CT-PET calibration : physical principles and operating procedures F.Bonutti. Faustino Bonutti Ph.D. Medical Physics, Udine University Hospital.

Size: px
Start display at page:

Download "CT-PET calibration : physical principles and operating procedures F.Bonutti. Faustino Bonutti Ph.D. Medical Physics, Udine University Hospital."

Transcription

1 CT-PET calibration : physical principles and operating procedures Faustino Bonutti Ph.D. Medical Physics, Udine University Hospital Topics Introduction to PET physics F-18 production β + decay and annichilation process γ γ coincidence detection true, random and scatter coincidences the NECR, image quality VS patient dose PET calibration and QC procedures the sinogram normalization and ECF calibration daily QC uniformity, sensitivity

2 PET POSITRON EMISSION TOMOGRAPHY Positron The positron (e + ) is emitted in the β + decay process: p n + e + + ν e The β + decay is forbidden for a free proton. The process must occur in a nucleus: (A,Z) (A,Z-1) + e + + ν e For example: 18 F 18 O + e + + ν e

3 Emission Emission (tomography) : the source of radiation is inside the patient: γ γ Transmission (tomography) : the source of radiation is outside the patient: x-ray Tomography Tómos = from Greek = (cross-) section Material from IAEA Educational Course Radiation Protection in Nuclear Medicine

4 How the F-18 is produced? H - H - acceleration inside the cyclotron (spiral trajectory) stripping e- e- p+ e- e- p+ e- e- H + p+ proton beam Carbon foil p + 18 O n + 18 F FDG synthesis FDG Main applications: Oncology (cancer detection and staging) Cardiology Neurology

5 FDG administration uptake time β + decays and annnihilation process 18 F 18 O + e + + ν e γ (511 kev) e + e - γ (511 kev)

6 e + range in the patient tissues e + Radioisotope e + Range (mm) 15 O N C F 2.6 Radioisotope e + E max (kev) e + E mean (kev) T 1/2 (min) e + Range (mm) Decay 15 O % β + 13 N % β + 11 C % β + 18 F % β +, 3% E.C. Fermi s Golden Rule i f p i f 2π = M h if 2 dn f de Transition matrix (dynamics) density of final states (phase space)

7 e + e - annnihilation process and γ γ coincidence detection TRUE COINCIDENCE useful for the image reconstruction γ annihilation LOR γ constant fraction discriminator constant fraction discriminator coincidence window (6 ns) SCALER True, random and scatter coincidences TRUE COINCIDENCE useful for the image reconstruction RANDOM COINCIDENCE generated from two uncorrelated events of annihilation γ annihilation LOR γ wrong LOR constant fraction discriminator coincidence window (6 ns) constant fraction discriminator Compton scattering annihilation SCATTERING COINCIDENCE one (or both) of the two 512 kev photon is scattered by the patient wrong LOR SCALER

8 True, random and scatter coincidences LSO CT-PET Biograph Pico3D Cylindrical phantom water + F-18 filled 2.00E E E E E+0 cps 1.00E E E E E E activity (mci) TOTAL TRUE SCATTER RANDOMS NECR Random coincidences : RANDOM COINCIDENCE they don t contribute to image they increase the noise % of true coincidences How to reduce them? smaller coincidence window less activity C R = 2 τ C S 2 wrong LOR How to take into account? delayed window method

9 Scatter coincidences : don t contribute to image in the human thorax, 50% or more of the measured data may be scattered. reduce the contrast Compton scattering annihilation SCATTERING COINCIDENCE wrong LOR How to reduce them? 2D instead of 3D less activity How to take into account? scatter modelling and compensation algorithms Conventional Nuclear Medicine (planar, SPECT) N SNR = N N Positron Emission Tomography TRUE EVENTS contribute to SIGNAL and NOISE RANDOM AND SCATTERING EVENTS contribute only to NOISE NECR NECR = T T + S + 2R good LOR from TRUE wrong LOR from scatter 2 T NECR = T + S + 2R wrong LOR from random SNR = T T + S + 2R

10 IMAGE QUALITY NECR PET phantom for IQ NEC [kcps] mCi inj. 20mCi inj (courtesy of CPS Innovation /Siemens) Activity [kbq/ml] patients with: 2.50E+05 [52-62] kg weight and [ cm] height TRUE + SCATTER RANDOM * PNECR E E+05 PNECR-MAX E E E E E E E E E+07 singles rate (cps) 6 7 COUNT-RATE ANALYSIS FROM CLINICAL SCANS IN PET WITH LSO DETECTORS F. Bonutti et al, Radiation Protection Dosimetry, (2008) MISSING ACTIVITY = 70% (for central beds) bed # bed # but: PNECR (SNR) IMPROVEMENT : 15-20% % PNECR i mprovement

11 Attenuation correction Many true coincidences are lost because of scatter (Compton or Rayleigh interactions) absorption (photoelectric interaction) wrong LOR from scatter Scattered but detected scatter contribution to data attenuation of the true LOR intensity Scattered and not detected attenuation of the true LOR intensity How much is the 511 kev every 7.2 cm of water half radiation intensity is lost: I I 2 I cm 7.2 cm no AC AC Ge68 phantom Ge68 phantom

12 CT-PET Attenuation correction - the emitter distribution is distorted. - quantification is not possible (SUV) - lung lesions may not be visible in uncorrected images. Attenuation correction Attenuation factors range from < 5 in the brain to > 150 in the body. In PET the attenuation doesn t depend on the position of the source point along that LOR: γ γ detection probability ~ γ γ detection probability ~ = ( l) dl µ ( l) dl 0 1 = µ ( l) dl 0 e µ 2 3 e e = 3 µ l) dl µ ( l) dl µ ( l e e e ( ) dl

