PET. Technical aspects

Size: px
Start display at page:

Download "PET. Technical aspects"

Transcription

1 PET Technical aspects

2 15 N 15 O Detector 1 β+ Detector 2 e-

3 Evolution of PET Detectors CTI/Siemens

4 15 N 15 O Detector block 1 β+ Detector block 2 x e- x y y location line of response Constant fraction discriminator Constant fraction discriminator

5 PET Detectors Most modern PET system use a different detector technology where a large number of scintillation crystals are coupled to a smaller number of PMTs. For a given crystal, the lower the cross section is the shorter the length of the crystal has to be due to the light transport.

6 Scintillator Materials NaI (Tl) BGO GSO LSO LYSO LaBr 3 Density [g/ml] /µ [cm] ~2 Index of Refraction Hygroscopic Yes No No No No Yes Rugged No Yes No Yes Yes Yes Peak Emission [nm] Decay Constant [ns] Light Output >100 Energy Resolution <

7 PET Detectors In the block detector, a matrix of cuts are made into a solid block of scintillator material to define the detector elements. The depth of the cuts are adjusted to direct the light to the PMTs. The light produced in each crystal, will produce a unique combination of signals in the PMTs, which will allow the detector to be identified. The more light output the more crystals can be identified.

8 PET Detectors To identify the detector elements, the two following ratios are calculated (similar to the logic used in scintillation cameras). A+ B C D X = A + B + C + D A B+ C D Y = A + B + C + D Below is the flood response (i.e., X and Y density distribution when exposed to a flood source of 511 kev photons) for a block detector from the ECAT EXACT HR. Element (4,4) Element (5,3)

9 The Technology : HiRez Standard Detector 6.4 mm x 6.4 mm 64 crystals/block 144 blocks/scanner 9216 crystals/scanner 3.4 mm slice width 47 slices HI-REZ Detector 4.0 mm x 4.0 mm 169 crystals/block 144 blocks/scanner crystals/scanner 2 mm slice width 81 slices

10 Detector block 1 Detector block 2 x x y y location 12 ns AND line of response coincidence? Constant fraction discriminator Constant fraction discriminator

11 Scintillator Materials NaI (Tl) BGO GSO LSO LYSO LaBr 3 Density [g/ml] /µ [cm] ~2 Index of Refraction Hygroscopic Yes No No No No Yes Rugged No Yes No Yes Yes Yes Peak Emission [nm] Decay Constant [ns] Light Output >100 Energy Resolution <

12 Detector block 1 Detector block 2 x x y y location 12 ns AND MCA line of response coincidence? Energy spectrum Constant fraction discriminator Constant fraction discriminator

13 Scintillator Materials NaI (Tl) BGO GSO LSO LYSO LaBr 3 Density [g/ml] /µ [cm] ~2 Index of Refraction Hygroscopic Yes No No No No Yes Rugged No Yes No Yes Yes Yes Peak Emission [nm] Decay Constant [ns] Light Output >100 Energy Resolution <

14 Event Types True Event Scattered Event Random Event Multiple Event

15 Random Coincidences Because of the finite width of the logic pulses that are fed into the coincidence circuit, there is a probability for random or accidental coincidences between unrelated events. True Coinc. Single Event Random Coinc. Detector 1 Detector 2 Time τ True Coinc. Single Event

16 Random Coincidences If N 1 and N 2 are the individual average count rates of detector 1 and 2, respectively, then it can be shown that the random coincidence rate for the pair of detectors is: N R = 2τ N 1 N 2 where 2τ is the coincidence window (or τ is the width of the singles pulses)

17 Random Coincidences Randoms can be estimated by adding a second coincidence circuit. The logic pulse from one detector is delayed beyond the time resolution of the detector pairs. This does not require any knowledge of the coincidence time window, but is not as statistically accurate as the singles method Amp./ PHA Amp./ PHA Coinc. Delay Prompts Coinc. Randoms

18 Estimation of Random Coincidences Singles Method Monitor singles for each detector Statistically accurate Requires accurate knowledge of τ Dead-time different between prompt coinc. & singles Delayed Coincidence Method Separate coincidence circuitry/processor Poor statistical accuracy (improvement with variance reduction)

19 Scatter Scatter can be reduced by better energy resolution more collimation (2D)

20 Signal-to-Noise True Coincidences ~ Activity Good events! / ~ T S N T

21 Signal-to-Noise Random Coincidences ~ Activity 2 Can be accurately corrected for Correction increases image noise Detector material dependent S/ N ~ T T + 2R

22 Signal-to-Noise Scattered Coincidences ~ Activity Reduces Image Contrast Requires correction Analytical estimation Correction increases image noise S/ N ~ T T + S+ 2R

23 Signal-to-Noise Multiple Coincidences: ~ Activity 3 Never saved Source of Dead time

24 Noise Equivalent Count Rate - NEC The correction for random and scattered events increases the noise in the net true events The correction therefore reduce the effective true count rate The NEC describes the equivalent true count rate in the absence of random and scattered events: NEC = T T + S + 2kR ~ S / N

25 Count Rate [cps] Trues Prompts Randoms NEC Specific Activity [MBq/ml]

26 Spatial Resolution The spatial resolution in PET is primarily determined by: Detector size Physics of positron decay System geometry Detector material

27 Spatial Resolution For a source placed at the midpoint between two scintillation detectors with a width w d, the geometric line spread function has a triangular shape with a FWHM of w d /2. w d FWHM = w d 2

28 Spatial Resolution -Tangential For sources located between the midpoint and the detector surface the LSF will have a trapezoidal shape with width varying from w d /2 (at the center) and w d at the detector surface.

