β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Final Exam Surveys New material Example of β-decay Beta decay Y + e # Y'+e +
|
|
- Branden Stanley
- 1 years ago
- Views:
Transcription
1 β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Last Lecture: Radioactivity, Nuclear decay Radiation damage This lecture: nuclear physics in medicine and fusion and fission Final Exam Wed, Dec 20, at 7:25-9:25 pm in VAN VLECK B102 What in this exam? About twice multiple questions/short answers + 4 problems About 40% on new material 2 sheets allowed The rest on previous materials covered by MTE1 MTE2 MTE3. Your last HW is important! New material Ch 41: Sec , something on tunneling (41.6) Ch 42: , 42.5 (not the math), , Ch 43: Sec 43.1 Ch 44: Sec , 44.8 Ch 45: 45.5, 45.7 (only radiation therapy), 45.6 (only Geiger) No fission and fusion in the exam Surveys Surveys: 2 surveys to complete 1) Physics Attitude Survey 2) Phys 208 Course Evaluation Survey. They are both due by 12/20 12am. You should have received with a hyper-link to an on-line web survey. Beta decay Nucleus emits an electron or a positron Must be balanced by a positive or negative charge appearing in the nucleus. A Z X" A Z +1 Y + e # A Z X" A Z #1 Y'+e + This occurs as a n changing into a p or a p into a n Example of β-decay C (radioactive form of carbon) decays by β- decay (electron emission). Carbon Z = 6, C has (-6)=8 neutrons. A new element with Z = 7 6 C " 7 N+ e # Beta decay decreases number of neutrons in nucleus by one increases number of protons in nucleus by one 1
2 C to 12 C ratio C (Z=6) has a half-life of 5,730 years, continually decaying back into N (Z=7). In atmosphere very small amount! 1 nucleus of C each nuclei of 12 C If material alive, atmospheric carbon mix ingested (as CO 2 ), ratio stays fixed. After death, no exchange with atmosphere. Ratio changes as C decays So can determine time since the plant or animal died (stopped exchanging C with the atmosphere) if not older than yr Carbon dating A fossil bone is found to contain 1/8 as much C as the bone of a living animal. Using T 1/2 =5,730 yrs, what is the approximate age of the fossil? A. 7,640 yrs B. 17,190 yrs C. 22,900 yrs D. 45,840 yrs Factor of 8 reduction in C corresponds to three half-lives. So age is 5,730 x 3 =17,190 yrs The Positron and Antimatter Every particle now known to have an antiparticle. Our Universe seems to contain more matter (we are lucky otherwise everything would annihilate into photons!) Decay Quick Question 20 Na decays in to 20 Ne, a particle is emitted? What particle is it? Na atomic number Z = 11 Ne Z = 10 A. Alpha B. Electron beta C. Positron beta D. Gamma 20 Na has 11 protons, 9 neutrons 20 Ne has 10 protons, 10 neutrons So one a proton (+ charge ) changed to a neutron (0 charge) in this decay. A positive particle had to be emitted. Positron 1st detection in cosmic rays through bending in a B-field and a bubble chamber (Anderson 1932) p " n + e + + # e Nuclear Medicine: diagnostic Basic Idea: Inject patient with radio-isotope labeled substance (tracer) Chemically the same, but physically different Detect the radioactive emissions (gamma rays) Reconstruct the 3-D image PET image Showing a tumor Positron Emission Tomographie - PET Gamma Photon #1 e + -e - γγ Gamma Photon #2 Isotope 18 F 11 C 68 Ga 82 Rb Nucleus (protons+neutrons) electrons Max. Positron Range (mm) Basic Idea: Nucleus emits a positron Positron collides with a nearby electron and annihilates e + + e - 2γ Two 511 kev gamma rays are produced They fly in opposite directions (to conserve momentum) 2
3 Emission Detection Ring of detectors Image Reconstruction If detectors A & B receive gamma rays at the approx. same time, we have a detection Nuclear physics sensor and electronics Each coincidence event represents a line in space connecting the two detectors along which the positron emission occurred. Coincidence events can be grouped into projections images, called sinograms. Sinograms are combined to form 3D images Radiation Cancer Therapy 50-60% of cancer patients treated with radiation Radiation destroys the cancer cells' ability to reproduce and the body naturally gets rid of these cells. Although radiation damages both cancer cells and normal cells, most normal cells can recover from the effects of radiation and function properly. Ionization (stripping atomic electrons) makes nuclear radiation dangerous Used radiations: X and γ-rays from 20 KV to 25 MV Pion Therapy under study, less invasive then photons Neutrons,protons,.. Gamma decay Both α and β-decays can leave the nucleus in excited state The nucleus can decay to a lower energy state (eg the ground state) by emitting a high energy photon (1 MeV-1 GeV) The X* indicates a nucleus in an excited state Decay Quick Question 20 Na decays in to 20 Ne, a particle is emitted? What particle is it? Na atomic number Z = 11 Ne Z = 10 A. Alpha B. Electron beta C. Positron beta D. Gamma 20 Na has 11 protons, 9 neutrons 20 Ne has 10 protons, 10 neutrons So one a proton (+ charge ) changed to a neutron (0 charge) in this decay. A positive particle had to be emitted. Decay Question? Which of the following decays is NOT allowed? U! Th + " Po! 82Pb+ 2He 2 C 6 7 " N +! 