for the analysis. In Fig.8, the first and second columns show angle # and cos#, respectively. In the third column, cos# is presented. Using the eq. (2), cos# is easily calculated from cos#. Then, based on the eq. (1), the theoretically predicted values are calculated in the fourth column, and they are normalized by data of #=0 degree. In Fig.9, the analytic procedure of the experimentally obtained image is presented. The whole lengths of the image are 250 mm width by 300 mm length. We define the polar coordinate (r,#) in which a center of the coordinate is in agreement with that of the image. Using software ImageJ [4], we set the ROIs as shown in Fig.9 and digital values were obtained. In an example of the analytic procedure in Fig.9, ROIs having diameter of 4 mm are set for every 45 degrees on the r=40 mm circle. The measured digital values were converted to the relative X-ray intensities using the input-output characteristic of the CR system [5,6]. Then, these data series were normalized by the data of 0 degree, and compared with theoretical values calculated above. Images for this section: Page 7 of 27

8 Fig. 4: Photograph and schematic drawing of the developed apparatus. Page 8 of 27

9 Fig. 5: Experimental setup. We use a phosphor plate and diagnostic X-ray equipment. Page 9 of 27

10 Fig. 6: Chart of analysis. Page 10 of 27

11 Fig. 7: Change of coordinate. The cos(theta) is converted to the cos(phi) using equation (2). Page 11 of 27

12 Fig. 8: Example of the theoretical predictions using spreadsheet software. Page 12 of 27

13 Fig. 9: Methodologies to determine the analyzed region (ROI). Page 13 of 27

14 Results The obtained images are represented in Fig.10. For (b) Z=40 mm and (c) Z=110 mm, correct images were measured. On the other hand, images of (a) Z=15 mm and (d) Z=210 mm were slightly improper. An image of (a) had a background contamination caused by scattered X-rays which were generated by the interaction between the air and the incident X-ray beam. For the result of (a) presented later, the background contamination was subtracted. In contrast, image (d) had low intensity that provided cause of larger uncertainties. Therefore, we precisely analyzed the data of Fig.10 (b). Figure 11 shows a comparison between an experimental image (left) and a quantitatively analyzed result (right) for an image of the Z=40 mm experiment. In the plot, a theoretical calculation is carried out assuming that an incident X-ray has monoenergetic energy of 40 kev because of this consideration there is an effective energy of Vp=100 kv X-ray spectrum [7,8]. As shown in the Fig.11, the experimental values are in good agreement with the theoretical values. The analysis is extended to the results which are measured with different Z values (Z= 15, 40, 110, 210 mm). Figure 12 shows comparisons of scattered X-ray distributions for different Z values. Here, the analyzed values are plotted against as a function of angle # by a classical-type plot. The blue circle presents the experimental value, and its error bar is defined by a range between minimum and maximum X-ray intensities in the ROI. For every Z value, the experimental values are consistent with the theoretical ones. These analyzed results are based on the r= 40 mm (see Fig.11), and then an effect of the selected r value is verified as follows. Figure 13 shows analyzed results based on different r values for determination of the ROIs. The left upper figure shows a profile curve of the obtained image. In Fig.13, every experimental result shows consistencies with the theoretical results. From this fact, we concluded that our analyzing method can be applied to all images. The phosphor plate commercialized by Konica Minolta is placed in a housing (cassette) having a carbon protection plate. Therefore, a low energy photon is considered to be absorbed by the carbon plate. We evaluate the effect of low energy photon absorptions as follows. Figure 14 shows comparison between two experiments; one is based on a commonly-used condition (with cassette), and the other is based on a particular condition in which the carbon protection is removed and the experiment is carried out in a dark room. As represented by Fig.14, there is no difference between these results with and without a cassette. This fact means that the absorption of low energy photons are negligibly small. This phenomenon is also explained by a theoretical estimation of scattered X-ray energies. Figure 15 shows energies of scattered X-rays according to the incident X-ray energies. In the diagnostic X-ray region, the scattered X-ray energy is Page 14 of 27

15 similar with the incident X-ray energy, therefore we do not need to consider the energy differences according to the scattered angles. We present the necessity of the shielded box (developed apparatus). In Fig.16, result of the preliminary experiment (left) is compared with the present experiment (right) using the newly developed apparatus. In the left figure, an incident X-ray is collimated by a thin (2 mm) lead plate, and the irradiation field is limited in the collimator. Nevertheless, the background X-rays are obviously derived in as shown in the obtained image. The background X-rays are generated by a movable diaphragm which is part of the X-ray equipment [9]. This result shows that our experimental apparatus works well to reduce background X-rays, and for the experiment to measure Compton scattered X-rays, our apparatus is absolutely imperative. Finally, we explain the importance to choice of sample types. In our earlier study, an aluminum sample was used, however good experimental results were not obtained this was caused by Bragg scattering [10]. Figure 17 shows experimental results in which a collimated X-ray beam [11] is used to irradiate acrylic and aluminum samples. As shown in the obtained images, when an aluminum sample is used, the effect of Bragg scattering appears. The intensity of the Bragg scattering is much higher than that of Compton scattering. Therefore, we consider that the acrylic sample is suitable to use, because this sample does not have a crystal structure causing Bragg scattering. Images for this section: Page 15 of 27

16 Fig. 10: Obtained images of the experiments. Page 16 of 27

17 Fig. 11: Comparison of scattered X-ray distribution between experimental and simulated values. Page 17 of 27

18 Fig. 12: Analyzed results for different Z values. For every distance, the experimental values are in good agreement with the theoretical calculations. Page 18 of 27

19 Fig. 13: Analyzed results for different r values. For all r values, the experimental values are in good agreement with the theoretical calculations. Page 19 of 27

20 Fig. 14: Comparison of two different experiments. One experiment is using a phosphor plate with cassette, and the other experiment is using a phosphor plate without cassette. As shown by the graph, there are no differences between these two experiments. Page 20 of 27