29 Spatial Resolution - Radial Transaxial Resolution or ECAT EXACT HR Axial section Radial FWHM (mm) 8 Tangential FWHM tang FWHM rad R= R (cm)

30 Depth-of-Interaction cm etector eparate

31 Depth of Interaction Decoding Techniques Multiple layers of scintillators with different decay constants. Wong, 1985; Carrier et. al., 1987; Casey et. al Additional light readouts on the scintillator. McIntyre et. al., 1980; Moses et. al., 1991 Modulation of light output Rogers et. al., 1995

32 30 mm 2x15 mm 3x10 mm 4x7.5 mm 30 cm 40 cm UCLA School of Medicine

33 DOI Detectors Siemens Molecular Imaging

34 SSPM/SiPM UCLA School of Medicine

35 SSPM/SiPM Counts ns FWHM Channel UCLA School of Medicine

36 Avalanche Photo Diodes (APD) vs. Photo Multiplier Tubes (PMT) PMTs Size 10-52mm dia. APDs 5x5mm Gain Up to 10 6 Up to 200 Rise time ~1 ns ~5 ns QE 20% 70% Magnetically sensitive insensitive

37 Spatial Resolution Although the most energetic positrons can travel several mm before annihilating, only a few of these are emitted. The average positron energy emitted is approximately 1/3-1/2 of the maximum energy. The total path length the positrons travel is not along a straight path. Through inelastic interactions with electrons in the positrons path is deflected. The distance from the mother nucleus is therefore much shorter.

38 Positron Range From Levin & Hoffman PMB 44, 1999

39 Resolution loss due to the positron range Isotope β + Energy FWHM FWTM [MeV] [mm] [mm] 18 F C N O m Rb

40 Positron Range ~65% ~50% 18 F 635 kev 124 I 1.53 & 2.14 MeV

41 Non-colinearity ~0.3 FWHM 100 cm Ø ~ 2.5 mm FWHM 15 cm Ø ~ 0.3 mm FWHM

42 Spatial Resolution The measured resolution (intrinsic resolution) of the system is a convolution of the various resolution components. If the different resolution components are assumed to be Gaussian in shape and are described by a FWHM then the combined resolution is the squared sum of the individual resolution components: FWHM = FWHM + FWHM + FWHM total det ector positron angulation FWHM = FWHM + FW M + FWHM total det ector 20% positron angulation Sánchez Crespo et. al. EJNM, 2004

43 Improved NEC Performance

44 Time-of-flight PET R R Det 2 Det 1 x R - x R + x s= vt R + x = vt R x = vt x= vt ( t) x= 2 1 c t 2

45 Time-of-flight PET For ideal detectors, TOF would eliminate the need for image reconstruction, since the measurement would allow each event to be accurately positioned in space. All detectors have a finite time resolution, or uncertainty in timing. This translates to an uncertainty in positioning. BGO ~ 5 ns NaI ~ 1.5 ns CsF, LaBr 3 ~ 0.45 ns BaF 2, LSO, LYSO ~ 0.3 ns 75 cm 22.5 cm 6.7 cm 4.5 cm

46 Time-of-flight PET Figure 1. Image elements contributing to a LOR, for conventional PET (left) and TOF PET (right).

47 Time-of-flight PET Even with a finite time resolution, using the TOF information an improvement in signal-to-noise ratio (S/N) can be achieved: 2 D D SNR SNR = SNR x c t TOF conv. conv.

48 Can we see TOF improvement? non TOF TOF 5 min 3 min 1 min 6-to-1 contrast; 35-cm phantom Noticeable improvement with TOF with large size phantom J. Karp, U of Penn

49 QUALITY CONTROL (QC)

50 Quality Control Ensure operational integrity of the system Maintain consistent and high image quality Minimize chance for artifacts Catch potential problems early Maintain quantitative accuracy

51 PET System, storage of data Each detector is in coincidence with a sector of opposite detectors. The angle of the section defines the Field of View (FOV)

52 PET System, storage of data All coincidence lines that are parallel at a given angle form a projection which is the accumulated radioactivity in that angle (1D) of the object (2D). In the computer we store the projection in a matrix x-axis radioactivity profile, y-axis the different angles

53 Projection & Sinogram Projection: All ray-sums in a direction P(θ,t) y t Sinogram: All projections θ π θ x f(x,y) X-rays Sinogram t

54 PET System θ r In most PET scanners, a large number of scintillation detectors are arranged in a circle. Each detector is in coincidence with a number of opposite detectors. The field-of-view (FOV) of the scanner is defined by the width or the angle of the fan. All coincidence lines that are parallel at a given angle form a projection in the sinogram.

55 PET System θ r All coincidence lines (or lines of response) for a given detector form a diagonal trace in the sinogram.

56

57 Daily QC / Blank Scan

58 The sinogram as a help to identify errors Normal QC Detector Failure Detector Controller Failure Coincidence Processor Failure

59 Buchert et. al. JNM 40, 1999

60 Daily QC / Cylinder Scan Before Normalization After Normalization

61 Daily QC Procedure Daily Detector Check Sources & Phantoms needed Transmission/Rotating Rod Sources Uniform 68 Ge cylinder phantom

62 Daily / Weekly Quantitation Scan Scan uniform 20 cm Ø 68 Ge or 18 F Cylinder Reconstruct: All corrections applied Standard reconstruction parameters Visual inspection Compare image ROI activity to calibrated activity Always perform after: Service Re-tuning Re-normalization

63

64 Quantitation 2D Cylinder ( µci/ml) FBP OSEM Calculated Atten. Corr % % Meas. Atten. Corr. CT % % Meas. Atten. Corr. Rods % %

65 Quarterly QC Procedures Detector setup (if needed) PMT tuning Detector setup Coincidence timing Normalization Gantry alignment (for PET/CT) Always after Service Software upgrades Other calibrations (well counter, etc)

66 Jaszczak Phantom

67

68 PET/CT Gantry Alignment CT PET

69 Annual QC Procedures Perform a sub-set of the acceptance test: Uniformity Resolution Count Rate Test Dead Time correction

70 Test Phantoms

Radionuclide Imaging MII Positron Emission Tomography (PET)

Radionuclide Imaging MII Positron Emission Tomography (PET) Radionuclide Imaging MII 3073 Positron Emission Tomography (PET) Positron (β + ) emission Positron is an electron with positive charge. Positron-emitting radionuclides are most commonly produced in cyclotron