13 CT-PET Attenuation correction Rescaling the attenuation coefficients µ with energy µ/ρ 0.3 Air Muscle Bone (cm 2 /g) CT PET Energy (kev) PET calibration and QC procedures The sinogram source sinogram LOR rappresentation phi d

14 PET calibration and QC procedures The normalization procedure Ge-68 phantom, 1 2 mci BUCKET BLOCK Example : Siemens Biograph LSO Pico3D number of elementary detectors : (12 buckets) X (12 blocks) X (64 crystals) = 9216 (courtesy of CPS Innovation /Siemens) PET calibration and QC procedures uniform phantom sinogram for a un-normalized system uniform phantom sinogram for a normalized system

15 PET calibration and QC procedures Calibration Factor (CF) make possible quantifications (SUV) Ge-68 phantom of known activity concentration CF number of counts inside voxel PET calibration and QC procedures Calibration Factor (CF) make possible quantifications (SUV) ROI ROI activity = ROI counts x ECF β + p n + e + + ν e 18 F 18 O + ν e (branching ratio = 96.9 %) E.C. p + e - n + ν e (branching ratio = 3.1 %)

16 PET calibration and QC procedures Calibration Factor (CF) make possible quantifications (SUV) ROI SUV = ROI activity concentration mean (body) activity concentration PET calibration and QC procedures ECF behavior (Emission Calibration Factor) ECF behavior 3.00E E E+06 ECF 1.50E E E E+00 01/01/ /12/ /12/ /12/ /01/ /12/ /12/2009 time (Siemens Biograph LSO Pico3D)

17 PET calibration and QC procedures After normalization, the software gives the χ 2 If you normalize the system every 1-2 months, typical χ 2 are If you do it less frequently, the χ 2 goes up χ χ 2 behavior days Optimal frequency may depend on the system In our Departement we do normalization at least every 2 months PET calibration and QC procedures The need for normalization come out from the daily QC test For this test, usually a Ge-68 cylindric phantom is used (1-2 mci)

18 PET calibration and QC procedures After the daily QC test, give a look to the sinograms : PET calibration and QC procedures SUV tests : with a single Ge-68 phantom (we do it monthly) CT PET Ge-68 phantom

19 PET calibration and QC procedures SUV tests : with two single Ge-68 phantom (we do it every 6 months) CT PET new Ge-68 phantom old Ge-68 phantom 1 2 mci mci PET calibration and QC procedures SUV tests : with two F-18 bottles (we do it yearly) Check the SUV results on the workstationsd using the different available tools new F-18 phantom old F-18 phantom 1 2 mci mci CT PET LEO2 min max averg LEO3 min max averg ESOFT min max averg tool "elissoide" tool "3D isocontour" tool "multiframe polygon" tool "multiframe contour" tool "elissoide" tool "3D isocontour" tool "multiframe polygon" tool "multiframe contour" tool "elissoide" tool "3D isocontour" tool "multiframe polygon" tool "multiframe contour"

20 PET calibration and QC procedures Uniformity test : with Ge-68 phantom (we do it every 3 months) Uniformity Specification (from CPS/Siemens standards): The measured volume RMS variation will be < 10% NEMA : NU vol < 15% PET calibration and QC procedures Sensitvity test : with Ge-68 phantom (we do it every 3 months) Sensitivity Specification (from CPS/Siemens standards): The measured system sensitivity will be > counts/sec/µci/ml NEMA : S meas > 95% S ref

21 Daily : CT calibration and QC procedures X-ray tube check-up and calibration Every 3 months : Noise, constancy and uniformity of CT numbers CT numbers linearity, contrast scale High and low contrast spatial resolution Slice thickness Table accuracy movement Laser alignement Every 6 months : Dose (in head and body CT phantoms) CT-PET calibration and QC procedures Yearly : attenuation correction check Ge-68, no AC Ge-68, AC S.D. average avedev

22 CT-PET calibration and QC procedures Yearly : CT-PET co-registration check PET/CT UDINE SCAN PROTOCOL 62 mas; 130 kv p CT PET Survey CT X-Ray FUSION scatter correction attenuation correction WB PET: 20 min 370 MBq CT PET γγ γγ e+ e- Annihilation PET Fused PET/CT

Radionuclide Imaging MII Positron Emission Tomography (PET)

Radionuclide Imaging MII Positron Emission Tomography (PET) Radionuclide Imaging MII 3073 Positron Emission Tomography (PET) Positron (β + ) emission Positron is an electron with positive charge. Positron-emitting radionuclides are most commonly produced in cyclotron

More information

6: Positron Emission Tomography

6: Positron Emission Tomography 6: Positron Emission Tomography. What is the principle of PET imaging? Positron annihilation Electronic collimation coincidence detection. What is really measured by the PET camera? True, scatter and random

More information

Introduction to SPECT & PET TBMI02 - Medical Image Analysis 2017

Introduction to SPECT & PET TBMI02 - Medical Image Analysis 2017 Introduction to SPECT & PET TBMI02 - Medical Image Analysis 2017 Marcus Ressner, PhD, Medical Radiation Physicist, Linköping University Hospital Content What is Nuclear medicine? Basic principles of Functional

More information

Nuclear Medicine Intro & Physics from Medical Imaging Signals and Systems, Chapter 7, by Prince and Links

Nuclear Medicine Intro & Physics from Medical Imaging Signals and Systems, Chapter 7, by Prince and Links Nuclear Medicine Intro & Physics from Medical Imaging Signals and Systems, Chapter 7, by Prince and Links NM - introduction Relies on EMISSION of photons from body (versus transmission of photons through

More information

Acknowledgements. PET Fundamentals: Ideal Case. Why Are We Excited About PET/CT? PET Fundamentals: Real Case

Acknowledgements. PET Fundamentals: Ideal Case. Why Are We Excited About PET/CT? PET Fundamentals: Real Case PET/CT and Fusion Issues Jon A. Anderson Department of Radiology The University of Texas Southwestern Medical Center at Dallas American Associate of Physicists in Medicine 2003 Annual Meeting Acknowledgements