21 Fig. 15: Theoretical estimation of the energy of a scattered X-ray as a function of incident X-ray energy. Page 21 of 27

22 Fig. 16: Demonstration of the necessity of the shielded box. The developed apparatus works for proper reductions of background X-rays that are generated by a movable diaphragm which is part of the X-ray equipment. Page 22 of 27

23 Fig. 17: Demonstration of Bragg scattering using an aluminum sample. If an aluminum sample is used, the effect of Bragg scattering exists much higher than the Compton scattering. Therefore, we used an acrylic sample which does not have a crystal structure caused by the Bragg scattering. Page 23 of 27

24 Conclusion The image measured with our apparatus makes it possible to visualize scattered X-rays. The image can be analyzed quantitatively, and the results are in good agreement with the theoretical formula. Using our apparatus, this relatively simple experiment can educate radiologists and radiological technologists effectively. We summarized an overview of the present study in Fig.18. Actually, we use the developed apparatus to educate senior students who belong to the school of health sciences at Tokushima University. The apparatus has great educational effect. [Acknowledgement] The authors are grateful to M. Kishida, T. Kuboyabu, T. Inoue, H. Hanamitsu, S. Nishihara for contributions at the early stage of our experiments. Also we thanks to N. Kimoto and I. Maehata for their helps to write EPOS. Images for this section: Page 24 of 27

25 Fig. 18: Summary of our study. Page 25 of 27

26 Personal information 1) Hiroaki Hayashi Kazuki Takegami 2) 3) Hiroki Okino 3) Kohei Nakagawa Yuki Kanazawa ) Institute of Health Biosciences, Tokushima University, Japan. Graduate School of Health Sciences, Tokushima University, Japan. School of Health Sciences, Tokushima University, Japan. References Glenn F. Knoll, Radiation Detection and Measurement (3rd ed.), John Wiley & Sons, Inc Anthony Brinton Wolbarst, Physics of radiology (2nd ed.), Medical Physics Publishing, K. Mina, H. Hayashi, T. Kuboyabu et al., Fabrication of a visualization equipment for scattered X-rays in the diagnosis domain and proposal of a practical training, Japanese Journal of Radiological Technology, 69(5), , Abramoff MD, Magelhaes PJ, Ram SJ. Image Processing with ImageJ, Biophotonics International 2004, 11(7), 36-42, N. Kimoto, H. Hayashi, I. Maehata, et al., Development of all-in-one multi-slit equipment for measurements of the input-output characteristic of a phosphor plate, Japanese Journal of Radiological Technology, 69(10), , I. Maehata, H. Hayashi, K. Takegami, et al., Fabrication of improved multi-slit equipment to obtain the input-output characteristics of computed radiography systems: correction of the heel effect, and application to high tube-voltage experiments, Japanese Journal of Radiological Technology, 70(9), , Page 26 of 27

27 7. H. Hayashi, A. Fukumoto, H. Hanamitsu, et al., Practical calculation method of diagnostic X-ray spectrum using EGS5 code, Medical Imaging and Information Science, 29(3), 62-67, R. Birch, M. Marshall, Comparison of bremsstrahlung X-ray spectra and comparison with spectra measured with a Ge (Li) detector, Phys. Med. Biol., 24(3), , H. Hayashi, S. Taniuchi, N. Kamiya, et al., Development of a pin-hole camera using a phosphor plate, and visualization of the scattered X-ray distribution and optical image, Japanese Journal of Radiological Technology, 68(3), , B.D. Cullity and S.R. Stock, Elements of X-ray diffraction, Prentice Hall, K. Takegami, H. Hayashi, Y. Konishi, et al., Development of multistage collimator for narrow beam production using filter guides of diagnostic X-ray equipment and improvement of apparatuses for practical training, Medical Imaging and Information Sciences, 30(4), Page 27 of 27

Electron density and effective atomic number images generated by dual energy imaging with a 320-detector CT system: A feasibility study

Electron density and effective atomic number images generated by dual energy imaging with a 320-detector CT system: A feasibility study Electron density and effective atomic number images generated by dual energy imaging with a 320-detector CT system: A feasibility study Poster No.: C-0403 Congress: ECR 2014 Type: Scientific Exhibit Authors:

More information

Morphological study of the human hyoid bone with Threedimensional CT images -Age-related changes-

Morphological study of the human hyoid bone with Threedimensional CT images -Age-related changes- Morphological study of the human hyoid bone with Threedimensional CT images -Age-related changes- Poster No.: C-0769 Congress: ECR 2013 Type: Scientific Exhibit Authors: K. Ito 1, S. Ando 1, N. Akiba 2,

More information

Doppler Ultrasound: from basics to practice

Doppler Ultrasound: from basics to practice Doppler Ultrasound: from basics to practice Poster No.: C-1643 Congress: ECR 2016 Type: Educational Exhibit Authors: J. A. Abreu, A. Vasquez, J. Romero, H. Rivera; Bogota/CO Keywords: Ultrasound physics,

More information

Orbital MRI: What is the best coil configuration?