More information

Mayneord-Phillips Summer School St Edmund Hall, University of Oxford July Proton decays to n, e +, ν

Mayneord-Phillips Summer School St Edmund Hall, University of Oxford July Proton decays to n, e +, ν Positron Emission Tomography Physics & Instrumentation Dimitra G. Darambara, Ph.D Multimodality Molecular Imaging Joint Department of Physics RMH/ICR Outline Introduction PET Physics overview Types of

More information

Positron Emission Tomography

Positron Emission Tomography Positron Emission Tomography Presenter: Difei Wang June,2018 Universität Bonn Contents 2 / 24 1 2 3 4 Positron emission Detected events Detectors and configuration Data acquisition Positron emission Positron

More information

Prospects for achieving < 100 ps FWHM coincidence resolving time in time-of-flight PET

Prospects for achieving < 100 ps FWHM coincidence resolving time in time-of-flight PET Prospects for achieving < 100 ps FWHM coincidence resolving time in time-of-flight PET, 28-Feb-2012, ICTR-PHE, Geneva, Switzerland 1 Time-of-flight PET Colon cancer, left upper quadrant peritoneal node

More information

Detector technology. Aim of this talk. Principle of a radiation detector. Interactions of gamma photons (gas) Gas-filled detectors: examples

Detector technology. Aim of this talk. Principle of a radiation detector. Interactions of gamma photons (gas) Gas-filled detectors: examples Aim of this tal Detector technology WMIC Educational Program Nuclear Imaging World Molecular Imaging Congress, Dublin, Ireland, Sep 5-8, 202 You can now the name of a bird in all the languages of the world,

More information

6: Positron Emission Tomography

6: Positron Emission Tomography 6: Positron Emission Tomography. What is the principle of PET imaging? Positron annihilation Electronic collimation coincidence detection. What is really measured by the PET camera? True, scatter and random

More information

Timing and Energy Response of Six Prototype Scintillators

Timing and Energy Response of Six Prototype Scintillators Timing and Energy Response of Six Prototype Scintillators CCM Kyba 1, J Glodo 2, EVD van Loef 2, JS Karp 1, KS Shah 2 1 University of Pennsylvania 2 Radiation Monitoring Devices SCINT 2007 June 7, 2007

More information

CT-PET calibration : physical principles and operating procedures F.Bonutti. Faustino Bonutti Ph.D. Medical Physics, Udine University Hospital.

CT-PET calibration : physical principles and operating procedures F.Bonutti. Faustino Bonutti Ph.D. Medical Physics, Udine University Hospital. CT-PET calibration : physical principles and operating procedures Faustino Bonutti Ph.D. Medical Physics, Udine University Hospital Topics Introduction to PET physics F-18 production β + decay and annichilation

More information

Development of a High Precision Axial 3-D PET for Brain Imaging

Development of a High Precision Axial 3-D PET for Brain Imaging Development of a High Precision Axial 3-D PET for Brain Imaging On behalf of the AX-PET Collaboration SIENA - IPRD08 October 1st 4th, 2008 1 Outline Basics of Positron Emission Tomography (PET); Principle

More information

The Physics of PET/CT scanners

The Physics of PET/CT scanners The Physics of PET/CT scanners Ruth E. Schmitz, Adam M. Alessio, and Paul E. Kinahan Imaging Research Laboratory Department of Radiology University of Washington What Makes PET Useful? Positron emission

More information

Figure 1. Decay Scheme for 60Co

Figure 1. Decay Scheme for 60Co Department of Physics The University of Hong Kong PHYS3851 Atomic and Nuclear Physics PHYS3851- Laboratory Manual A. AIMS 1. To learn the coincidence technique to study the gamma decay of 60 Co by using

More information

MEDICAL EQUIPMENT: NUCLEAR MEDICINE. Prof. Yasser Mostafa Kadah

MEDICAL EQUIPMENT: NUCLEAR MEDICINE. Prof. Yasser Mostafa Kadah MEDICAL EQUIPMENT: NUCLEAR MEDICINE Prof. Yasser Mostafa Kadah www.k-space.org Recommended Textbook Introduction to Medical Imaging: Physics, Engineering and Clinical Applications, by Nadine Barrie Smith

More information

Design of a Lanthanum Bromide Detector for TOF PET

Design of a Lanthanum Bromide Detector for TOF PET Design of a Lanthanum Bromide Detector for TOF PET A. Kuhn, S. Surti, Member, IEEE, J. S. Karp, Senior Member, IEEE, P. S. Raby, K. S. Shah, A. E. Perkins, Member, IEEE, G. Muehllehner, Fellow Member,

More information

Time-of-Flight PET using Cherenkov Photons Produced in PbF 2

Time-of-Flight PET using Cherenkov Photons Produced in PbF 2 Photons Produced in PbF 2 R. Dolenec a, S. Korpar b,a, P. Križan c,a, R. Pestotnik a, A. Stanovnik d,a a, Ljubljana, Slovenia b Faculty of Chemistry and Chemical Engineering, University of Maribor, Slovenia

More information

Radiation Detection and Measurement

Radiation Detection and Measurement Radiation Detection and Measurement June 2008 Tom Lewellen Tkldog@u.washington.edu Types of radiation relevant to Nuclear Medicine Particle Symbol Mass (MeV/c 2 ) Charge Electron e-,! - 0.511-1 Positron

More information

Introduction to SPECT & PET TBMI02 - Medical Image Analysis 2017

Introduction to SPECT & PET TBMI02 - Medical Image Analysis 2017 Introduction to SPECT & PET TBMI02 - Medical Image Analysis 2017 Marcus Ressner, PhD, Medical Radiation Physicist, Linköping University Hospital Content What is Nuclear medicine? Basic principles of Functional

More information

Lecture 5: Tomographic nuclear systems: SPECT

Lecture 5: Tomographic nuclear systems: SPECT Lecture 5: Tomographic nuclear systems: SPECT Field trip this saturday at 11 AM at UWMC meet in main hospital lobby at 11 AM if you miss the 'boat', page me at 540-4950 should take ~1 to 1.5 hours, depending

More information

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous?