238 = = = = = +0 6 <> 7+0 p " n + e + + # e # 0 K " + +! p e # = =
4 Nuclear Magnetic Resonance (NMR) Now called magnetic resonance imaging (MRI) A nucleus has spin angular momentum (p and n have spin 1/2). 2 quantum numbers are associated to the magnitude of the spin angular momentum and to the possible orientations of the spin respect to a z axis I z NMR Nuclear magnetic moment µ will precess when placed in an external B-field (angular frequency B) Min energy: µ aligned to B (as a compass needle), unstable equilibrium: needle anti-aligned to B Since proton energy is quantized: it can be aligned (spin up) o anti-aligned (spin down) Turning on B lowers the energy of a spin up proton and increases the energy of a spin down one (there is an energy difference between the states of 10-7 ev Photons of applied radio-frequency matching this E difference (resonance) are absorbed and emitted Absorption of energy by nuclei can be electronically detected MRI An MRI (Magnetic Resonance Imaging) is based on NMR The patient is placed inside a solenoid with B constant in time but varying in space. Because of these variations, protons in different parts of the body precess at different frequencies This provides information about the positions of the protons It causes minimum cellular damage compared to X-rays Other applications of Nuclear Physics Alternative sources of energy to oil Fission: 435 nuclear power plants in the world generate 245 GW of electricity in 32 countries (1/6 of world s electricity supply!!) France 76% Belgium 56% Sweden 47% Switzerland 40% South Korea 36% Japan 33% The United States has the largest total electric output from nuclear power: 98,000 MW from 105 plants, 20% of US electric power. Nuclear Fission A heavy nucleus splits into 2 smaller nuclei. Fission is initiated when a heavy nucleus captures a thermal neutron n U" U* " X + Y + neutrons Excited state lifetime s A 95 <N n > ~2.5 A 0 BINDING ENERGY in MeV/nucleon Fusion Binding Energy Plot 238 U has E b /nucleon ~8.2 MeV while X,Y ~7.2 MeV/nucleon Hence released energy Q ~ 235 MeV!! 10 Fission Fission = Breaking large atoms into small Fusion = Combining small atoms into large n U" U* " X + Y + neutrons U 16 4
5 Chain Reactions An average of 2.5 neutrons are emitted when 235 U undergoes fission These neutrons are then available to trigger fission in other nuclei Chain reaction: an average of 1 n emitted in 235 U fission must be captured by another 235 U. Moderators reduces the probability that n are captured by 238 U that does not undergo fission Enrico Fermi development of world s first fission reactor (1942) Nuclear Fusion Work principle of stars like the Sun two light nuclei combine to form a heavier nucleus The final nucleus mass is less than the masses of the original nuclei hence release of energy Solar cycle: 4p 4 He So the liberated energy is 4( u) u= u x MeV/u= 26.7 MeV More than in fission! Main problem: enough kinetic energy to nuclei to overcome Coulomb repulsion Fusion of deuterium and tritium Methods High temperature ~ 10 8 K to overcome Coulomb forces At these temperatures, atoms are ionized, forming a plasma Plasma confinement is still a problem magnetic confinement tokamak Inertial confinement Laser 5
Lecture PowerPoints. Chapter 31 Physics: Principles with Applications, 7th edition Giancoli
Lecture PowerPoints Chapter 31 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching
Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic
Radioactivity, Spontaneous Decay: Nuclear Reactions A Z 4 P D+ He + Q A 4 Z 2 Q > 0 Nuclear Reaction, Induced Process: x + X Y + y + Q Q = ( m + m m m ) c 2 x X Y y Q > 0 Q < 0 Exothermic Endothermic 2
Lecture Outlines Chapter 32. Physics, 3 rd Edition James S. Walker
Lecture Outlines Chapter 32 Physics, 3 rd Edition James S. Walker 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in
There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart?