Orbital MRI: What is the best coil configuration? Orbital MRI: What is the best coil configuration? Poster No.: C-0678 Congress: ECR 2012 Type: Authors: Keywords: DOI: Scientific Exhibit K. Erb, C. Warmuth, M. Taupitz, B. Hamm, P. Asbach; Berlin/DE Neoplasia,

More information

Coconuts, grapes, and peppers: Home-made models in the learning process of post-processing softwares used in computed-tomography (CT) imaging

Coconuts, grapes, and peppers: Home-made models in the learning process of post-processing softwares used in computed-tomography (CT) imaging Coconuts, grapes, and peppers: Home-made models in the learning process of post-processing softwares used in computed-tomography (CT) imaging Poster No.: C-3019 Congress: ECR 2010 Type: Educational Exhibit

More information

ESTIMATION OF 90 SCATTERING COEFFICIENT IN THE SHIELDING CALCULATION OF DIAGNOSTIC X-RAY EQUIPMENT

ESTIMATION OF 90 SCATTERING COEFFICIENT IN THE SHIELDING CALCULATION OF DIAGNOSTIC X-RAY EQUIPMENT Proceedings of the Eleventh EGS4 Users' Meeting in Japan, KEK Proceedings 2003-15, p.107-113 ESTIMATION OF 90 SCATTERING COEFFICIENT IN THE SHIELDING CALCULATION OF DIAGNOSTIC X-RAY EQUIPMENT K. Noto and

More information

PHYS 3650L - Modern Physics Laboratory

PHYS 3650L - Modern Physics Laboratory PHYS 3650L - Modern Physics Laboratory Laboratory Advanced Sheet Photon Attenuation 1. Objectives. The objectives of this laboratory exercise are: a. To measure the mass attenuation coefficient at a gamma

More information

Volume 1 No. 4, October 2011 ISSN International Journal of Science and Technology IJST Journal. All rights reserved

Volume 1 No. 4, October 2011 ISSN International Journal of Science and Technology IJST Journal. All rights reserved Assessment Of The Effectiveness Of Collimation Of Cs 137 Panoramic Beam On Tld Calibration Using A Constructed Lead Block Collimator And An ICRU Slab Phantom At SSDL In Ghana. C.C. Arwui 1, P. Deatanyah

More information

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9 Module 9 This module presents information on what X-rays are and how they are produced. Introduction Module 9, Page 2 X-rays are a type of electromagnetic radiation. Other types of electromagnetic radiation

More information

Atomic and nuclear physics

Atomic and nuclear physics Atomic and nuclear physics X-ray physics Physics of the atomic shell LEYBOLD Physics Leaflets Moseley s law and determination of the Rydberg constant P6.3.3.6 Objects of the experiment Measuring the K-absorption

More information

P6.5.5.4 Atomic and nuclear physics Nuclear physics γ spectroscopy Identifying and determining the activity of radioactive samples Description from CASSY Lab 2 For loading examples and settings, please

More information

ABSOLUTE AIR-KERMA MEASUREMENT IN A SYNCHROTRON LIGHT BEAM BY IONIZATION FREE-AIR CHAMBER

ABSOLUTE AIR-KERMA MEASUREMENT IN A SYNCHROTRON LIGHT BEAM BY IONIZATION FREE-AIR CHAMBER ABSOLUTE AIR-KERMA MEASUREMENT IN A SYNCHROTRON LIGHT BEAM BY IONIZATION FREE-AIR CHAMBER M. Bovi (1), R.F. Laitano (1), M. Pimpinella (1), M. P. Toni (1), K. Casarin(2), E. Quai(2), G. Tromba(2), A. Vascotto(2),

More information

Atomic and nuclear physics

Atomic and nuclear physics Atomic and nuclear physics X-ray physics Attenuation of x-rays LEYBOLD Physics Leaflets P6.3.2.2 Investigating the wavelength dependency of the coefficient of attenuation Objects of the experiment To measure

More information

Progress in Nuclear Science and Technology, Volume 6,

Progress in Nuclear Science and Technology, Volume 6, DOI: 1.15669/pnst.6 Progress in Nuclear Science and Technology Volume 6 (19) pp. 1-16 ARTICLE A study on calculation method of duct streaming from medical linac rooms Takuma Noto * Kazuaki Kosako and Takashi

More information

Health Physics Services Ltd

Health Physics Services Ltd 1 Title: Adept Medical STARTable: Scatter Radiation Shielding Grid Format Methodology 2 Background: Adept Medical STARTable Shield is embedded with 0.5mm Lead (Pb), offering protection from scatter radiation

More information

LAB 01 X-RAY EMISSION & ABSORPTION

LAB 01 X-RAY EMISSION & ABSORPTION LAB 0 X-RAY EMISSION & ABSORPTION REPORT BY: TEAM MEMBER NAME: Ashley Tsai LAB SECTION No. 05 GROUP 2 EXPERIMENT DATE: Feb., 204 SUBMISSION DATE: Feb. 8, 204 Page of 3 ABSTRACT The goal of this experiment

More information

Theoretical analysis of comparative patient skin dose and exposure technique approaches in planar radiography

Theoretical analysis of comparative patient skin dose and exposure technique approaches in planar radiography Exposure technique Australian Institute of Radiography The Radiographer 2009; 56 (1): 21 26 Theoretical analysis of comparative patient skin dose exposure technique approaches in planar radiography Faculty

More information

Atomic and nuclear physics

Atomic and nuclear physics Atomic and nuclear physics X-ray physics Attenuation of x-rays LD Physics Leaflets P6.3.2.1 Investigating the attenuation of x-rays as a function of the absorber material and absorber thickness Objects

More information

Chapter 30 X Rays GOALS. When you have mastered the material in this chapter, you will be able to:

Chapter 30 X Rays GOALS. When you have mastered the material in this chapter, you will be able to: Chapter 30 X Rays GOALS When you have mastered the material in this chapter, you will be able to: Definitions Define each of the following terms, and use it in an operational definition: hard and soft

More information

DEVELOPMENT OF MEASURING SYSTEM FOR STRESS BY MEANS OF IMAGE PLATE FOR LABORATORY X-RAY EXPERIMENT

DEVELOPMENT OF MEASURING SYSTEM FOR STRESS BY MEANS OF IMAGE PLATE FOR LABORATORY X-RAY EXPERIMENT Copyright JCPDS - International Centre for Diffraction Data 003, Advances in X-ray Analysis, Volume 46. 6 DEVELOPMENT OF MEASURING SYSTEM FOR STRESS BY MEANS OF IMAGE PLATE FOR LABORATORY X-RAY EXPERIMENT