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? 2. Briefly discuss dead time in a detector. What factors are important

More information

CHIPP Plenary Meeting University of Geneva, June 12, 2008 W. Lustermann on behalf of the AX PET Collaboration

CHIPP Plenary Meeting University of Geneva, June 12, 2008 W. Lustermann on behalf of the AX PET Collaboration CHIPP Plenary Meeting University of Geneva, June 12, 2008 W. Lustermann on behalf of the AX PET Collaboration INFN Bari, Ohio State University, CERN, University of Michigan, University of Oslo, INFN Roma,

More information

Scintillation Detectors

Scintillation Detectors Scintillation Detectors J.L. Tain Jose.Luis.Tain@ific.uv.es http://ific.uv.es/gamma/ Instituto de Física Corpuscular C.S.I.C - Univ. Valencia Scintillation detector: SCINTILLATION MATERIAL LIGHT-GUIDE

More information

Dual Isotope Imaging with LaBr3:Ce Crystal and H8500 PSPMT

Dual Isotope Imaging with LaBr3:Ce Crystal and H8500 PSPMT Dual Isotope Imaging with LaBr3:Ce Crystal and H8500 PSPMT Dr. Andrea Fabbri, University of Rome Roma Tre I.N.F.N. (National Institue of Nuclear Physics) γ-ray imaging with scintillator and PSPMT γ-ray

More information

Chapter 2 PET Imaging Basics

Chapter 2 PET Imaging Basics Chapter 2 PET Imaging Basics Timothy G. Turkington PET Radiotracers Positron emission tomography (PET) imaging is the injection (or inhalation) of a substance containing a positron emitter, the subsequent

More information

Gamma ray coincidence and angular correlation

Gamma ray coincidence and angular correlation University of Cape Town Department of Physics Course III laboratory Gamma ray coincidence and angular correlation Introduction Medical imaging based on positron emission tomography (PET) continues to have

More information

Sample Spectroscopy System Hardware

Sample Spectroscopy System Hardware Semiconductor Detectors vs. Scintillator+PMT Detectors Semiconductors are emerging technology - Scint.PMT systems relatively unchanged in 50 years. NaI(Tl) excellent for single-photon, new scintillation

More information

Simulation of triple coincidences in PET

Simulation of triple coincidences in PET 136 Institute of Physics and Engineering in Medicine Physics in Medicine & Biology doi:10.1088/0031-9155/60/1/117 Simulation of triple coincidences in PET J Cal-González 1,4, E Lage 2, E Herranz 1, E Vicente

More information

Sub-Nanosecond Timing for In-Beam PET in hadrontherapy

Sub-Nanosecond Timing for In-Beam PET in hadrontherapy Sub-Nanosecond Timing for In-Beam PET in hadrontherapy Baptiste Joly Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 CLERMONT-FERRAND,

More information

Recent advances and future perspectives of gamma imagers for scintimammography

Recent advances and future perspectives of gamma imagers for scintimammography 3rd International Conference on Imaging Technologies in Biomedical Sciences: ITBS2005 Innovation in Nuclear and Radiological Imaging: From Basic Research to Clinical Application Milos Conference Center,

More information

Advances in PET technology

Advances in PET technology Advances in PET technology Jostein Sæterstøl September 15th 2009 Outline Introduction Detectors Time-of-flight PET PET / MRI Conclusions Introduction Fluor-18; FDG β + decay p n + e + + ν Annihilation

More information

List of Nuclear Medicine Radionuclides. Nuclear Medicine Imaging Systems: The Scintillation Camera. Crystal and light guide

List of Nuclear Medicine Radionuclides. Nuclear Medicine Imaging Systems: The Scintillation Camera. Crystal and light guide Nuclear Medicine Imaging Systems: The Scintillation Camera List of Nuclear Medicine Radionuclides Tc99m 140.5 kev 6.03 hours I-131 364, 637 kev 8.06 days I-123 159 kev 13.0 hours I-125 35 kev 60.2 days

More information

Positron Emission Tomography

Positron Emission Tomography Positron Emission Tomography CERN Accelerator School Small Accelerators Zeegse, the Netherlands A.M.J. Paans Nuclear Medicine & Molecular Imaging UMC Groningen Elements of Life PET-nuclide Hydrogen Carbon

More information

What is scintigraphy? The process of obtaining an image or series of sequential images of the distribution of a radionuclide in tissues, organs, or

What is scintigraphy? The process of obtaining an image or series of sequential images of the distribution of a radionuclide in tissues, organs, or Let's remind... What is nuclear medicine? Nuclear medicine can be broadly divided into two branches "in vitro" and "in vivo" procedures. There are numerous radioisotopic "in vitro" procedures for genotyping

More information

1st Faculty of Medicine, Charles University in Prague Center for Advanced Preclinical Imaging (CAPI)

1st Faculty of Medicine, Charles University in Prague Center for Advanced Preclinical Imaging (CAPI) Radioation Resolution and Sensitivity Nuclear Imaging PET + SPECT Radioactive Decay (EC,Ɣ), (β -,Ɣ), (I.T.,Ɣ) β + Projection imaging collimator needed one angular view Projection imaging coincidence imaging,

More information

Mitigation of External Radiation Exposures

Mitigation of External Radiation Exposures Mitigation of External Radiation Exposures The three (3) major principles to assist with maintaining doses ALARA are :- 1) Time Minimizing the time of exposure directly reduces radiation dose. 2) Distance

More information

GAMMA RAY SPECTROSCOPY

GAMMA RAY SPECTROSCOPY GAMMA RAY SPECTROSCOPY Gamma Ray Spectroscopy 1 In this experiment you will use a sodium iodide (NaI) detector along with a multichannel analyzer (MCA) to measure gamma ray energies from energy level transitions

More information

A. I, II, and III B. I C. I and II D. II and III E. I and III

A. I, II, and III B. I C. I and II D. II and III E. I and III BioE 1330 - Review Chapters 7, 8, and 9 (Nuclear Medicine) 9/27/2018 Instructions: On the Answer Sheet, enter your 2-digit ID number (with a leading 0 if needed) in the boxes of the ID section. Fill in