More information

PET. Technical aspects

PET. Technical aspects PET Technical aspects 15 N 15 O Detector 1 β+ Detector 2 e- Evolution of PET Detectors CTI/Siemens 15 N 15 O Detector block 1 β+ Detector block 2 x e- x y y location line of response Constant fraction

More information

Chapter 2 PET Imaging Basics

Chapter 2 PET Imaging Basics Chapter 2 PET Imaging Basics Timothy G. Turkington PET Radiotracers Positron emission tomography (PET) imaging is the injection (or inhalation) of a substance containing a positron emitter, the subsequent

More information

Solid State LightBurst New PET Technology GE PET/CT and PET/MR

Solid State LightBurst New PET Technology GE PET/CT and PET/MR Solid State LightBurst New PET Technology GE PET/CT and PET/MR Osama Mawlawi PhD. Dept. of Imaging Physics MD Anderson Cancer Center Disclosures SIEMENS Research grant GE research grant Discovery MI LYSO

More information

www.aask24.com www.aask24.com www.aask24.com P=Positron E= Emission T=Tomography Positron emission or beta plus decay (+ ) is a particular type of radioactive decay, in which a proton inside a radionuclide

More information

Tomography is imaging by sections. 1

Tomography is imaging by sections. 1 Tomography is imaging by sections. 1 It is a technique used in clinical medicine and biomedical research to create images that show how certain tissues are performing their physiological functions. 1 Conversely,

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS OPTION I-2 MEDICAL IMAGING Reading Activity Answers IB Assessment Statements Option I-2, Medical Imaging: X-Rays I.2.1. I.2.2. I.2.3. Define

More information

PET scan simulation. Meysam Dadgar. UMSU, Iran. IFMP, Elbasan, Fig 1: PET camera simulation in gate by cylindrical phantom

PET scan simulation. Meysam Dadgar. UMSU, Iran. IFMP, Elbasan, Fig 1: PET camera simulation in gate by cylindrical phantom PET scan simulation Meysam Dadgar UMSU, Iran IFMP, Elbasan, 2016 Meysamdadgar10@gmail.com 1 Fig 1: PET camera simulation in gate by cylindrical phantom 2 What is PET? Positron emission tomography (PET),

More information

Lecture 5: Tomographic nuclear systems: SPECT

Lecture 5: Tomographic nuclear systems: SPECT Lecture 5: Tomographic nuclear systems: SPECT Field trip this saturday at 11 AM at UWMC meet in main hospital lobby at 11 AM if you miss the 'boat', page me at 540-4950 should take ~1 to 1.5 hours, depending

More information

A Brief Introduction to Medical Imaging. Outline

A Brief Introduction to Medical Imaging. Outline A Brief Introduction to Medical Imaging Outline General Goals Linear Imaging Systems An Example, The Pin Hole Camera Radiations and Their Interactions with Matter Coherent vs. Incoherent Imaging Length

More information

Radioisotopes and PET

Radioisotopes and PET Radioisotopes and PET 1 Radioisotopes Elements are defined by their number of protons, but there is some variation in the number of neutrons. Atoms resulting from this variation are called isotopes. Consider

More information

A. I, II, and III B. I C. I and II D. II and III E. I and III

A. I, II, and III B. I C. I and II D. II and III E. I and III BioE 1330 - Review Chapters 7, 8, and 9 (Nuclear Medicine) 9/27/2018 Instructions: On the Answer Sheet, enter your 2-digit ID number (with a leading 0 if needed) in the boxes of the ID section. Fill in

More information

Mitigation of External Radiation Exposures

Mitigation of External Radiation Exposures Mitigation of External Radiation Exposures The three (3) major principles to assist with maintaining doses ALARA are :- 1) Time Minimizing the time of exposure directly reduces radiation dose. 2) Distance

More information

Quantitative Imaging with Y-90 Bremsstrahlung SPECT (Single Positron Emission Computed Tomography)

Quantitative Imaging with Y-90 Bremsstrahlung SPECT (Single Positron Emission Computed Tomography) Quantitative Imaging with Y-90 Bremsstrahlung SPECT (Single Positron Emission Computed Tomography) S. Beykan, M. Lassmann, S. Schlögl Klinik und Poliklinik für Nuklearmedizin Direktor: Prof. Dr. A. Buck

More information

MEDICAL EQUIPMENT: NUCLEAR MEDICINE. Prof. Yasser Mostafa Kadah

MEDICAL EQUIPMENT: NUCLEAR MEDICINE. Prof. Yasser Mostafa Kadah MEDICAL EQUIPMENT: NUCLEAR MEDICINE Prof. Yasser Mostafa Kadah www.k-space.org Recommended Textbook Introduction to Medical Imaging: Physics, Engineering and Clinical Applications, by Nadine Barrie Smith

More information

The Physics of PET/CT scanners

The Physics of PET/CT scanners The Physics of PET/CT scanners Ruth E. Schmitz, Adam M. Alessio, and Paul E. Kinahan Imaging Research Laboratory Department of Radiology University of Washington What Makes PET Useful? Positron emission

More information

Positron Emission Tomography

Positron Emission Tomography Positron Emission Tomography CERN Accelerator School Small Accelerators Zeegse, the Netherlands A.M.J. Paans Nuclear Medicine & Molecular Imaging UMC Groningen Elements of Life PET-nuclide Hydrogen Carbon

More information

Positron Emission Tomography

Positron Emission Tomography Positron Emission Tomography Presenter: Difei Wang June,2018 Universität Bonn Contents 2 / 24 1 2 3 4 Positron emission Detected events Detectors and configuration Data acquisition Positron emission Positron

More information

What is scintigraphy? The process of obtaining an image or series of sequential images of the distribution of a radionuclide in tissues, organs, or