Question 32.1 The Nucleus There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? a) Coulomb repulsive force doesn t act inside the nucleus b) gravity overpowers the Coulomb repulsive
Quantum Mechanics. Exam 3. Photon(or electron) interference? Photoelectric effect summary. Using Quantum Mechanics. Wavelengths of massive objects
Exam 3 Hour Exam 3: Wednesday, November 29th In-class, Quantum Physics and Nuclear Physics Twenty multiple-choice questions Will cover:chapters 13, 14, 15 and 16 Lecture material You should bring 1 page
Alta Chemistry CHAPTER 25. Nuclear Chemistry: Radiation, Radioactivity & its Applications
CHAPTER 25 Nuclear Chemistry: Radiation, Radioactivity & its Applications Nuclear Chemistry Nuclear Chemistry deals with changes in the nucleus The nucleus of an atom contains Protons Positively Charged
Name Date Class NUCLEAR RADIATION. alpha particle beta particle gamma ray
25.1 NUCLEAR RADIATION Section Review Objectives Explain how an unstable nucleus releases energy Describe the three main types of nuclear radiation Vocabulary radioisotopes radioactivity radiation alpha
Nuclear Spectroscopy: Radioactivity and Half Life
Particle and Spectroscopy: and Half Life 02/08/2018 My Office Hours: Thursday 1:00-3:00 PM 212 Keen Building Outline 1 2 3 4 5 Some nuclei are unstable and decay spontaneously into two or more particles.
Chapter 10. Section 10.1 What is Radioactivity?
Chapter 10 Section 10.1 What is Radioactivity? What happens when an element undergoes radioactive decay? How does radiation affect the nucleus of an unstable isotope? How do scientists predict when an
Chapter 42. Nuclear Physics
Chapter 42 Nuclear Physics In the previous chapters we have looked at the quantum behavior of electrons in various potentials (quantum wells, atoms, etc) but have neglected what happens at the center of
Nuclear Physics. AP Physics B
Nuclear Physics AP Physics B Nuclear Physics - Radioactivity Before we begin to discuss the specifics of radioactive decay we need to be certain you understand the proper NOTATION that is used. To the
Chapter. Nuclear Chemistry
Chapter Nuclear Chemistry Nuclear Reactions 01 Chapter 22 Slide 2 Chapter 22 Slide 3 Alpha Decay: Loss of an α-particle (a helium nucleus) 4 2 He 238 92 U 234 4 U He 90 + 2 Chapter 22 Slide 4 Beta Decay:
Ch Radioactivity. Henry Becquerel, using U-238, discovered the radioactive nature of elements in 1896.
Ch. 10 - Radioactivity Henry Becquerel, using U-238, discovered the radioactive nature of elements in 1896. Radioactivity the process in which an unstable atomic nucleus emits charged particles and energy
Page 1. ConcepTest Clicker Questions Chapter 32. Physics, 4 th Edition James S. Walker
ConcepTest Clicker Questions Chapter 32 Physics, 4 th Edition James S. Walker There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? Question 32.1 The Nucleus a) Coulomb repulsive
Physics 107: Ideas of Modern Physics
Physics 107: Ideas of Modern Physics Exam 3 Nov. 30, 2005 Name ID # Section # On the Scantron sheet, 1) Fill in your name 2) Fill in your student ID # (not your social security #) 3) Fill in your section
Unit 6 Nuclear Radiation Parent Guide. What is radioactivity and why are things radioactive?
Unit 6 Nuclear Radiation Parent Guide What is radioactivity and why are things radioactive? The nucleus of an atom is comprised of subatomic particles called protons and neutrons. Protons have a positive
Lecture 14, 8/9/2017. Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion
Lecture 14, 8/9/2017 Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion Nuclear Reactions and the Transmutation of Elements A nuclear reaction takes place
CHAPTER 19 THE ATOMIC NUCLEUS NUCLEAR STRUCTURE The nucleus consists of protons and neutrons. A protonis a positively charged particle having mass 1.6726 x 10(-27) kg and charge 1.6 x 10(-19) coulomb.