More information

DELAYED COINCIDENCE METHOD FOR PICOSECOND LIFETIME MEASUREMENTS

DELAYED COINCIDENCE METHOD FOR PICOSECOND LIFETIME MEASUREMENTS 306 DELAYED COINCIDENCE METHOD FOR PICOSECOND LIFETIME MEASUREMENTS ZHANG WEIJIE China Institute of Atomic Energy E-mail: zhangreatest@163.com The advanced time delay (ATD) technique, based by delayed

More information

LAB 4: Gamma-ray coincidence spectrometry (2018)

LAB 4: Gamma-ray coincidence spectrometry (2018) LAB 4: Gamma-ray coincidence spectrometry (2018) As you have seen, in several of the radioactive sources we encountered so far, they typically emit more than one gamma photon per decay or even more than

More information

A POSITION SENSITIVE ALPHA PARTICLE DETECTOR BASED ON A LYSO CRYSTAL AND A MICRO-PIXEL AVALANCHE PHOTODIODE

A POSITION SENSITIVE ALPHA PARTICLE DETECTOR BASED ON A LYSO CRYSTAL AND A MICRO-PIXEL AVALANCHE PHOTODIODE A POSITION SENSITIVE ALPHA PARTICLE DETECTOR BASED ON A LYSO CRYSTAL AND A MICRO-PIXEL AVALANCHE PHOTODIODE Ahmadov G.S. a,b,c, Ahmadov F.I. b,c, Kopatch Yu.N. a, Telezhnikov S.A. a, Nuriyev S.M. a,b,

More information

4- Locate the channel number of the peak centroid with the software cursor and note the corresponding energy. Record these values.

4- Locate the channel number of the peak centroid with the software cursor and note the corresponding energy. Record these values. EXPERIMENT 2.1 GAMMA ENERGY CALIBRATION 1- Turn the power supply on to 900 V. Turn the NIM crate on to power the amplifiers. Turn the Oscilloscope on to check the gamma pulses. The main amplifier should

More information

Solid State LightBurst New PET Technology GE PET/CT and PET/MR

Solid State LightBurst New PET Technology GE PET/CT and PET/MR Solid State LightBurst New PET Technology GE PET/CT and PET/MR Osama Mawlawi PhD. Dept. of Imaging Physics MD Anderson Cancer Center Disclosures SIEMENS Research grant GE research grant Discovery MI LYSO

More information

A new timing model for calculating the intrinsic timing resolution of a scintillator detector

A new timing model for calculating the intrinsic timing resolution of a scintillator detector INSTITUTE OF PHYSICS PUBLISHING Phys. Med. Biol. 5 (7) 3 7 PHYSICS IN MEDICINE AND BIOLOGY doi:.88/3-955/5/4/6 A new timing model for calculating the intrinsic timing resolution of a scintillator detector

More information

Acknowledgements. PET Fundamentals: Ideal Case. Why Are We Excited About PET/CT? PET Fundamentals: Real Case

Acknowledgements. PET Fundamentals: Ideal Case. Why Are We Excited About PET/CT? PET Fundamentals: Real Case PET/CT and Fusion Issues Jon A. Anderson Department of Radiology The University of Texas Southwestern Medical Center at Dallas American Associate of Physicists in Medicine 2003 Annual Meeting Acknowledgements

More information

Inorganic Scintillators

Inorganic Scintillators Inorganic Scintillators Inorganic scintillators are inorganic materials (usually crystals) that emit light in response to ionizing radiation NaI is the protypical example Scintillation mechanism is different

More information

Quality Assurance. Purity control. Polycrystalline Ingots

Quality Assurance. Purity control. Polycrystalline Ingots Quality Assurance Purity control Polycrystalline Ingots 1 Gamma Spectrometry Nuclide Identification Detection of Impurity Traces 1.1 Nuclides Notation: Atomic Mass Atomic Number Element Neutron Atomic

More information

arxiv: v1 [physics.ins-det] 22 Dec 2013

arxiv: v1 [physics.ins-det] 22 Dec 2013 arxiv:1312.6334v1 [physics.ins-det] 22 Dec 213 Test of the prototype of electron detector for LHAASO project using cosmic rays * WANG Xu 1 XU Tongye 1 DU Yanyan 1 SHAO Ruobin 1 ZHU Chengguang 1;1) for

More information

Scintillating Crystals and their Applications in Particle and Nuclear Physics November 17-18, 2003

Scintillating Crystals and their Applications in Particle and Nuclear Physics November 17-18, 2003 Scintillating Crystals and their Applications in Particle and Nuclear Physics November 17-18, 2003 Takayuki Yanagida, Hiromitsu Takahashi, Daisuke Kasama, Takeshi Ito, Hisako Niko, Motohide Kokubun, and

More information

Radiation Detectors. How do we detect ionizing radiation? What are these effects? Types of Ionizing Radiation Detectors

Radiation Detectors. How do we detect ionizing radiation? What are these effects? Types of Ionizing Radiation Detectors Radiation Detectors 1 How do we detect ionizing radiation? Indirectly, by its effects as it traverses matter? What are these effects? Ionization and excitation of the atoms and molecules Heat 2 Types of

More information

Scintillation Detector

Scintillation Detector Scintillation Detector Introduction The detection of ionizing radiation by the scintillation light produced in certain materials is one of the oldest techniques on record. In Geiger and Marsden s famous

More information

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic Radioactivity, Spontaneous Decay: Nuclear Reactions A Z 4 P D+ He + Q A 4 Z 2 Q > 0 Nuclear Reaction, Induced Process: x + X Y + y + Q Q = ( m + m m m ) c 2 x X Y y Q > 0 Q < 0 Exothermic Endothermic 2

More information

PET scan simulation. Meysam Dadgar. UMSU, Iran. IFMP, Elbasan, Fig 1: PET camera simulation in gate by cylindrical phantom