What is scintigraphy? The process of obtaining an image or series of sequential images of the distribution of a radionuclide in tissues, organs, or Let's remind... What is nuclear medicine? Nuclear medicine can be broadly divided into two branches "in vitro" and "in vivo" procedures. There are numerous radioisotopic "in vitro" procedures for genotyping

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: X-ray Production Compton Scattering Pair Production Arthur Compton 1892-1962 Meeting of the Texas Section of the American Physical Society When: Fri-Sat Oct 20-21

More information

Radioisotopes in action. Diagnostic application of radioisotopes. Steps of diagnostic procedure. Information from various medical imaging techniques

Radioisotopes in action. Diagnostic application of radioisotopes. Steps of diagnostic procedure. Information from various medical imaging techniques Radioisotopes in action Diagnostic application of radioisotopes Steps of diagnostic procedure - Radioactive material introduced into the patient - Distribution and alteration of activity is detected -

More information

Technical University of Denmark

Technical University of Denmark Technical University of Denmark Page 1 of 11 pages Written test, 9 December 2010 Course name: Introduction to medical imaging Course no. 31540 Aids allowed: none. "Weighting": All problems weight equally.

More information

Mayneord-Phillips Summer School St Edmund Hall, University of Oxford July Proton decays to n, e +, ν

Mayneord-Phillips Summer School St Edmund Hall, University of Oxford July Proton decays to n, e +, ν Positron Emission Tomography Physics & Instrumentation Dimitra G. Darambara, Ph.D Multimodality Molecular Imaging Joint Department of Physics RMH/ICR Outline Introduction PET Physics overview Types of

More information

Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA ramsey

Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA   ramsey SPECIAL FEATURE: MEDICAL PHYSICS www.iop.org/journals/physed Nuclear medicine Ramsey D Badawi Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA E-mail: ramsey badawi@dfci.harvard.edu

More information

Simulation of triple coincidences in PET

Simulation of triple coincidences in PET 136 Institute of Physics and Engineering in Medicine Physics in Medicine & Biology doi:10.1088/0031-9155/60/1/117 Simulation of triple coincidences in PET J Cal-González 1,4, E Lage 2, E Herranz 1, E Vicente

More information

Development of Radioactivity Standards for Quantitative Positron Emission Tomography

Development of Radioactivity Standards for Quantitative Positron Emission Tomography Development of Radioactivity Standards for Quantitative Positron Emission Tomography Brian E. Zimmerman, PhD Radiation Physics Division National Institute of Standards and Technology Gaithersburg, MD 20899-8462

More information

Gamma ray coincidence and angular correlation

Gamma ray coincidence and angular correlation University of Cape Town Department of Physics Course III laboratory Gamma ray coincidence and angular correlation Introduction Medical imaging based on positron emission tomography (PET) continues to have

More information

11/10/2014. Chapter 1: Introduction to Medical Imaging. Projection (Transmission) vs. Emission Imaging. Emission Imaging

11/10/2014. Chapter 1: Introduction to Medical Imaging. Projection (Transmission) vs. Emission Imaging. Emission Imaging Chapter 1: Introduction to Medical Imaging Overview of Modalities Properties of an Image: Limitations on Information Content Contrast (both object & image): Brightness difference Sharpness (blur): Smallest

More information

Technical University of Denmark

Technical University of Denmark Technical University of Denmark Page 1 of 10 pages Written test, 12 December 2012 Course name: Introduction to medical imaging Course no. 31540 Aids allowed: None. Pocket calculator not allowed "Weighting":

More information

Introduction to Medical Imaging. Medical Imaging

Introduction to Medical Imaging. Medical Imaging Introduction to Medical Imaging BME/EECS 516 Douglas C. Noll Medical Imaging Non-invasive visualization of internal organs, tissue, etc. I typically don t include endoscopy as an imaging modality Image

More information

Positron Annihilation in Material Research

Positron Annihilation in Material Research Positron Annihilation in Material Research Introduction Positron sources, positron beams Interaction of positrons with matter Annihilation channels: Emission of 1, 2 or 3 γ-quanta Annihilation spectroscopies:

More information

Nuclear Medicine RADIOPHARMACEUTICAL CHEMISTRY

Nuclear Medicine RADIOPHARMACEUTICAL CHEMISTRY Nuclear Medicine RADIOPHARMACEUTICAL CHEMISTRY An alpha particle consists of two protons and two neutrons Common alpha-particle emitters Radon-222 gas in the environment Uranium-234 and -238) in the environment

More information

Structure of Biological Materials

Structure of Biological Materials ELEC ENG 3BA3: Structure of Biological Materials Notes for Lecture #19 Monday, November 22, 2010 6.5 Nuclear medicine imaging Nuclear imaging produces images of the distribution of radiopharmaceuticals

More information

Procesamiento de Imágenes y Bioseñales

Procesamiento de Imágenes y Bioseñales Procesamiento de Imágenes y Bioseñales Dr. Víctor Castañeda Agenda Physical basis of X-ray- CT, NMR, Ultrasound, Nuclear Medicine Sensors (cameras, gamma probes, microphone) Computational Tomography (CT)

More information

Bases of radioisotope diagnostic methods

Bases of radioisotope diagnostic methods Medical, pharmaceutical applications of radioisotopes Bases of radioisotope diagnostic methods Dr. István Voszka Basis of application: radioisotopes have identical behavior in the organism to corresponding

More information

Positron Emission Tomography (PET)

Positron Emission Tomography (PET) Positron Emission Tomography (PET) A radiological technique for functional imaging Please note that this exercise takes place at the Stockholm Centre for Physics, Astronomy and Biotechniques (Alba Nova).