More information

Chapter 16 Basic Precautions

Chapter 16 Basic Precautions Chapter 16 Basic Precautions 16.1 Basic Principles of Radiation Protection The four basic methods used to control radiation exposure are time, distance, shielding, and contamination control. The first

More information

X-ray Interaction with Matter

X-ray Interaction with Matter X-ray Interaction with Matter 10-526-197 Rhodes Module 2 Interaction with Matter kv & mas Peak kilovoltage (kvp) controls Quality, or penetrating power, Limited effects on quantity or number of photons

More information

FXA UNIT G485 Module X-Rays. Candidates should be able to : I = I 0 e -μx

FXA UNIT G485 Module X-Rays. Candidates should be able to : I = I 0 e -μx 1 Candidates should be able to : HISTORY Describe the nature of X-rays. Describe in simple terms how X-rays are produced. X-rays were discovered by Wilhelm Röntgen in 1865, when he found that a fluorescent

More information

CASSY Lab. Manual ( )

CASSY Lab. Manual ( ) CASSY Lab Manual (524 202) Moseley's law (K-line x-ray fluorescence) CASSY Lab 271 can also be carried out with Pocket-CASSY Load example Safety notes The X-ray apparatus fulfils all regulations on the

More information

THE use of radioactive isotopes in medical institutions is growing continuously.

THE use of radioactive isotopes in medical institutions is growing continuously. EQUIPMENT FOR SAFE HANDLING OF RADIOACTIVE ISOTOPES OTTO GLASSER, PH.D. and BERNARD TAUTKINS Department of Biophysics THE use of radioactive isotopes in medical institutions is growing continuously. Shipments

More information

A Correction Factor for Effects of Scattered X-rays at Calibration of Ionization Chambers in Low Energy X-ray Standard Fields

A Correction Factor for Effects of Scattered X-rays at Calibration of Ionization Chambers in Low Energy X-ray Standard Fields Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 44, No. 2, p. 109 113 (2007) ARTICLE A Correction Factor for Effects of Scattered X-rays at Calibration of Ionization Chambers in Low Energy X-ray Standard

More information

Heuijin Lim, Manwoo Lee, Jungyu Yi, Sang Koo Kang, Me Young Kim, Dong Hyeok Jeong

Heuijin Lim, Manwoo Lee, Jungyu Yi, Sang Koo Kang, Me Young Kim, Dong Hyeok Jeong Original Article PMP Progress in Medical Physics 28(2), June 2017 https://doi.org/10.14316/pmp.2017.28.2.49 pissn 2508-4445, eissn 2508-4453 Electron Energy Distribution for a Research Electron LINAC Heuijin

More information

Study of Monte Carlo Simulator for Estimation of Anti-Scatter Grid Physical Characteristics on IEC 60627:2013-Based

Study of Monte Carlo Simulator for Estimation of Anti-Scatter Grid Physical Characteristics on IEC 60627:2013-Based American Journal of Physics and Applications 2018; 6(2): 35-42 http://www.sciencepublishinggroup.com/j/ajpa doi: 10.11648/j.ajpa.20180602.12 ISSN: 2330-4286 (Print); ISSN: 2330-4308 (Online) Study of Monte

More information

Andrew D. Kent. 1 Introduction. p 1

Andrew D. Kent. 1 Introduction. p 1 Compton Effect Andrew D. Kent Introduction One of the most important experiments in the early days of quantum mechanics (93) studied the interaction between light and matter; it determined the change in

More information

Implementing the ISO Reference Radiations at a Brazilian Calibration Laboratory

Implementing the ISO Reference Radiations at a Brazilian Calibration Laboratory Implementing the ISO Reference Radiations at a Brazilian Calibration Laboratory Annibal T. Baptista Neto, Carlos M. A. Soares, Teógenes A. da Silva Nuclear Technology Development Center, Radiation Dosimetry

More information

Gamma-Spectrum Generator

Gamma-Spectrum Generator 1st Advanced Training Course ITCM with NUCLEONICA, Karlsruhe, Germany, 22-24 April, 2009 1 Gamma-Spectrum Generator A.N. Berlizov ITU - Institute for Transuranium Elements Karlsruhe - Germany http://itu.jrc.ec.europa.eu/

More information

Absorption of Gamma Rays

Absorption of Gamma Rays Introduction Absorption of Gamma Rays In this experiment, the absorption coefficient of gamma rays passing through several materials is studied. The materials will be compared to one another on their efficacy

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN 316 Effective atomic number of composite materials by Compton scattering - nondestructive evaluation method Kiran K U a, Ravindraswami K b, Eshwarappa K M a and Somashekarappa H M c* a Government Science

More information

X-Ray Emission and Absorption

X-Ray Emission and Absorption X-Ray Emission and Absorption Author: Mike Nill Alex Bryant February 6, 20 Abstract X-rays were produced by two bench-top diffractometers using a copper target. Various nickel filters were placed in front

More information

X-RAY SPECTRA. Theory:

X-RAY SPECTRA. Theory: 12 Oct 18 X-ray.1 X-RAY SPECTRA In this experiment, a number of measurements involving x-rays will be made. The spectrum of x-rays emitted from a molybdenum target will be measured, and the experimental

More information

Measurement of bone mineral in vivo: An improved method*

Measurement of bone mineral in vivo: An improved method* Cl á s i c o Cameron JR, Sorenson J Measurement of bone mineral in vivo: An improved method* John R. Cameron, (1 James Sorenson. (1 Abstract The mineral content of bone can be determined by measuring the