Revision Guide for Chapter 18
Revision Guide for Chapter 18 Contents Student s Checklist Revision Notes Ionising radiation... 4 Biological effects of ionising radiation... 5 Risk... 5 Nucleus... 6 Nuclear stability... 6 Binding energy...
Chapter 21. Preview. Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions
Preview Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions Section 1 The Nucleus Lesson Starter Nuclear reactions result in much larger energy
Atoms and Nuclei 1. The radioactivity of a sample is X at a time t 1 and Y at a time t 2. If the mean life time of the specimen isτ, the number of atoms that have disintegrated in the time interval (t
fission and fusion and classify a nuclear reaction as either a fission or fusion reaction.
Chemistry HP Unit 11 Nuclear Chemistry Learning Targets (Your exam at the end of Unit 11 will assess the following:) 11. Nuclear Chemistry 11-1. Write the nuclide symbol for a given isotope. 11-2. Describe
The Atomic Nucleus & Radioactive Decay. Major Constituents of an Atom 4/28/2016. Student Learning Outcomes. Analyze radioactive decay and its results
The Atomic Nucleus & Radioactive Decay ( Chapter 10) Student Learning Outcomes Analyze radioactive decay and its results Differentiate between nuclear fission and fusion Major Constituents of an Atom U=unified
Recap I Lecture 41 Matthias Liepe, 2012
Recap I Lecture 41 Matthias Liepe, 01 Recap II Nuclear Physics The nucleus Radioactive decay Fission Fusion Particle Physics: What is the Higgs? Today: Nuclear Physics: The Nucleus Positive charge and
UNIT 13: NUCLEAR CHEMISTRY
UNIT 13: NUCLEAR CHEMISTRY REVIEW: ISOTOPE NOTATION An isotope notation is written as Z A X, where X is the element, A is the mass number (sum of protons and neutrons), and Z is the atomic number. For
Chapter 10. Table of Contents. Section 1 What Is Radioactivity? Section 2 Nuclear Fission and Fusion. Section 3 Nuclear Radiation Today
Nuclear Chemistry Table of Contents Section 1 What Is Radioactivity? Section 2 Nuclear Fission and Fusion Section 3 Nuclear Radiation Today Section 1 What Is Radioactivity? Bellringer Before studying about
Nice Try. Introduction: Development of Nuclear Physics 20/08/2010. Nuclear Binding, Radioactivity. SPH4UI Physics
SPH4UI Physics Modern understanding: the ``onion picture Nuclear Binding, Radioactivity Nucleus Protons tom and neutrons Let s see what s inside! 3 Nice Try Introduction: Development of Nuclear Physics
General Physics (PHY 2140)
General Physics (PHY 2140) Lecture 37 Modern Physics Nuclear Physics Radioactivity Nuclear reactions http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 29 1 Lightning Review Last lecture: 1. Nuclear
Nuclear Physics. PHY232 Remco Zegers Room W109 cyclotron building.
Nuclear Physics PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html Periodic table of elements We saw that the periodic table of elements can
NJCTL.org 2015 AP Physics 2 Nuclear Physics
AP Physics 2 Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?
Physics of Radioactive Decay. Purpose. Return to our patient
Physics of Radioactive Decay George Starkschall, Ph.D. Department of Radiation Physics U.T. M.D. Anderson Cancer Center Purpose To demonstrate qualitatively the various processes by which unstable nuclides
Chapter 10 - Nuclear Physics
The release of atomic energy has not created a new problem. It has merely made more urgent the necessity of solving an existing one. -Albert Einstein David J. Starling Penn State Hazleton PHYS 214 Ernest
Nuclear Radiation. Natural Radioactivity. A person working with radioisotopes wears protective clothing and gloves and stands behind a shield.