More information

APPLIED RADIATION PHYSICS

APPLIED RADIATION PHYSICS A PRIMER IN APPLIED RADIATION PHYSICS F A SMITH Queen Mary & Westfield College, London fe World Scientific m Singapore * New Jersey London Hong Kong CONTENTS CHAPTER 1 : SOURCES of RADIATION 1.1 Introduction

More information

CLINICALLY USEFUL RADIONUCLIDES:

CLINICALLY USEFUL RADIONUCLIDES: INTRODUCTION It is important that Nuclear Medicine Technologists be familiar with the imaging properties of all commonly used radionuclides to insure correct choice of isotope for a particular study as

More information

Application of Nuclear Physics

Application of Nuclear Physics Application of Nuclear Physics Frontier of gamma-ray spectroscopy 0.1 IR visible light UV soft X-ray X-ray hard X-ray gamma-ray 1 10 100 1e3 1e4 1e5 1e6 energy [ev] Photoelectric effect e - Compton scattering

More information

Radiochemistry and Radiopharmacy III

Radiochemistry and Radiopharmacy III Radiochemistry and Radiopharmacy III Compact course held at UFSCAR, September 20123 Ulrich Abram Freie Universität Berlin Institute of Chemistry and Biochemistry Radiochemistry and Radiopharmacy 1. Fundamentals

More information

3. Which of the following statements is (are) TRUE about detector crystals in Anger cameras?

3. Which of the following statements is (are) TRUE about detector crystals in Anger cameras? BioE 1330 - Exam 2 11/13/2018 Answer Sheet - Correct answer is A for all questions 1. Unlike CT, in nuclear medicine A. Bremsstrahlung is not used to produce high-energy photons. B. signal can be increased

More information

III. Proton-therapytherapy. Rome SB - 2/5 1

III. Proton-therapytherapy. Rome SB - 2/5 1 Outline Introduction: an historical review I Applications in medical diagnostics Particle accelerators for medicine Applications in conventional radiation therapy II III IV Hadrontherapy, the frontier

More information

Number of protons. 2. What is the nuclear symbol for a radioactive isotope of copper with a mass number of 60? A) Cu

Number of protons. 2. What is the nuclear symbol for a radioactive isotope of copper with a mass number of 60? A) Cu Chapter 5 Nuclear Chemistry Practice Problems 1. Fill in the missing information in the chart: Medical Use Atomic Mass symbol number Heart imaging 201 Tl 81 Number of protons Number of neutrons Abdominal

More information

Ba (Z = 56) W (Z = 74) preferred target Mo (Z = 42) Pb (Z = 82) Pd (Z = 64)

Ba (Z = 56) W (Z = 74) preferred target Mo (Z = 42) Pb (Z = 82) Pd (Z = 64) Produced by accelerating electrons with high voltage and allowing them to collide with metal target (anode), e.g, Tungsten. Three Events (Two types of x-ray) a) Heat X-Ray Tube b) bremsstrahlung (braking

More information

Radiation Detection and Measurement

Radiation Detection and Measurement Radiation Detection and Measurement June 2008 Tom Lewellen Tkldog@u.washington.edu Types of radiation relevant to Nuclear Medicine Particle Symbol Mass (MeV/c 2 ) Charge Electron e-,! - 0.511-1 Positron

More information

Physics in Nuclear Medicine

Physics in Nuclear Medicine SIMON R. CHERRY, PH.D. Professor Department of Biomedical Engineering University of California-Davis Davis, California JAMES A. SORENSON, PH.D. Emeritus Professor of Medical Physics University of Wisconsin-Madison

More information

Radiation Quantities and Units

Radiation Quantities and Units Radiation Quantities and Units George Starkschall, Ph.D. Lecture Objectives Define and identify units for the following: Exposure Kerma Absorbed dose Dose equivalent Relative biological effectiveness Activity

More information

Properties of the nucleus. 9.1 Nuclear Physics. Isotopes. Stable Nuclei. Size of the nucleus. Size of the nucleus

Properties of the nucleus. 9.1 Nuclear Physics. Isotopes. Stable Nuclei. Size of the nucleus. Size of the nucleus Properties of the nucleus 9. Nuclear Physics Properties of nuclei Binding Energy Radioactive decay Natural radioactivity Consists of protons and neutrons Z = no. of protons (tomic number) N = no. of neutrons

More information

FXA UNIT G485 Module X-Rays. Candidates should be able to : I = I 0 e -μx

FXA UNIT G485 Module X-Rays. Candidates should be able to : I = I 0 e -μx 1 Candidates should be able to : HISTORY Describe the nature of X-rays. Describe in simple terms how X-rays are produced. X-rays were discovered by Wilhelm Röntgen in 1865, when he found that a fluorescent

More information

Properties of the nucleus. 8.2 Nuclear Physics. Isotopes. Stable Nuclei. Size of the nucleus. Size of the nucleus

Properties of the nucleus. 8.2 Nuclear Physics. Isotopes. Stable Nuclei. Size of the nucleus. Size of the nucleus Properties of the nucleus 8. Nuclear Physics Properties of nuclei Binding Energy Radioactive decay Natural radioactivity Consists of protons and neutrons Z = no. of protons (Atomic number) N = no. of neutrons

More information

Two-Material Decomposition From a Single CT Scan Using Statistical Image Reconstruction

Two-Material Decomposition From a Single CT Scan Using Statistical Image Reconstruction / 5 Two-Material Decomposition From a Single CT Scan Using Statistical Image Reconstruction Yong Long and Jeffrey A. Fessler EECS Department James M. Balter Radiation Oncology Department The University

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-302 Dr. E. Rizvi Lecture 24 Medical Imaging Effects of Radiation We now know what radiation is But what does it mean for our bodies? Radioactivity is quantified in

More information

Radioisotopes in action. Diagnostic application of radioisotopes. Steps of diagnostic procedure. Information from various medical imaging techniques

Radioisotopes in action. Diagnostic application of radioisotopes. Steps of diagnostic procedure. Information from various medical imaging techniques Radioisotopes in action Diagnostic application of radioisotopes Steps of diagnostic procedure - Radioactive material introduced into the patient - Distribution and alteration of activity is detected -Monitoring