More information

CHAPTER 5 EFFECTIVE ATOMIC NUMBER OF SELECTED POLYMERS BY GAMMA BACKSCATTERING TECHNIQUE

CHAPTER 5 EFFECTIVE ATOMIC NUMBER OF SELECTED POLYMERS BY GAMMA BACKSCATTERING TECHNIQUE CHAPTER 5 EFFECTIVE ATOMIC NUMBER OF SELECTED POLYMERS BY GAMMA BACKSCATTERING TECHNIQUE Page no. 5.1 Introduction 132 5.2 Methods and measurements 132 5.3 Saturation thickness of elements and polymers

More information

Rad T 290 Worksheet 2

Rad T 290 Worksheet 2 Class: Date: Rad T 290 Worksheet 2 1. Projectile electrons travel from a. anode to cathode. c. target to patient. b. cathode to anode. d. inner shell to outer shell. 2. At the target, the projectile electrons

More information

Portable type TXRF analyzer: Ourstex 200TX

Portable type TXRF analyzer: Ourstex 200TX Excerpted from Adv. X-Ray. Chem. Anal., Japan: 42, pp. 115-123 (2011) H. Nagai, Y. Nakajima, S. Kunimura, J. Kawai Improvement in Sensitivity and Quantification by Using a Portable Total Reflection X-Ray

More information

WM 07 Conference, February 25 March 01, 2007, Tucson, AZ

WM 07 Conference, February 25 March 01, 2007, Tucson, AZ Design and Construction of a High Energy X-Ray R&D Facility, and the Development and Optimization of Real Time Radioisotopic Characterization of Remote Handled Waste at MeV Energies. S. Halliwell, V.J.Technologies

More information

We have seen how the Brems and Characteristic interactions work when electrons are accelerated by kilovolts and the electrons impact on the target

We have seen how the Brems and Characteristic interactions work when electrons are accelerated by kilovolts and the electrons impact on the target We have seen how the Brems and Characteristic interactions work when electrons are accelerated by kilovolts and the electrons impact on the target focal spot. This discussion will center over how x-ray

More information

Compton Camera. Compton Camera

Compton Camera. Compton Camera Diagnostic Imaging II Student Project Compton Camera Ting-Tung Chang Introduction The Compton camera operates by exploiting the Compton Effect. It uses the kinematics of Compton scattering to contract

More information

X-RAY SCATTERING AND MOSELEY S LAW. OBJECTIVE: To investigate Moseley s law using X-ray absorption and to observe X- ray scattering.

X-RAY SCATTERING AND MOSELEY S LAW. OBJECTIVE: To investigate Moseley s law using X-ray absorption and to observe X- ray scattering. X-RAY SCATTERING AND MOSELEY S LAW OBJECTIVE: To investigate Moseley s law using X-ray absorption and to observe X- ray scattering. READING: Krane, Section 8.5. BACKGROUND: In 1913, Henry Moseley measured

More information

Efficiencies of Some Spherical Ion Chambers in Continuous and Pulsed Radiation: A Numerical Evaluation

Efficiencies of Some Spherical Ion Chambers in Continuous and Pulsed Radiation: A Numerical Evaluation Signature: Pol J Radiol, 05; 80: 55-5 DOI: 0.659/PJR.89450 ORIGINAL ARTICLE Received: 05.03.7 Accepted: 05.06.9 Published: 05..5 Authors Contribution: A Study Design B Data Collection C Statistical Analysis

More information

MEASUREMENT OF DIAGNOSTIC X-RAY SPECTRA USING CdZnTe DETECTOR

MEASUREMENT OF DIAGNOSTIC X-RAY SPECTRA USING CdZnTe DETECTOR MEASUREMENT OF DIAGNOSTIC X-RAY SPECTRA USING CdZnTe DETECTOR M.Matsumoto 1,S.Miyajima 1,A.Yamamoto 1,T.Yamazaki 1 and Kanamori 2 1 Sch. of Allied Health Sciences, Osaka Univ., 1-7 Yamadaoka, Suita, Osaka

More information

An industrial radiography exposure device based on measurement of transmitted gamma-ray intensity

An industrial radiography exposure device based on measurement of transmitted gamma-ray intensity Journal of Physics: Conference Series PAPER OPEN ACCESS An industrial radiography exposure device based on measurement of transmitted gamma-ray intensity To cite this article: C Polee et al 2015 J. Phys.:

More information

Magnetic removal of electron contamination in radiotherapy x-ray beams

Magnetic removal of electron contamination in radiotherapy x-ray beams University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2006 Magnetic removal of electron contamination in radiotherapy

More information

Activities at the Laboratory of the Nuclear Engineering Department of the Polytechnic University of Valencia

Activities at the Laboratory of the Nuclear Engineering Department of the Polytechnic University of Valencia 7 th Workshop on European Collaboration for Higher Education and Research in Nuclear Engineering & Radiological Protection Bruxelles, Belgique 30 May - 1 June 2011 Activities at the Laboratory of the Nuclear

More information

PHYSICS 122/124 Lab EXPERIMENT NO. 9 ATOMIC SPECTRA

PHYSICS 122/124 Lab EXPERIMENT NO. 9 ATOMIC SPECTRA PHYSICS 1/14 Lab EXPERIMENT NO. 9 ATOMIC SPECTRA The purpose of this laboratory is to study energy levels of the Hydrogen atom by observing the spectrum of emitted light when Hydrogen atoms make transitions

More information

Design and Development of a Smartphone Based Visible Spectrophotometer for Analytical Applications

Design and Development of a Smartphone Based Visible Spectrophotometer for Analytical Applications Design and Development of a Smartphone Based Visible Spectrophotometer for Analytical Applications Bedanta Kr. Deka, D. Thakuria, H. Bora and S. Banerjee # Department of Physicis, B. Borooah College, Ulubari,

More information

Radiation Therapy Study Guide

Radiation Therapy Study Guide Amy Heath Radiation Therapy Study Guide A Radiation Therapist s Review 123 Radiation Therapy Study Guide Amy Heath Radiation Therapy Study Guide A Radiation Therapist s Review Amy Heath, MS, RT(T) University