PET scan simulation. Meysam Dadgar. UMSU, Iran. IFMP, Elbasan, Fig 1: PET camera simulation in gate by cylindrical phantom PET scan simulation Meysam Dadgar UMSU, Iran IFMP, Elbasan, 2016 Meysamdadgar10@gmail.com 1 Fig 1: PET camera simulation in gate by cylindrical phantom 2 What is PET? Positron emission tomography (PET),

More information

Development of a new PET detector module with improved Depth of Interaction and Time of Flight capabilities

Development of a new PET detector module with improved Depth of Interaction and Time of Flight capabilities Development of a new PET detector module with improved Depth of Interaction and Time of Flight capabilities Ana Rita Borrego Instituto Superior Técnico IST, Universidade de Lisboa UL, Lisbon, Portugal

More information

Chapter 4 Scintillation Detectors

Chapter 4 Scintillation Detectors Med Phys 4RA3, 4RB3/6R03 Radioisotopes and Radiation Methodology 4-1 4.1. Basic principle of the scintillator Chapter 4 Scintillation Detectors Scintillator Light sensor Ionizing radiation Light (visible,

More information

Multi Channel Analyzer (MCA) Analyzing a Gamma spectrum

Multi Channel Analyzer (MCA) Analyzing a Gamma spectrum Multi Channel Analyzer (MCA) Analyzing a Gamma spectrum Objective: Using the MCA to acquire spectrums for different gamma sources and to identify an unknown source from its spectrum, furthermore to investigate

More information

Positron-Electron Annihilation

Positron-Electron Annihilation Positron-Electron Annihilation Carl Akerlof September 13, 008 1. Introduction This experiment attempts to explore several features of positron-electron annihilation. One of the attractive aspects of e

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN 308 Angular dependence of 662 kev multiple backscattered gamma photons in Aluminium Ravindraswami K a, Kiran K U b, Eshwarappa K M b and Somashekarappa H M c* a St Aloysius College (Autonomous), Mangalore

More information

Using new digital SiPM from Philips with AX-PET a new geometrical concept for PET

Using new digital SiPM from Philips with AX-PET a new geometrical concept for PET Using new digital SiPM from Philips with AX-PET a new geometrical concept for PET Matthieu Heller CERN - PH/DT Marie Curie network MC-PAD Matthieu.heller@cern.ch On behalf of the AX-PET collaboration https://twiki.cern.ch/twiki/bin/view/axialpet

More information

Propagation Speed of γ-radiation (Rγ) in Air (a)

Propagation Speed of γ-radiation (Rγ) in Air (a) 1 Propagation Speed of γ-radiation (Rγ) in Air (a) Osmar F.S.L. Neto, (b)marcelo A.V. Macedo Jr., (c)josé T.P.D. Cavalcante, (c)henrique Saitovitch (a)fundação Técnico-Educacional Souza Marques Av. Ernani

More information

A Brief Introduction to Medical Imaging. Outline

A Brief Introduction to Medical Imaging. Outline A Brief Introduction to Medical Imaging Outline General Goals Linear Imaging Systems An Example, The Pin Hole Camera Radiations and Their Interactions with Matter Coherent vs. Incoherent Imaging Length

More information

Absolute activity measurement

Absolute activity measurement Absolute activity measurement Gábor Veres, Sándor Lökös Eötvös University, Department of Atomic Physics January 12, 2016 Financed from the financial support ELTE won from the Higher Education Restructuring

More information

Gamma Spectroscopy. References: Objectives:

Gamma Spectroscopy. References: Objectives: Gamma Spectroscopy References: G.F. Knoll, Radiation Detection and Measurement (John Wiley & Sons, New York, 2000) W. R. Leo, Techniques for Nuclear and Particle Physics Experiments: A How-to Approach,

More information

Nuclear Lifetimes. = (Eq. 1) (Eq. 2)

Nuclear Lifetimes. = (Eq. 1) (Eq. 2) Nuclear Lifetimes Theory The measurement of the lifetimes of excited nuclear states constitutes an important experimental technique in nuclear physics. The lifetime of a nuclear state is related to its

More information

Positron Emission Tomography (PET)

Positron Emission Tomography (PET) Positron Emission Tomography (PET) A radiological technique for functional imaging Please note that this exercise takes place at the Stockholm Centre for Physics, Astronomy and Biotechniques (Alba Nova).

More information

Positron emission tomography with additional c-ray detectors for multipletracer

Positron emission tomography with additional c-ray detectors for multipletracer Positron emission tomography with additional c-ray detectors for multipletracer imaging Tomonori Fukuchi, a) Takashi Okauchi, and Mika Shigeta RIKEN Center for Life Science Technologies, Kobe 650-0047,

More information

SCI-O11. Design of a Compton Spectrometer Experiment for Studying Electron Response of a Scintillator

SCI-O11. Design of a Compton Spectrometer Experiment for Studying Electron Response of a Scintillator 88 The 1 st NPRU Academic Conference SCI-O11 Design of a Compton Spectrometer Experiment for Studying Electron Response of a Scintillator P. Limkitjaroenporn and W.Chewpraditkul Radiation Physics Laboratory,

More information

Detecting high energy photons. Interactions of photons with matter Properties of detectors (with examples)

Detecting high energy photons. Interactions of photons with matter Properties of detectors (with examples) Detecting high energy photons Interactions of photons with matter Properties of detectors (with examples) Interactions of high energy photons with matter Cross section/attenution length/optical depth Photoelectric

More information

Evaluation of the Nonlinear Response Function and Efficiency of a Scintillation Detector Using Monte Carlo and Analytical Methods

Evaluation of the Nonlinear Response Function and Efficiency of a Scintillation Detector Using Monte Carlo and Analytical Methods Asian J. Exp. Sci., Vol. 28, No. 2, 2014; 23-31 Evaluation of the Nonlinear Response Function and Efficiency of a Scintillation Detector Using Monte Carlo and Analytical Methods Rahim Khabaz, Farhad Yaghobi

More information

Charge collection in PET detectors

Charge collection in PET detectors University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2007 Charge collection in PET detectors Tony Young University of