More information

Interaction of charged particles and photons with matter

Interaction of charged particles and photons with matter Interaction of charged particles and photons with matter Robert Miyaoka, Ph.D. Old Fisheries Center, Room 200 rmiyaoka@u.washington.edu Passage of radiation through matter depends on Type of radiation

More information

Low Energy Medical Isotope Production. Naomi Ratcliffe IIAA, University of Huddersfield UK

Low Energy Medical Isotope Production. Naomi Ratcliffe IIAA, University of Huddersfield UK Low Energy Medical Isotope Production Naomi Ratcliffe naomi.ratcliffe@hud.ac.uk IIAA, University of Huddersfield UK Overview: Nuclear Medicine Cover the use of radioactive isotopes for diagnostic and therapy

More information

CHIPP Plenary Meeting University of Geneva, June 12, 2008 W. Lustermann on behalf of the AX PET Collaboration

CHIPP Plenary Meeting University of Geneva, June 12, 2008 W. Lustermann on behalf of the AX PET Collaboration CHIPP Plenary Meeting University of Geneva, June 12, 2008 W. Lustermann on behalf of the AX PET Collaboration INFN Bari, Ohio State University, CERN, University of Michigan, University of Oslo, INFN Roma,

More information

Year 12 Notes Radioactivity 1/5

Year 12 Notes Radioactivity 1/5 Year Notes Radioactivity /5 Radioactivity Stable and Unstable Nuclei Radioactivity is the spontaneous disintegration of certain nuclei, a random process in which particles and/or high-energy photons are

More information

Nuclear Medicine: Physics and Imaging Methods (SPECT and PET)

Nuclear Medicine: Physics and Imaging Methods (SPECT and PET) EL-GY 6813 / BE-GY 6203 / G16.4426 Medical Imaging Nuclear Medicine: Physics and Imaging Methods (SPECT and PET) Jonathan Mamou and Yao Wang Polytechnic School of Engineering New York University, Brooklyn,

More information

β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Final Exam Surveys New material Example of β-decay Beta decay Y + e # Y'+e +

β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Final Exam Surveys New material Example of β-decay Beta decay Y + e # Y'+e + β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Last Lecture: Radioactivity, Nuclear decay Radiation damage This lecture: nuclear physics in medicine and fusion and fission Final

More information

(INCLUDING THIS FRONT PAGE)

(INCLUDING THIS FRONT PAGE) I'IFIITIIBIFI UNIVERSITY OF SCIEI'ICE RITD TECHNOLOGY FACULTY OF HEALTH AND APPLIED SCIENCES DEPARTMENT OF NATURAL AND APPLIED SCIENCES QUALIFICATION: BACHELOR OF SCIENCE (MAJOR AND MINOR) QUALIFICATION

More information

Nuclear Chemistry. Background Radiation. Three-fourths of all exposure to radiation comes from background radiation.

Nuclear Chemistry. Background Radiation. Three-fourths of all exposure to radiation comes from background radiation. Chapter 11 Nuclear Chemistry Background Radiation Three-fourths of all exposure to radiation comes from background radiation. Most of the remaining one-fourth comes from medical irradiation such as X-rays.

More information

12/1/17 OUTLINE KEY POINTS ELEMENTS WITH UNSTABLE NUCLEI Radioisotopes and Nuclear Reactions 16.2 Biological Effects of Nuclear Radiation

12/1/17 OUTLINE KEY POINTS ELEMENTS WITH UNSTABLE NUCLEI Radioisotopes and Nuclear Reactions 16.2 Biological Effects of Nuclear Radiation OUTLINE 16.1 Radioisotopes and Nuclear Reactions 16.2 Biological Effects of Nuclear Radiation PET scan X-ray technology CT scan 2009 W.H. Freeman KEY POINTS Radioactivity is the consequence of an unstable

More information

Sample Spectroscopy System Hardware

Sample Spectroscopy System Hardware Semiconductor Detectors vs. Scintillator+PMT Detectors Semiconductors are emerging technology - Scint.PMT systems relatively unchanged in 50 years. NaI(Tl) excellent for single-photon, new scintillation

More information

Part III Minor Option in Medical Physics 2018 Examples Sheet

Part III Minor Option in Medical Physics 2018 Examples Sheet Part III Minor Option in Medical Physics 2018 Examples Sheet Any errors or comments should be addressed sent to: seb53@cam.ac.uk URLs that may be useful: Stanford Event Generation Simulator: http://tinyurl.com/pkg476r

More information

Initial Studies in Proton Computed Tomography

Initial Studies in Proton Computed Tomography SCIPP Initial Studies in Proton Computed Tomography L. R. Johnson, B. Keeney, G. Ross, H. F.-W. Sadrozinski, A. Seiden, D.C. Williams, L. Zhang Santa Cruz Institute for Particle Physics, UC Santa Cruz,

More information

Rad T 290 Worksheet 2

Rad T 290 Worksheet 2 Class: Date: Rad T 290 Worksheet 2 1. Projectile electrons travel from a. anode to cathode. c. target to patient. b. cathode to anode. d. inner shell to outer shell. 2. At the target, the projectile electrons

More information

THE ACTIVITY CALIBRATOR

THE ACTIVITY CALIBRATOR A.O.U. OSPEDALI RIUNITI di TRIESTE S.C. di FISICA SANITARIA THE ACTIVITY CALIBRATOR Dr. Maria Rosa Fornasier 1 INDEX GENERAL FEATURES DETECTOR DESIGN CALIBRATION PROCEDURE - EFFECTS OF AN EXTERNAL SHIELD

More information

Dosimetry of patients injected with tracers Ga-68, Zr-89 and Lu-177. Bruno Vanderlinden