More information

Physics of Novel Radiation Modalities Particles and Isotopes. Todd Pawlicki, Ph.D. UC San Diego

Physics of Novel Radiation Modalities Particles and Isotopes. Todd Pawlicki, Ph.D. UC San Diego Physics of Novel Radiation Modalities Particles and Isotopes Todd Pawlicki, Ph.D. UC San Diego Disclosure I have no conflicts of interest to disclose. Learning Objectives Understand the physics of proton

More information

Detection and measurement of gamma-radiation by gammaspectroscopy

Detection and measurement of gamma-radiation by gammaspectroscopy Detection and measurement of gamma-radiation by gammaspectroscopy Gamma-radiation is electromagnetic radiation having speed equal to the light in vacuum. As reaching a matter it interact with the different

More information

Lab Manual: Determination of Planck s constant with x-rays

Lab Manual: Determination of Planck s constant with x-rays Lab Manual: Determination of Planck s constant with x-rays 1. Purpose: To obtain a better understanding on the production of X-rays, the bremsstrahlung radiation and the characteristic radiation of a Molybdenum

More information

Basic physics Questions

Basic physics Questions Chapter1 Basic physics Questions S. Ilyas 1. Which of the following statements regarding protons are correct? a. They have a negative charge b. They are equal to the number of electrons in a non-ionized

More information

X-ray Spectroscopy. Danny Bennett and Maeve Madigan. October 12, 2015

X-ray Spectroscopy. Danny Bennett and Maeve Madigan. October 12, 2015 X-ray Spectroscopy Danny Bennett and Maeve Madigan October 12, 2015 Abstract Various X-ray spectra were obtained, and their properties were investigated. The characteristic peaks were identified for a

More information

Latest advances in identifying mineral composition variation by the M4 TORNADO AMICS

Latest advances in identifying mineral composition variation by the M4 TORNADO AMICS Latest advances in identifying mineral composition variation by the M4 TORNADO AMICS Bruker Nano Analytics, Berlin, Germany Webinar, June 15, 2017 Innovation with Integrity Presenters Samuel Scheller Sr.

More information

A Radiation Monitoring System With Capability of Gamma Imaging and Estimation of Exposure Dose Rate

A Radiation Monitoring System With Capability of Gamma Imaging and Estimation of Exposure Dose Rate IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 49, NO. 3, JUNE 2002 1547 A Radiation Monitoring System With Capability of Gamma Imaging and Estimation of Exposure Dose Rate Wanno Lee, Gyuseong Cho, and Ho

More information

anti-compton BGO detector

anti-compton BGO detector 1 2 3 Q β - measurements with a total absorption detector composed of through-hole HPGe detector and anti-compton BGO detector 4 5 Hiroaki Hayashi a,1, Michihiro Shibata b, Osamu Suematsu a, Yasuaki Kojima

More information

AS 101: Day Lab #2 Summer Spectroscopy

AS 101: Day Lab #2 Summer Spectroscopy Spectroscopy Goals To see light dispersed into its constituent colors To study how temperature, light intensity, and light color are related To see spectral lines from different elements in emission and

More information

Radiation Protection & Radiation Therapy

Radiation Protection & Radiation Therapy Radiation Protection & Radiation Therapy For Medical Students Professor of Medical Physics Radiation Units Activity Number disintegrations per second (Curie, Becquerel) Exposure (Roentgen, C/kg) Absorbed

More information

Reliability and Traceability in Radiation Calibration

Reliability and Traceability in Radiation Calibration Reliability and Traceability in Calibration Sadao Nakashima Teruo Ebato 1. Introduction Fuji Electric has a successful history of delivering radiation measuring equipment used in the controlled areas of

More information

Experiment 6 1. The Compton Effect Physics 2150 Experiment No. 6 University of Colorado

Experiment 6 1. The Compton Effect Physics 2150 Experiment No. 6 University of Colorado Experiment 6 1 Introduction The Compton Effect Physics 2150 Experiment No. 6 University of Colorado In some situations, electromagnetic waves can act like particles, carrying energy and momentum, which

More information

WM2013 Conference, February 24 28, 2013, Phoenix, Arizona, USA

WM2013 Conference, February 24 28, 2013, Phoenix, Arizona, USA The Underwater Spectrometric System Based on CZT Detector for Survey of the Bottom of MR Reactor Pool 13461 Victor Potapov, Alexey Safronov, Oleg Ivanov, Sergey Smirnov, Vyacheslav Stepanov National Research

More information

Radiation protection issues in proton therapy

Radiation protection issues in proton therapy Protons IMRT Tony Lomax, Centre for Proton Radiotherapy, Paul Scherrer Institute, Switzerland Overview of presentation 1. Proton therapy: An overview 2. Radiation protection issues: Staff 3. Radiation

More information

Radiation Shielding of Extraction Absorbers for a Fermilab Photoinjector

Radiation Shielding of Extraction Absorbers for a Fermilab Photoinjector Fermilab FERMILAB-TM-2220 August 2003 Radiation Shielding of Extraction Absorbers for a Fermilab Photoinjector I.L. Rakhno Fermilab, P.O. Box 500, Batavia, IL 60510, USA August 12, 2003 Abstract Results

More information

H e a l t h P h y s i c s S e r v i c e s L t d

H e a l t h P h y s i c s S e r v i c e s L t d 1 Title: Adept Medical X-Ray Shield: Scatter Radiation Shielding Grid Format Methodology 2 Background: Adept Medical X-Ray Shield (X-Ray Shield) is embedded with 0.5mm Lead (pb), offering protection from

More information

Automated Determination of Crystal Reflectivity in the X-ray Laboratory

Automated Determination of Crystal Reflectivity in the X-ray Laboratory Automated Determination of Crystal Reflectivity in the X-ray Laboratory Bradley Wideman University of Rochester Laboratory for Laser Energetics 2008 High School Summer Research Program INTRODUCTION The

