A Measurement of Monoenergetic Neutrons from 9 Be(p,n) 9 B

Size: px
Start display at page:

Download "A Measurement of Monoenergetic Neutrons from 9 Be(p,n) 9 B"

Transcription

1 Journal of the Korean Physical Society, Vol. 32, No. 4, April 1998, pp A Measurement of Monoenergetic Neutrons from 9 Be(p,n) 9 B J. H. Kim, H. Bhang, J. H. Ha, J. C. Kim, M. J. Kim, Y. D. Kim and H. Park Department of Physics, Seoul National University, Seoul J. S. Chai and Y. S. Kim Cyclotron Application Laboratory, Korea Cancer Center Hospital, Korea Atomic Energy Research Institute, Seoul H. Y. Lee and S. A. Shin Department of Physics, Ewha Womans University, Seoul J. Y. Huh, C. S. Lee and J. H. Lee Department of Physics, Chung-Ang University, Seoul (Received 23 December 1997) We measured monoenergetic neutrons from 9 Be(p, n) 9 B with a 35-MeV proton beam from the MC-50 cyclotron, which is mainly used for the medical purpose, at the Korea Cancer Center Hospital. The ground state and the excited states of 9 B were identified from the time of flight measurments of the neutrons. We obtained an energy resolution of about 660 kev for 33-MeV neutrons for two types of scintillation counters (NE213 and BC408) using a 0.5-mm-thick 9 Be target. I. INTRODUCTION The MC-50 cyclotron at Korea Cancer Center Hospital (KCCH), which is an AVF (azimuthally varying field) type, has been used mainly for medical purposes, such as neutron therapy for cancer patients by using the 9 Be(p, n) 9 B reaction and radioisotope production [1]. At present, this is the only ion accelerator in Korea with a beam energy over 10 MeV. Recently some of beam time has been used for an experimental nuclear study [1,2]. We measured the monoenergetic neutrons from 9 Be(p, n) 9 B by using the 35-MeV proton beam from the MC-50 cyclotron at KCCH in order to study the energy resolution of scintillation detectors for fast neutrons. The energy resolution depends on not only the detector characteristics but also the cyclotron itself, e.g., the beam pulse width, the extracted beam-energy resolution, etc. The energy resolution of neutrons is important for future studies of various nuclear reactions involving neutrons. Typically, fast neutrons of a few tens of MeV are produced by the nuclear reactions 7 Li(p, n) 7 Be and 9 Be(p, n) 9 B. Also, we adopted 9 Be as our target in order to generate fast neutrons. In the case of 9 Be(p, n) 9 B, the jungho@ieplab.snu.ac.kr, telefax: reaction Q-value is MeV. Since 35-MeV protons were used as the beam, the zero-degree neutrons from the ground state of 9 B could have kinetic energy of about 33 MeV. II. EXPERIMENTAL SETUP Our experimental setup is schematically drawn in Fig. 1. We used a 35-MeV proton beam with a beam current of about 100 na from the zero-degree beamline, which was originally used for neutron therapy. The protons extracted from the cyclotron were bent upwards at the 70-degree bending magnet inside the gantry. Inside the gantry, a 1-cm-thick berillium target and a tungsten collimator had been installed for neutron therapy. During the experiment, we closed the tungsten collimator and used it as a beam dump. A 9 Be target with a thickness of 0.5 mm was located upstream in the gantry, and the scintillation counter was located at a distance of 8 m from the experimental target at zero degrees. The maximum available distance was 8 m because of the limited space in the treatment room. Also we placed a 1.2-cm-thick aluminum plate just after the bending magnet and used it as a charged particle -462-