Nuclear Radiation Natural Radioactivity A person working with radioisotopes wears protective clothing and gloves and stands behind a shield. 1 Radioactive Isotopes A radioactive isotope has an unstable
Nuclear processes: Vocabulary: Radioactive decay Isotope Alpha particle Beta particle Transmutation Strong Nuclear Force Fusion Fission
Nuclear processes: Students will develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive
Radioisotopes and PET
Radioisotopes and PET 1 Radioisotopes Elements are defined by their number of protons, but there is some variation in the number of neutrons. Atoms resulting from this variation are called isotopes. Consider
Chapter IX: Nuclear fusion
Chapter IX: Nuclear fusion 1 Summary 1. General remarks 2. Basic processes 3. Characteristics of fusion 4. Solar fusion 5. Controlled fusion 2 General remarks (1) Maximum of binding energy per nucleon
Chapter 3. Radioactivity. Table of Contents
Radioactivity Table of Contents Introduction 1. Radioactivity 2. Types of Radioactive Decays 3. Natural Radioactivity 4. Artificial Radioactivity 5. The Rate of Radioactive Decay 6. The Effects of Radiation
= : K A
Atoms and Nuclei. State two limitations of JJ Thomson s model of atom. 2. Write the SI unit for activity of a radioactive substance. 3. What observations led JJ Thomson to conclusion that all atoms have
Isotopes. An isotope is an atoms of the same element (same number of protons) that vary in the number of neutrons.
Nuclear Chemistry Isotopes An isotope is an atoms of the same element (same number of protons) that vary in the number of neutrons. Most elements have several isotopes Some are unstable and emit radiation
Chemistry 201: General Chemistry II - Lecture
Chemistry 201: General Chemistry II - Lecture Dr. Namphol Sinkaset Chapter 21 Study Guide Concepts 1. There are several modes of radioactive decay: (1) alpha (α) decay, (2) beta (β) decay, (3) gamma (γ)
CHAPTER 7 TEST REVIEW
IB PHYSICS Name: Period: Date: # Marks: 94 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 7 TEST REVIEW 1. An alpha particle is accelerated through a potential difference of 10 kv.
Nuclear Physics 2. D. atomic energy levels. (1) D. scattered back along the original direction. (1)
Name: Date: Nuclear Physics 2. Which of the following gives the correct number of protons and number of neutrons in the nucleus of B? 5 Number of protons Number of neutrons A. 5 6 B. 5 C. 6 5 D. 5 2. The
Chapter 21. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten
, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 21 John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall, Inc. The
Revision checklist. Step Learning outcome Had a look Nearly there Nailed it!
Radioactivity a Atomic models Describe the structure of an atom (in terms of nucleus and electrons). State where most of the mass of an atom is found. State the sizes of atoms and small molecules. Describe
Chemistry: The Central Science. Chapter 21: Nuclear Chemistry
Chemistry: The Central Science Chapter 21: Nuclear Chemistry A nuclear reaction involves changes in the nucleus of an atom Nuclear chemistry the study of nuclear reactions, with an emphasis in their uses
T7-1 [255 marks] The graph shows the relationship between binding energy per nucleon and nucleon number. In which region are nuclei most stable?
T7-1 [255 marks] 1. In the Geiger Marsden experiment alpha particles were directed at a thin gold foil. Which of the following shows how the majority of the alpha particles behaved after reaching the foil?
CHAPTER 12 The Atomic Nucleus
CHAPTER 12 The Atomic Nucleus 12.1 Discovery of the Neutron 12.2 Nuclear Properties 12.3 The Deuteron 12.4 Nuclear Forces 12.5 Nuclear Stability 12.6 Radioactive Decay 12.7 Alpha, Beta, and Gamma Decay
College Physics B - PHY2054C
College - PHY2054C Physics - Radioactivity 11/24/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Review Question 1 Isotopes of an element A have the same number of protons and electrons,
Fission and Fusion Book pg cgrahamphysics.com 2016
Fission and Fusion Book pg 286-287 cgrahamphysics.com 2016 Review BE is the energy that holds a nucleus together. This is equal to the mass defect of the nucleus. Also called separation energy. The energy
Nuclear Binding, Radioactivity
Physics 102: Lecture 28 Nuclear Binding, Radioactivity Physics 102: Lecture 27, Slide 1 Nuclear Physics A Z 6 3 Li 7 Li 3 Physics 102: Lecture 26, Slide 2 Z = proton number ( atomic number ) Gives chemical
Differentiating Chemical Reactions from Nuclear Reactions
Differentiating Chemical Reactions from Nuclear Reactions 1 CHEMICAL Occurs when bonds are broken or formed. Atoms remained unchanged, though may be rearranged. Involves valence electrons Small energy
Nuclear Reactions. Nuclear Reactions
Nuclear Reactions Result from transformations in the nucleus Involve protons and neutrons Often result in transmutation into more stable elements Participants: Energy Type Symbol(s) Charge Mass (g/particle)
SECTION A Quantum Physics and Atom Models
AP Physics Multiple Choice Practice Modern Physics SECTION A Quantum Physics and Atom Models 1. Light of a single frequency falls on a photoelectric material but no electrons are emitted. Electrons may
Chapter 22 - Nuclear Chemistry
Chapter - Nuclear Chemistry - The Nucleus I. Introduction A. Nucleons. Neutrons and protons B. Nuclides. Atoms identified by the number of protons and neutrons in the nucleus 8 a. radium-8 or 88 Ra II.