More information

DAY LABORATORY EXERCISE: SPECTROSCOPY

DAY LABORATORY EXERCISE: SPECTROSCOPY AS101 - Day Laboratory: Spectroscopy Page 1 DAY LABORATORY EXERCISE: SPECTROSCOPY Goals: To see light dispersed into its constituent colors To study how temperature, light intensity, and light color are

More information

Training program for x-ray inspection film (RT)

Training program for x-ray inspection film (RT) of MTU Aero Engines AG Training program for x-ray inspection film (RT) In the NDT training course the following knowledge will be educated. approved by NANDTB Germany Preface + + + Introduction + + + Properties

More information

print first name print last name print student id grade

print first name print last name print student id grade print first name print last name print student id grade Experiment 2 X-ray fluorescence X-ray fluorescence (XRF) and X-ray diffraction (XRD) may be used to determine the constituent elements and the crystalline

More information

I. INTRODUCTION EXPERIMENTAL

I. INTRODUCTION EXPERIMENTAL International Journal of Computational Engineering Research Vol, 04 Issue, 4 Simulation of Photon and Electron dose distributions by 5 code for the treatment area using the linear electron accelerator

More information

Initial Certification

Initial Certification Initial Certification Medical Physics Part 1 Content Guide Part 1 Content Guides and Sample Questions PLEASE NOTE: List of Constants and Physical Values for Use on the Part 1 Physics Exam The ABR provides

More information

Chapter V: Cavity theories

Chapter V: Cavity theories Chapter V: Cavity theories 1 Introduction Goal of radiation dosimetry: measure of the dose absorbed inside a medium (often assimilated to water in calculations) A detector (dosimeter) never measures directly

More information

City University of Hong Kong

City University of Hong Kong City University of Hong Kong Information on a Course offered by the Department of Physics and Materials Science with effect from Semester A in 2013 / 2014 Part I Course Title: Radiological Physics and

More information

The scanning microbeam PIXE analysis facility at NIRS

The scanning microbeam PIXE analysis facility at NIRS Nuclear Instruments and Methods in Physics Research B 210 (2003) 42 47 www.elsevier.com/locate/nimb The scanning microbeam PIXE analysis facility at NIRS Hitoshi Imaseki a, *, Masae Yukawa a, Frank Watt

More information

ASSET INTEGRITY INTELLIGENCE. Featured Article. ACHIEVING A COMPREHENSIVE FIRED HEATER HEALTH MONITORING PROGRAM By Tim Hill, Quest Integrity Group

ASSET INTEGRITY INTELLIGENCE. Featured Article. ACHIEVING A COMPREHENSIVE FIRED HEATER HEALTH MONITORING PROGRAM By Tim Hill, Quest Integrity Group ASSET INTEGRITY INTELLIGENCE Featured Article ACHIEVING A COMPREHENSIVE FIRED HEATER HEALTH MONITORING PROGRAM By Tim Hill, Quest Integrity Group VOLUME 20, ISSUE 5 SEPTEMBER OCTOBER 2014 ACHIEVING A COMPREHENSIVE

More information

Safety Training for Radiation Workers at ICRR, Univ. of Tokyo. April, 2017

Safety Training for Radiation Workers at ICRR, Univ. of Tokyo. April, 2017 Safety Training for Radiation Workers at ICRR, Univ. of Tokyo April, 2017 Outline What is new in this year Law, Rules at ICRR Radiation management at ICRR Rules at ICRR Safety handling Important notices

More information

Radiation Dose, Biology & Risk

Radiation Dose, Biology & Risk ENGG 167 MEDICAL IMAGING Lecture 2: Sept. 27 Radiation Dosimetry & Risk References: The Essential Physics of Medical Imaging, Bushberg et al, 2 nd ed. Radiation Detection and Measurement, Knoll, 2 nd Ed.

More information

X-Rays Edited 2/19/18 by DGH & Stephen Albright

X-Rays Edited 2/19/18 by DGH & Stephen Albright X-Rays Edited 2/19/18 by DGH & Stephen Albright PURPOSE OF EXPERIMENT: To investigate the production, diffraction and absorption of x-rays. REFERENCES: Tipler, 3-6, 4-4; Enge, Wehr and Richards, Chapter

More information

1. Module Details RADIOGRAPHY AND RADIATION SAFETY. 2. Module Purpose To provide learners with knowledge of the principles of industrial

1. Module Details RADIOGRAPHY AND RADIATION SAFETY. 2. Module Purpose To provide learners with knowledge of the principles of industrial 1. Module Details Module name Nominal duration RADIOGRAPHY AND RADIATION SAFETY 1 modules It is anticipated that a learner holding the prescribed entry level skills will achieve the module purpose in 35

More information

Calibration of a pencil ionization chamber with and without preamplifier

Calibration of a pencil ionization chamber with and without preamplifier Calibration of a pencil ionization chamber with and without preamplifier Ana F. Maia and Linda V. E. Caldas Instituto de Pesquisas Energéticas e Nucleares Comissão Nacional de Energia Nuclear Av. Prof.