More information

Compton Camera. Compton Camera

Compton Camera. Compton Camera Diagnostic Imaging II Student Project Compton Camera Ting-Tung Chang Introduction The Compton camera operates by exploiting the Compton Effect. It uses the kinematics of Compton scattering to contract

More information

DETECTORS. I. Charged Particle Detectors

DETECTORS. I. Charged Particle Detectors DETECTORS I. Charged Particle Detectors A. Scintillators B. Gas Detectors 1. Ionization Chambers 2. Proportional Counters 3. Avalanche detectors 4. Geiger-Muller counters 5. Spark detectors C. Solid State

More information

Alpha particle scintillation detector based on micro pixel avalanche photodiode and LYSO crystal

Alpha particle scintillation detector based on micro pixel avalanche photodiode and LYSO crystal Alpha particle scintillation detector based on micro pixel avalanche photodiode and LYSO crystal G.S. Ahmadov, F.I. Ahmadov Institute of Radiation Problems of ANAS, Baku, Azerbaijan C. Granja, S. Pospíšil

More information

Rice University Physics 332 LIFETIME OF THE MUON I. INTRODUCTION...2! II. MEASUREMENT PROCEDURES...3! III. ANALYSIS PROCEDURES...7!

Rice University Physics 332 LIFETIME OF THE MUON I. INTRODUCTION...2! II. MEASUREMENT PROCEDURES...3! III. ANALYSIS PROCEDURES...7! Rice University Physics 332 LIFETIME OF THE MUON I. INTRODUCTION...2! II. MEAUREMENT PROCEDURE...3! III. ANALYI PROCEDURE...7! Revised July 2011 I. Introduction In this experiment you will measure the

More information

Oslo Cyclotron Laboratory

Oslo Cyclotron Laboratory Oslo Cyclotron Laboratory Laboratory Excercise in FYS3180 - Experimental Methods in Physics Morten A. Salvesen University of Oslo, Oslo, Norway 2007-09-24 to 2007-11-15 Contents 1 Abstract 1 2 Oslo Cyclotrone

More information

Radioisotopes in action. Diagnostic application of radioisotopes. Steps of diagnostic procedure. Information from various medical imaging techniques

Radioisotopes in action. Diagnostic application of radioisotopes. Steps of diagnostic procedure. Information from various medical imaging techniques Radioisotopes in action Diagnostic application of radioisotopes Steps of diagnostic procedure - Radioactive material introduced into the patient - Distribution and alteration of activity is detected -

More information

Scintillation Detectors

Scintillation Detectors Scintillation Detectors Introduction Components Scintillator Light Guides Photomultiplier Tubes Formalism/Electronics Timing Resolution Elton Smith JLab 2006 Detector/Computer Summer Lecture Series Experiment

More information

A Measurement of Monoenergetic Neutrons from 9 Be(p,n) 9 B

A Measurement of Monoenergetic Neutrons from 9 Be(p,n) 9 B Journal of the Korean Physical Society, Vol. 32, No. 4, April 1998, pp. 462 467 A Measurement of Monoenergetic Neutrons from 9 Be(p,n) 9 B J. H. Kim, H. Bhang, J. H. Ha, J. C. Kim, M. J. Kim, Y. D. Kim

More information

Compton Imaging with Coincidence Measurements for Treaty Verification Purposes

Compton Imaging with Coincidence Measurements for Treaty Verification Purposes 1 Compton Imaging with Coincidence Measurements for Treaty Verification Purposes Scott Wandel, The Pennsylvania State University Abstract Nuclear arms control is a cooperative effort among many government

More information

OPPORTUNITY TO JOIN IEEE AND NPSS

OPPORTUNITY TO JOIN IEEE AND NPSS OPPORTUNITY TO JOIN IEEE AND NPSS If you are NOT an IEEE Member, IEEE & NPSS offers you a FREE: Half-year membership in IEEE (value= ~$80)* Half-year membership in NPSS (value= ~$13)* Half-year subscription

More information

THE COMPTON EFFECT Last Revised: January 5, 2007

THE COMPTON EFFECT Last Revised: January 5, 2007 B2-1 THE COMPTON EFFECT Last Revised: January 5, 2007 QUESTION TO BE INVESTIGATED: How does the energy of a scattered photon change after an interaction with an electron? INTRODUCTION: When a photon is

More information

Application of positrons in materials research

Application of positrons in materials research Application of positrons in materials research Trapping of positrons at vacancy defects Using positrons, one can get defect information. R. Krause-Rehberg and H. S. Leipner, Positron annihilation in Semiconductors,

More information

What is Albira and How Does the System Work and Why is it Differentiated Technology? Page 1

What is Albira and How Does the System Work and Why is it Differentiated Technology? Page 1 What is Albira and How Does the System Work and Why is it Differentiated Technology? Page 1 Why Albira? Tri-modality: PET, SPECT, CT Modular and state-of-the-art electronics 6 configurations Novel, Proprietary

More information

1 Introduction. KOPIO charged-particle vetos. K - RARE Meeting (Frascati) May Purpose of CPV: veto Kl

1 Introduction. KOPIO charged-particle vetos. K - RARE Meeting (Frascati) May Purpose of CPV: veto Kl Introduction - Purpose of CPV: veto Kl decay modes with a real or apparent π and a pair of charged particles - Examples of background modes: (i) K l π π + π (ii) K l π π ± eν there are always (iii) K l

More information

The 46g BGO bolometer

The 46g BGO bolometer Nature, 3 The g BGO bolometer 1 Photograph of the heat [g BGO] and light [Ge; =5 mm] bolometers: see Fig. 1c for description Current events: Amplification gains: 8, (heat channel) &, (light channel). The

More information

Progress in using prompt gammas for ion range monitoring during hadrontherapy

Progress in using prompt gammas for ion range monitoring during hadrontherapy Progress in using prompt gammas for ion range monitoring during hadrontherapy J. Krimmer 1, M. Chevallier 1, J. Constanzo 1, M. Dahoumane 1, D. Dauvergne 1, M. De Rydt 1,2, G. Dedes 1, N. Freud 3, J.M.