Basic physics of nuclear medicine
Basic physics of nuclear medicine Nuclear structure Atomic number (Z): the number of protons in a nucleus; defines the position of an element in the periodic table. Mass number (A) is the number of nucleons
Thursday, April 23, 15. Nuclear Physics
Nuclear Physics Some Properties of Nuclei! All nuclei are composed of protons and neutrons! Exception is ordinary hydrogen with just a proton! The atomic number, Z, equals the number of protons in the
Chapter 21. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten
, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 21 John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall, Inc. The
Review A Z. a particle. proton. neutron. electron e -1. positron. e +1. Mass Number Atomic Number. Element Symbol
Nuclear Chemistry 1 Review Atomic number (Z) = number of protons in nucleus Mass number (A) = number of protons + number of neutrons = atomic number (Z) + number of neutrons Mass Number Atomic Number A
ConcepTest PowerPoints
ConcepTest PowerPoints Chapter 30 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for
Nuclear Chemistry. Chapter 24
Nuclear Chemistry Chapter 24 Radioactivity Radioisotopes are isotopes that have an unstable nucleus. They emit radiation to attain more stable atomic configurations in a process called radioactive decay.
Nuclear Spin and Stability. PHY 3101 D. Acosta
Nuclear Spin and Stability PHY 3101 D. Acosta Nuclear Spin neutrons and protons have s = ½ (m s = ± ½) so they are fermions and obey the Pauli- Exclusion Principle The nuclear magneton is eh m µ e eh 1
Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.
CHAPTER 21 REVIEW Nuclear Chemistry SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Based on the information about the three elementary particles in the text, which has
Radioactivity: the process by which atoms emit energy in the form of electromagnetic waves, charged particles, or uncharged particles.
Radioactivity: the process by which atoms emit energy in the form of electromagnetic waves, charged particles, or uncharged particles. In 1896, Henri Bequerel discovered that uranium and other elements
Nuclear Binding, Radioactivity
Physics 102: Lecture 28 Nuclear Binding, Radioactivity Physics 102: Lecture 27, Slide 1 Recall: Nuclear Physics A Z 6 3 Li Nucleus = Protons+ Neutrons nucleons Z = proton number (atomic number) Gives chemical
Rb, which had been compressed to a density of 1013
Modern Physics Study Questions for the Spring 2018 Departmental Exam December 3, 2017 1. An electron is initially at rest in a uniform electric field E in the negative y direction and a uniform magnetic
Chapter 25: Radioactivity, Nuclear Processes, and Applications. What do we know about the nucleus? James Chadwick and the discovery of the neutron
Chapter 25: Radioactivity, Nuclear Processes, and Applications What do we know about the nucleus? Rutherford discovered Contains positively charged protons. Held together by the Nuclear Strong Force. The
Chapter 21 Nuclear Chemistry: the study of nuclear reactions
Chapter 2 Nuclear Chemistry: the study of nuclear reactions Learning goals and key skills: Write balanced nuclear equations Know the difference between fission and fusion Predict nuclear stability in terms
Homework 06. Nuclear
HW06 - Nuclear Started: Mar 22 at 11:05am Quiz Instruc!ons Homework 06 Nuclear Question 1 How does a nuclear reaction differ from a chemical reaction? In a nuclear reaction, the elements change identities
Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects)
LECTURE 5: INTERACTION OF RADIATION WITH MATTER All radiation is detected through its interaction with matter! INTRODUCTION: What happens when radiation passes through matter? Emphasis on what happens
Unit 1 Atomic Structure
Unit 1 Atomic Structure Defining the Atom I. Atomic Theory A. Modern Atomic Theory 1. All matter is made up of very tiny particles called atoms 2. Atoms of the same element are chemically alike 3. Individual
MAJOR NUCLEAR BURNING STAGES
MAJOR NUCLEAR BURNING STAGES The Coulomb barrier is higher for heavier nuclei with high charge: The first reactions to occur are those involving light nuclei -- Starting from hydrogen burning, helium burning
Nuclear Chemistry. Radioactivity. In this chapter we will look at two types of nuclear reactions.