Dosimetry of patients injected with tracers Ga-68, Zr-89 and Lu-177. Bruno Vanderlinden Dosimetry of patients injected with tracers Ga-68, Zr-89 and Lu-177 Bruno Vanderlinden What is NM speciality? Imaging radiology Physics Diagnostic Treatment assessment Clinical pathology Biological marker

More information

Wednesday 23 January 2013 Afternoon

Wednesday 23 January 2013 Afternoon Wednesday 23 January 2013 Afternoon A2 GCE PHYSICS A G485/01 Fields, Particles and Frontiers of Physics *G411600113* Candidates answer on the Question Paper. OCR supplied materials: Data, Formulae and

More information

Neural Network Approach for Photon-counting Detection The First Step: PPE Correction

Neural Network Approach for Photon-counting Detection The First Step: PPE Correction Neural Network Approach for Photon-counting Detection The First Step: PPE Correction Ruibin Feng, Ph.D. Biomedical Imaging Center, CBIS/BME, RPI fengr@rpi.edu David Rundle JairiNovus Technologies Ltd.

More information

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic Radioactivity, Spontaneous Decay: Nuclear Reactions A Z 4 P D+ He + Q A 4 Z 2 Q > 0 Nuclear Reaction, Induced Process: x + X Y + y + Q Q = ( m + m m m ) c 2 x X Y y Q > 0 Q < 0 Exothermic Endothermic 2

More information

Nuclear Medicine: Physics and Imaging Methods (SPECT and PET)

Nuclear Medicine: Physics and Imaging Methods (SPECT and PET) EL-GY 6813 / BE-GY 6203 / G16.4426 Medical Imaging Nuclear Medicine: Physics and Imaging Methods (SPECT and PET) Yao Wang Polytechnic School of Engineering New York University, Brooklyn, NY 11201 Based

More information

Final exam questions ED

Final exam questions ED Final exam questions ED 2015-2016 1. Radiation a) Properties and types of radiation b) Physical parameters of radiation 2. Law of attenuation of radiation a) Experimental interpretation of the law b) Forms

More information

List of Nuclear Medicine Radionuclides. Nuclear Medicine Imaging Systems: The Scintillation Camera. Crystal and light guide

List of Nuclear Medicine Radionuclides. Nuclear Medicine Imaging Systems: The Scintillation Camera. Crystal and light guide Nuclear Medicine Imaging Systems: The Scintillation Camera List of Nuclear Medicine Radionuclides Tc99m 140.5 kev 6.03 hours I-131 364, 637 kev 8.06 days I-123 159 kev 13.0 hours I-125 35 kev 60.2 days

More information

ELG7173 Topics in signal Processing II Computational Techniques in Medical Imaging

ELG7173 Topics in signal Processing II Computational Techniques in Medical Imaging ELG7173 Topics in signal Processing II Computational Techniques in Medical Imaging Topic #1: Intro to medical imaging Medical Imaging Classifications n Measurement physics Send Energy into body Send stuff

More information

22.56J Noninvasive Imaging in Biology and Medicine Instructor: Prof. Alan Jasanoff Fall 2005, TTh 1-2:30

22.56J Noninvasive Imaging in Biology and Medicine Instructor: Prof. Alan Jasanoff Fall 2005, TTh 1-2:30 22.56J Noninvasive Imaging in Biology and Medicine Instructor: Prof. Alan Jasanoff Fall 2005, TTh 1-2:30 Sample problems HW1 1. Look up (e.g. in the CRC Manual of Chemistry and Physics www.hbcpnetbase.com)

More information

1. Which of the following statements is true about Bremsstrahlung and Characteristic Radiation?

1. Which of the following statements is true about Bremsstrahlung and Characteristic Radiation? BioE 1330 - Review Chapters 4, 5, and 6 (X-ray and CT) 9/27/2018 Instructions: On the Answer Sheet, enter your 2-digit ID number (with a leading 0 if needed) in the boxes of the ID section. Fill in the

More information

EXPERIMENTAL DETERMINATION OF SHIELDING REQUIREMENTS FOR PET MEDICAL FACILITIES BRADLEY S. BRINKLEY

EXPERIMENTAL DETERMINATION OF SHIELDING REQUIREMENTS FOR PET MEDICAL FACILITIES BRADLEY S. BRINKLEY EXPERIMENTAL DETERMINATION OF SHIELDING REQUIREMENTS FOR PET MEDICAL FACILITIES by BRADLEY S. BRINKLEY CLAUDIU T. LUNGU, COMMITTEE CHAIR ALFRED A. BARTOLUCCI STEVEN M. BECKER RIEDAR K. OESTENSTAD SHARON

More information

Nuclear Radiation. Natural Radioactivity. A person working with radioisotopes wears protective clothing and gloves and stands behind a shield.

Nuclear Radiation. Natural Radioactivity. A person working with radioisotopes wears protective clothing and gloves and stands behind a shield. Nuclear Radiation Natural Radioactivity A person working with radioisotopes wears protective clothing and gloves and stands behind a shield. 1 Radioactive Isotopes A radioactive isotope has an unstable

More information

Metal Artifact Reduction and Dose Efficiency Improvement on Photon Counting Detector CT using an Additional Tin Filter

Metal Artifact Reduction and Dose Efficiency Improvement on Photon Counting Detector CT using an Additional Tin Filter Metal Artifact Reduction and Dose Efficiency Improvement on Photon Counting Detector CT using an Additional Tin Filter Wei Zhou, Dilbar Abdurakhimova, Kishore Rajendran, Cynthia McCollough, Shuai Leng

More information

1st Faculty of Medicine, Charles University in Prague Center for Advanced Preclinical Imaging (CAPI)

1st Faculty of Medicine, Charles University in Prague Center for Advanced Preclinical Imaging (CAPI) Radioation Resolution and Sensitivity Nuclear Imaging PET + SPECT Radioactive Decay (EC,Ɣ), (β -,Ɣ), (I.T.,Ɣ) β + Projection imaging collimator needed one angular view Projection imaging coincidence imaging,