More information

Double-Slit Interference

Double-Slit Interference Double-Slit Interference 1. Objectives. The objective of this laboratory is to verify the double-slit interference relationship. 2. Theory. a. When monochromatic, coherent light is incident upon a double

More information

Energy response for high-energy neutrons of multi-functional electronic personal dosemeter

Energy response for high-energy neutrons of multi-functional electronic personal dosemeter Energy response for high-energy neutrons of multi-functional electronic personal dosemeter T. Nunomiya 1, T. Ishikura 1, O. Ueda 1, N. Tsujimura 2,, M. Sasaki 2,, T. Nakamura 1,2 1 Fuji Electric Systems

More information

Radiation measurements with heat-proof polyethylene terephthalate bottles

Radiation measurements with heat-proof polyethylene terephthalate bottles 466, 2847 2856 doi:10.1098/rspa.2010.0118 Published online 19 May 2010 Radiation measurements with heat-proof polyethylene terephthalate bottles BY HIDEHITO NAKAMURA 1, *, HISASHI KITAMURA 1 AND RYUTA

More information

Inside Wall Temperature Measurements of DSTs Using an Infrared Temperature Sensor

Inside Wall Temperature Measurements of DSTs Using an Infrared Temperature Sensor TEST PLAN Inside Wall Temperature Measurements of DSTs Using an Infrared Temperature Sensor Date submitted: December 18, 2015 Prepared by: Aparna Aravelli, Ph.D. Florida International University Collaborators:

More information

Exposure Buildup Factors for Heavy Metal Oxide Glass: A Radiation Shield

Exposure Buildup Factors for Heavy Metal Oxide Glass: A Radiation Shield Downloaded from orbit.dtu.dk on: Jan 16, 2019 Exposure Buildup Factors for Heavy Metal Oxide Glass: A Radiation Shield Manonara, S. R.; Hanagodimath, S. M.; Gerward, Leif; Mittal, K. C. Published in: Journal

More information

Planck's "quantum of action" and external photoelectric effect (Item No.: P )

Planck's quantum of action and external photoelectric effect (Item No.: P ) Planck's "quantum of action" and external photoelectric effect (Item No.: P2510502) Curricular Relevance Area of Expertise: Physics Education Level: University Topic: Modern Physics Subtopic: Quantum Physics

More information

A scintillation dual-detector system featuring active Compton suppression

A scintillation dual-detector system featuring active Compton suppression University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2007 A scintillation dual-detector system featuring active Compton

More information

Outline. Radiation Interactions. Spurs, Blobs and Short Tracks. Introduction. Radiation Interactions 1

Outline. Radiation Interactions. Spurs, Blobs and Short Tracks. Introduction. Radiation Interactions 1 Outline Radiation Interactions Introduction Interaction of Heavy Charged Particles Interaction of Fast Electrons Interaction of Gamma Rays Interactions of Neutrons Radiation Exposure & Dose Sources of

More information

Radiation Protection Considerations for the Cryogenic In-Vacuum Undulator of the EMIL Project at BESSY

Radiation Protection Considerations for the Cryogenic In-Vacuum Undulator of the EMIL Project at BESSY Radiation Protection Considerations for the Cryogenic In-Vacuum Undulator of the EMIL Project at BESSY Yvonne Bergmann, Klaus Ott Helmholtz- Zentrum Berlin BESSY II Radiation Protection Department yvonne.bergmann@helmholtz-berlin.de

More information

7/21/2014. Preparing for Part I of the ABR Exam The First Step to Board Certification. Background. Outline

7/21/2014. Preparing for Part I of the ABR Exam The First Step to Board Certification. Background. Outline Preparing for Part I of the ABR Exam The First Step to Board Certification Paulina Galavis, PhD Radiation Oncology Physics Resident at NYU Langone Medical Center Background PhD, University of Wisconsin-Madison

More information

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #9: Diffraction Spectroscopy

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #9: Diffraction Spectroscopy NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #9: Diffraction Spectroscopy Lab Writeup Due: Mon/Wed/Thu/Fri, April 30/ May 2/3/4, 2018 Background All

More information

Characteristic X-rays of molybdenum

Characteristic X-rays of molybdenum Characteristic X-rays of molybdenum TEP Related Topics X-ray tubes, bremsstrahlung, characteristic X-radiation, energy levels, crystal structures, lattice constant, absorption of X-rays, absorption edges,

More information

Relativistic Electrons

Relativistic Electrons Relativistic Electrons Physics 300 1 Introduction In this experiment you will make independent measurements of the momentum and kinetic energy of electrons emitted from a β source. You will use these data

More information

SCINTILLATION DETECTORS & GAMMA SPECTROSCOPY: AN INTRODUCTION

SCINTILLATION DETECTORS & GAMMA SPECTROSCOPY: AN INTRODUCTION SCINTILLATION DETECTORS & GAMMA SPECTROSCOPY: AN INTRODUCTION OBJECTIVE The primary objective of this experiment is to use an NaI(Tl) detector, photomultiplier tube and multichannel analyzer software system

More information

LECTURE 4 PRINCIPLE OF IMAGE FORMATION KAMARUL AMIN BIN ABDULLAH

LECTURE 4 PRINCIPLE OF IMAGE FORMATION KAMARUL AMIN BIN ABDULLAH LECTURE 4 PRINCIPLE OF IMAGE FORMATION KAMARUL AMIN BIN ABDULLAH Lesson Objectives At the end of the lesson, student should able to: Define attenuation Explain interactions between x-rays and matter in

More information

where c m s (1)

where c m s (1) General Physics Experiment 6 Spectrum of Hydrogen s Emission Lines Objectives: < To determine wave lengths of the bright emission lines of hydrogen. < To test the relationship between wavelength and energy

More information

Michael G. Stabin. Radiation Protection and Dosimetry. An Introduction to Health Physics. 4) Springer

Michael G. Stabin. Radiation Protection and Dosimetry. An Introduction to Health Physics. 4) Springer Michael G. Stabin Radiation Protection and Dosimetry An Introduction to Health Physics 4) Springer Table of Contents Preface Acknowledgments Chapter 1. Introduction to Health Physics 1 1.1 Definition of

More information

X-Rays From Laser Plasmas

X-Rays From Laser Plasmas X-Rays From Laser Plasmas Generation and Applications I. C. E. TURCU CLRC Rutherford Appleton Laboratory, UK and J. B. DANCE JOHN WILEY & SONS Chichester New York Weinheim Brisbane Singapore Toronto Contents

More information