1 Nuclear Chemistry In this chapter we will look at two types of nuclear reactions. Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off radiation. Nuclear bombardment
Atomic Notation (or Nuclear Symbol): Shorthand for keeping track of protons and neutrons in the nucleus
Name Section CHM52LL: Nuclear Chemistry: Radioactivity, Decay, Dating, and Other Hazards There is no prelab assignment this week I. Radioactive Isotopes and Nuclear Equations Atoms are composed of three
Binding Energy and Mass defect
Binding Energy and Mass defect Particle Relative Electric Charge Relative Mass Mass (kg) Charge (C) (u) Electron -1-1.60 x 10-19 5.485779 x 10-4 9.109390 x 10-31 Proton +1 +1.60 x 10-19 1.007276 1.672623
5 Atomic Physics. 1 of the isotope remains. 1 minute, 4. Atomic Physics. 1. Radioactivity 2. The nuclear atom
5 Atomic Physics 1. Radioactivity 2. The nuclear atom 1. In a fission reactor, which particle causes a Uranium-235 nucleus to split? A. alpha-particle B. gamma ray C. neutron D. proton 2. A radioactive
L 36 Atomic and Nuclear Physics-4. Radioactivity. Nuclear reactions: E = mc 2. Hazards of radiation. Biological effects of nuclear radiation
L 36 Atomic and Nuclear Physics- Nuclear physics what s inside the nucleus and what holds it together what is radioactivity, half-life carbon dating Nuclear energy nuclear fission nuclear fusion nuclear
Chapter 18 Nuclear Chemistry
287 Chapter 18 Nuclear Chemistry Review Skills 18.1 The Nucleus and Radioactivity Nuclear Stability Types of Radioactive Emissions Nuclear Reactions and Nuclear Equations Rates of Radioactive Decay Radioactive
Nuclear Properties. Thornton and Rex, Ch. 12
Nuclear Properties Thornton and Rex, Ch. 12 A pre-history 1896 Radioactivity discovered - Becquerel a rays + (Helium) b rays - (electrons) g rays 0 (EM waves) 1902 Transmutation observed - Rutherford and
An introduction to Nuclear Physics
An introduction to Nuclear Physics Jorge Pereira pereira@nscl.msu.edu National Superconducting Cyclotron Laboratory Joint Institute for Nuclear Astrophysics The Origin of Everything Layout The Nucleus.
Nuclear & Particle Physics
AstroPhysics Notes Nuclear Physics Dr. Bill Pezzaglia A. Nuclear Structure Nuclear & Particle Physics B. Nuclear Decay C. Nuclear Reactions D. Particle Physics Updated: 03Aug9 (for physics 700) A. Nuclear
Nobel prizes in nuclear and reactor physics. Szabolcs Czifrus Institute of Nuclear Techniques BME
Nobel prizes in nuclear and reactor physics Szabolcs Czifrus Institute of Nuclear Techniques BME Nuclear physics in everyday life Electricity: production in nuclear power plants Sterilization by the application
Number of protons. 2. What is the nuclear symbol for a radioactive isotope of copper with a mass number of 60? A) Cu
Chapter 5 Nuclear Chemistry Practice Problems 1. Fill in the missing information in the chart: Medical Use Atomic Mass symbol number Heart imaging 201 Tl 81 Number of protons Number of neutrons Abdominal
Nuclear Chemistry. Proposal: build a nuclear power plant in Broome County. List the pros & cons
Nuclear Chemistry Proposal: build a nuclear power plant in Broome County. List the pros & cons 1 Nuclear Chemistry Friend or Fiend 2 The Nucleus What is in the nucleus? How big is it vs. the atom? How
da u g ht er + radiation
RADIOACTIVITY The discovery of radioactivity can be attributed to several scientists. Wilhelm Roentgen discovered X-rays in 1895 and shortly after that Henri Becquerel observed radioactive behavior while
LECTURE 25 NUCLEAR STRUCTURE AND STABILITY. Instructor: Kazumi Tolich
LECTURE 25 NUCLEAR STRUCTURE AND STABILITY Instructor: Kazumi Tolich Lecture 25 2 30.1 Nuclear structure Isotopes Atomic mass 30.2 Nuclear stability Biding energy 30.3 Forces and energy in the nucleus
Physics 102: Lecture 28