More information

Medical Physics. Nuclear Medicine Principles and Applications

Medical Physics. Nuclear Medicine Principles and Applications Medical Physics Nuclear Medicine Principles and Applications Dr Roger Fulton Department of PET & Nuclear Medicine Royal Prince Alfred Hospital Sydney Email: rfulton@mail.usyd.edu.au Lectures: http://www-personal.usyd.edu.au/~rfulton/medical_physics

More information

Detector technology. Aim of this talk. Principle of a radiation detector. Interactions of gamma photons (gas) Gas-filled detectors: examples

Detector technology. Aim of this talk. Principle of a radiation detector. Interactions of gamma photons (gas) Gas-filled detectors: examples Aim of this tal Detector technology WMIC Educational Program Nuclear Imaging World Molecular Imaging Congress, Dublin, Ireland, Sep 5-8, 202 You can now the name of a bird in all the languages of the world,

More information

Differentiating Chemical Reactions from Nuclear Reactions

Differentiating Chemical Reactions from Nuclear Reactions Differentiating Chemical Reactions from Nuclear Reactions 1 CHEMICAL Occurs when bonds are broken or formed. Atoms remained unchanged, though may be rearranged. Involves valence electrons Small energy

More information

Novel detector systems for the Positron Emission Tomography

Novel detector systems for the Positron Emission Tomography Novel detector systems for the Positron Emission Tomography P. Moskal, P. Salabura, M. Silarski, J. Smyrski, J. Zdebik, M. Zieliński Institute of Physics, Jagiellonian University, 30-059 Cracow, Poland

More information

PHYS 3650L - Modern Physics Laboratory

PHYS 3650L - Modern Physics Laboratory PHYS 3650L - Modern Physics Laboratory Laboratory Advanced Sheet Photon Attenuation 1. Objectives. The objectives of this laboratory exercise are: a. To measure the mass attenuation coefficient at a gamma

More information

Investigation of the relationship between linear attenuation coefficients and CT Hounsfield units using radionuclides for SPECT

Investigation of the relationship between linear attenuation coefficients and CT Hounsfield units using radionuclides for SPECT Applied Radiation and Isotopes 66 (2008) 1206 1212 www.elsevier.com/locate/apradiso Investigation of the relationship between linear attenuation coefficients and CT Hounsfield units using radionuclides

More information

1-D Fourier Transform Pairs

1-D Fourier Transform Pairs 1-D Fourier Transform Pairs The concept of the PSF is most easily explained by considering a very small point source being placed in the imaging field-of-view The relationship between the image, I, and

More information

There are three mechanisms by which gamma rays interact with absorber atoms from which two are important for nuclear medicine.

There are three mechanisms by which gamma rays interact with absorber atoms from which two are important for nuclear medicine. Measurement of radioactivity. Radioactive decay is a random process and therefore fluctuations are expected in the radioactivity measurement. That is why measurement of radioactivity must be treated by

More information

Development of a High Precision Axial 3-D PET for Brain Imaging

Development of a High Precision Axial 3-D PET for Brain Imaging Development of a High Precision Axial 3-D PET for Brain Imaging On behalf of the AX-PET Collaboration SIENA - IPRD08 October 1st 4th, 2008 1 Outline Basics of Positron Emission Tomography (PET); Principle

More information

Radiation Detectors. How do we detect ionizing radiation? What are these effects? Types of Ionizing Radiation Detectors

Radiation Detectors. How do we detect ionizing radiation? What are these effects? Types of Ionizing Radiation Detectors Radiation Detectors 1 How do we detect ionizing radiation? Indirectly, by its effects as it traverses matter? What are these effects? Ionization and excitation of the atoms and molecules Heat 2 Types of

More information

Overview of Nuclear Medical Imaging Instrumentation and Techniques*

Overview of Nuclear Medical Imaging Instrumentation and Techniques* Overview of Nuclear Medical Imaging Instrumentation and Techniques* William W. Moses Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 USA Abstract. Nuclear medical imaging

More information

INTERACTIONS OF RADIATION WITH MATTER

INTERACTIONS OF RADIATION WITH MATTER INTERACTIONS OF RADIATION WITH MATTER Renée Dickinson, MS, DABR Medical Physicist University of Washington Medical Center Department of Radiology Diagnostic Physics Section Outline Describe the various

More information

Oslo Cyclotron Laboratory

Oslo Cyclotron Laboratory Oslo Cyclotron Laboratory Laboratory Excercise in FYS3180 - Experimental Methods in Physics Morten A. Salvesen University of Oslo, Oslo, Norway 2007-09-24 to 2007-11-15 Contents 1 Abstract 1 2 Oslo Cyclotrone

More information

PET/MRI Principle, History, and Perspective. Main Imaging Techniques. X-ray Tube. History of X-ray & CT. How to Look inside the Human Body

PET/MRI Principle, History, and Perspective. Main Imaging Techniques. X-ray Tube. History of X-ray & CT. How to Look inside the Human Body PET/MRI Principle, History, and Perspective Jae Sung Lee, PhD Dept. of Nuclear Medicine and Biomedical Sciences WCU Dept. of Brain and Cognitive Sciences Seoul National University Basic Imaging Principles

More information

QUIZ: Physics of Nuclear Medicine Atomic Structure, Radioactive Decay, Interaction of Ionizing Radiation with Matter

QUIZ: Physics of Nuclear Medicine Atomic Structure, Radioactive Decay, Interaction of Ionizing Radiation with Matter QUIZ: Physics of Nuclear Medicine Atomic Structure, Radioactive Decay, Interaction of Ionizing Radiation with Matter 1. An atomic nucleus contains 39 protons and 50 neutrons. Its mass number (A) is a)

More information