More information

EEE4106Z Radiation Interactions & Detection

EEE4106Z Radiation Interactions & Detection EEE4106Z Radiation Interactions & Detection 2. Radiation Detection Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za May 06, 2015 EEE4106Z :: Radiation

More information

Copyright 2008, University of Chicago, Department of Physics. Experiment VI. Gamma Ray Spectroscopy

Copyright 2008, University of Chicago, Department of Physics. Experiment VI. Gamma Ray Spectroscopy Experiment VI Gamma Ray Spectroscopy 1. GAMMA RAY INTERACTIONS WITH MATTER In order for gammas to be detected, they must lose energy in the detector. Since gammas are electromagnetic radiation, we must

More information

The Compton Effect. Martha Buckley MIT Department of Physics, Cambridge, MA (Dated: November 26, 2002)

The Compton Effect. Martha Buckley MIT Department of Physics, Cambridge, MA (Dated: November 26, 2002) The Compton Effect Martha Buckley MIT Department of Physics, Cambridge, MA 02139 marthab@mit.edu (Dated: November 26, 2002) We measured the angular dependence of the energies of 661.6 kev photons scattered

More information

Amorphous selenium (a-se) avalanche photodetector for applications in Positron Emission Tomography (PET)

Amorphous selenium (a-se) avalanche photodetector for applications in Positron Emission Tomography (PET) Amorphous selenium (a-se) avalanche photodetector for applications in Positron Emission Tomography (PET) By OLEKSANDR BUBON Master of Science in Physics Lakehead University Thunder Bay, Ontario 2011 Amorphous

More information

Chapter 6: Basic radiation detectors

Chapter 6: Basic radiation detectors Chapter 6: Basic radiation detectors Set of 60 slides based on the chapter authored by C.W.E. VAN EIJK Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands of the publication

More information

Characterization and Monte Carlo simulations for a CLYC detector

Characterization and Monte Carlo simulations for a CLYC detector Characterization and Monte Carlo simulations for a CLYC detector A. Borella 1, E. Boogers 1, R.Rossa 1, P. Schillebeeckx 1 aborella@sckcen.be 1 SCK CEN, Belgian Nuclear Research Centre JRC-Geel, Joint

More information

New Photonis XP20D0 photomultiplier for fast timing in nuclear medicine

New Photonis XP20D0 photomultiplier for fast timing in nuclear medicine New Photonis XP20D0 photomultiplier for fast timing in nuclear medicine M. Moszyński, M. Gierlik, M. Kapusta, A. Nassalski, T. Szczęśniak, Soltan Institute for Nuclear Studies, PL 05-400 Świerk-Otwock,

More information

MEASURING THE LIFETIME OF THE MUON

MEASURING THE LIFETIME OF THE MUON B6-1 MEASURING THE LIFETIME OF THE MUON Last Revised September 19, 2006 QUESTION TO BE INVESTIGATED What is the lifetime τ of a muon? INTRODUCTION AND THEORY Muons are a member of a group of particles

More information

3. Perturbed Angular Correlation Spectroscopy

3. Perturbed Angular Correlation Spectroscopy 3. Perturbed Angular Correlation Spectroscopy Dileep Mampallil Augustine K.U.Leuven, Belgium Perturbed Angular Correlation Spectroscopy (PAC) is a gamma ray spectroscopy and can be used to investigate

More information

Measurements of liquid xenon s response to low-energy particle interactions

Measurements of liquid xenon s response to low-energy particle interactions Measurements of liquid xenon s response to low-energy particle interactions Payam Pakarha Supervised by: Prof. L. Baudis May 5, 2013 1 / 37 Outline introduction Direct Dark Matter searches XENON experiment

More information

Gamma Ray Spectroscopy

Gamma Ray Spectroscopy Gamma Ray Spectroscopy Uzair Latif, Imran Younus Department of Physics Lahore University of Management Sciences November 4, 2014 1 Objectives 1. To acquaint the students with some of the basic techniques

More information

Scintillation Detectors

Scintillation Detectors Radiation Measurement Systems Scintillation Detectors Ho Kyung Kim Pusan National University Scintillation detector = scintillator + light sensor Scintillators Inorganic alkali halide crystals Best light

More information

Detection of X-Rays. Solid state detectors Proportional counters Microcalorimeters Detector characteristics

Detection of X-Rays. Solid state detectors Proportional counters Microcalorimeters Detector characteristics Detection of X-Rays Solid state detectors Proportional counters Microcalorimeters Detector characteristics Solid State X-ray Detectors X-ray interacts in material to produce photoelectrons which are collected

More information

Study of the feasibility of a compact gamma camera for real-time cancer assessment

Study of the feasibility of a compact gamma camera for real-time cancer assessment Study of the feasibility of a compact gamma camera for real-time cancer assessment L. Caballero Instituto de Física Corpuscular - CSIC - University of Valencia; C/Catedrático José Beltrán, 2; E-46980;

More information

Scintillation Detectors

Scintillation Detectors Scintillation Detectors Introduction Components Scintillator Light Guides Photomultiplier Tubes Formalism/Electronics Timing Resolution Elton Smith JLab 2009 Detecto Summer Lecture Series Experiment basics

More information

arxiv: v2 [physics.ins-det] 8 Feb 2013

arxiv: v2 [physics.ins-det] 8 Feb 2013 Preprint typeset in JINST style - HYPER VERSION arxiv:1302.0278v2 [physics.ins-det] 8 Feb 2013 Investigation of gamma ray detection performance of thin LFS scintillator with MAPD readout E.Guliyev a, F.Ahmadov

More information

Key words: avalanche photodiode, soft X-ray detector, scintillation γ-ray detector, imaging device PACS: 07.85;95.55.A;85.60.D

Key words: avalanche photodiode, soft X-ray detector, scintillation γ-ray detector, imaging device PACS: 07.85;95.55.A;85.60.D We have studied the performance of large area avalanche photodiodes (APDs) recently developed by Hamamatsu Photonics K.K, in high-resolution X-rays and γ- rays detections. We show that reach-through APD

More information