Physics 102: Lecture 28 Nuclear Binding, Radioactivity E=mc 2 Physics 102: Lecture 27, Slide 1 End-of-semester info Final exam info: A1: Thursday, May 15, 1:30-4:30pm A2: Friday, May 9, 1:30-4:30pm Approximately
QUIZ: Physics of Nuclear Medicine Atomic Structure, Radioactive Decay, Interaction of Ionizing Radiation with Matter
QUIZ: Physics of Nuclear Medicine Atomic Structure, Radioactive Decay, Interaction of Ionizing Radiation with Matter 1. An atomic nucleus contains 39 protons and 50 neutrons. Its mass number (A) is a)
CONCEPT MAP ATOMS. Atoms. 1.Thomson model 2.Rutherford model 3.Bohr model. 6. Hydrogen spectrum
CONCEPT MAP ATOMS Atoms 1.Thomson model 2.Rutherford model 3.Bohr model 4.Emission line spectra 2a. Alpha scattering experiment 3a. Bohr s postulates 6. Hydrogen spectrum 8. De Broglie s explanation 5.Absorption
Name Date Class NUCLEAR CHEMISTRY
25 NUCLEAR CHEMISTRY SECTION 25.1 NUCLEAR RADIATION (pages 799 802) This section describes the nature of radioactivity and the process of radioactive decay. It characterizes alpha, beta, and gamma radiation
Ceres Software Corporation. Physics Worksheets.
Ceres Software Corporation Physics Worksheets www.ceressoft.org ceressoftware@hotmail.com CHAPTER 05 DYNAMICS --------------------- ACCELERATED: this is not an inertial frame of reference ACCELERATION:
Nuclei: Z, N, and A. Z counts the protons, N counts the neutrons, A is the atomic mass number: A = Z + N. Example:
Nuclei: Z, N, and A Z counts the protons, N counts the neutrons, A is the atomic mass number: A = Z + N The value of N for a particular element can vary Notation: where X is the symbol for the element
Nuclear Chemistry. Technology Strategies for Success PO Box 1485 East Northport, NY (631) NYS-PREP
Nuclear Chemistry Technology Strategies for Success PO Box 1485 East Northport, NY 11725 (631)734-0115 1-888-NYS-PREP techstrategies@gmail.com Nuclear Chemistry Table of Contents 1.0 Nuclear Chemistry...3
4 Nuclear Stability And Instability
4 Nuclear Stability nd Instability Figure 4.1 Plot of N vs. Each black dot in Figure 4.1 represents a stable nuclide. Where more than one dot appears for a particular atomic number, those dots represent
1. Explain the significance of negative energy of electron in an orbit. askiitians
Class: 12 Subject: Physics Topic: Atoms and Nuclei No. of Questions: 30 1. Explain the significance of negative energy of electron in an orbit. The energy of an electron in the orbits of an atom is negative.
PhysicsAndMathsTutor.com 1
PhysicsAndMathsTutor.com 1 1. Describe briefly one scattering experiment to investigate the size of the nucleus of the atom. Include a description of the properties of the incident radiation which makes
L 36 Modern Physics :006 FINAL EXAM. Nuclear reactions: E = mc 2. Radioactivity. Hazards of radiation. Biological effects of nuclear radiation
9:006 FINAL EXAM The final exam is on Monday MAY 7:30 AM - 9:30 AM in W90 CB The FE is not cumulative, and will cover lectures 3 through 36. (50 questions) The last regular lecture (Lec. 36) will be given
Inner Transition Metals
1 Inner Transition Metals Inner Transition Metals Inner Transition Metals The inner transition metals are found in the f-block, usually put at the bottom of the Periodic Table. These elements were sometimes
(a) (i) State the proton number and the nucleon number of X.
PhysicsAndMathsTutor.com 1 1. Nuclei of 218 84Po decay by the emission of an particle to form a stable isotope of an element X. You may assume that no emission accompanies the decay. (a) (i) State the
NUCLEAR ENERGY! DAY 1: (RADIATION, FISSION, FUSION)
NUCLEAR ENERGY! DAY 1: (RADIATION, FISSION, FUSION) Nucleus Stability Stability of the nucleus depends on the nuclear forces that act between protons and neutrons Protons repel each other Protons attract