2 A Measurement of Monoenergetic Neutrons from J. H. Kim et al Fig. 1. Experimental setup of our experiment using the MC-50 cyclotron at KCCH. stopper. The charged particles from the reaction at the target were mostly spread out at the 70-degree bending magnet or stopped in this aluminum stopper. Neutrons from the reaction passed the aluminum plate and flew through air until they reached the detector. Table shows the specifications of the detectors which were used for neutron detection. We used two types of detector. One was made of a liquid scintillator (NE213) and had a 2 [φ] 4 cm[t] cylinder shape. The other was made of a plastic scintillator (BC408) and had a cm 3 cubic shape. A 2-inch PMT (H1161) was mounted on both types of detector. We used the pulse-shape discrimination (PSD) method to discriminate gammas from neutrons. The light emission of most scintillators has two components in its signal: one fast component and one slow component. Also, for some scintillators, the ratio of the fast to the slow component varies with the type of exciting radiation [3]. As a result, the overall decay time of the emitted light pulse varies, allowing the use of the PSD method. It is well known that a NE213 liquid scintillator is very effective for separating gamma rays from neutrons by using the PSD method [3]. We also applied the PSD method with a BC408 plastic scintillator which was adopted to see whether it could separate neutrons from gammas to any extent. In addition, a paper reported the feasibility of using the PSD method for neutron/gamma separation with C 6 H 6 type scintillators [4]; however, the author didn t note clearly which material he used. Surrounding the detector, we arranged thick lead blocks, which were about 10-cm thick, to shield against the room background gammas. Figure 2 shows the electronics diagram, including the PSD scheme. The same electronics scheme was used for both the NE213 and the BC408 detectors. The H1161 PMT has two anode outputs and one dynode output. One anode output was used for trigger timing (ADC gate and TDC start) after being discriminated with a constant fraction discriminator (CFD) to reduce the time walk effect due to the pulse-height differences between events. The other anode was used for the ADC input to measure the energy deposited by an incident particle. The dynode output was used for the input to the pulseshape analyser (PSA) module after being amplified and shaped using a pre-amplifier and a delay-line amplifier (DLA). The PSA module gave the timing of the trailing edge of the pulse at some fraction of the full pulse height. The output of the PSA module was used as the TDC stop. To measure the time of flight of the neutrons and the gamma-rays at the target, we used the RF timing of the cyclotron which could give the production time of the Table 1. The specifications of our neutron detector. Scintillator Effective Area Thickness PMT NE213 (liquid) 20.3 cm 2 (φ = 2 ) 4 cm H1161 BC408 (plastic) 100 cm 2 (10 10) 10 cm H1161

3 -464- Journal of the Korean Physical Society, Vol. 32, No. 4, April 1998 Fig. 2. Block diagram of the electronics used in this experiment, including the PSD method. neutrons or gamma rays from the target after substracting the timing offset. The ADC and the TDC information were processed with a CAMAC system and PC. Data acquisition was done using KODAQ [5], which could be used for the online monitoring, too. The raw data were recorded on the hard disk for off-line analysis. We stored about 500 events per second. III. DATA 1. Particle Identification The neutron/gamma separation was done by the PSD method. Figure 3 shows the neutron/gamma separation achieved with the NE213 scintillation detector. The x- axis represents the PSD timing, which is the time difference between the leading edge and the trailing edge of the pulse. The y-axis represents the ADC and corresponds to the energy deposited by the gamma-rays or the neutrons. The figure shows a strong correlation between the ADC and the PSD timing because we didn t try to optimize the PSD scheme. However, the separation of the neutrons and gamma-rays was good enough over the entire ADC range, as one can see from the figure, to do the TOF analysis. For the BC408 plastic scintillator, we could not see any separations. 2. Timing Spectra The TOF was determined by the timing difference between the detector timing and the cyclotron RF timing (T RF T d ). Figure 4 shows the time of flight (TOF) spectrum of scattered particles obtained by the NE213 detector. The solid line is the TOF spectrum of the gammas identified by the PSD spectrum and shows a sharp

4 A Measurement of Monoenergetic Neutrons from J. H. Kim et al Fig. 5. Time structure of the RF signal and the detector output. The detector output was used for the start signal, and the RF signal of the cyclotron for the stop signal of the TDC. Fig. 3. Neutron/gamma separation achieved with NE213 using the PSD method. One can see clear separation of neutrons (right) from gammas (left). A small background is seen on the right side of the neutron line. peak, as expected. The dashed line is that of the neutrons and shows a rather broad structure due to factors discussed later in this paper. In the gamma spectrum, one can see many peaks, and we should determine which peak is the gamma from the target. To check this point, we removed the experimental target, and we found that only the peak (at around channel 1290) labeled by γ mostly disappeared. Hence, we could determine the reference position of our TOF spectrum because the velocity of the gamma is constant. The additional peaks in the gamma-gated spectrum were found to be gammas from the beam dump in the gantry and background in the beam transport. The RF frequency of the MC-50 cyclotron for a 35- MeV proton beam is about 22 MHz, which corresponds to a period of 45 ns. As shown in Fig. 5, the period of 45 ns is shorter than the flight-time difference between the gamma and the neutron from the 9 Be(p, n) 9 B reaction for an 8-m flight. The fastest neutron from the target is about 33 MeV, and the flight-time difference is about 73 nsec. Thus, the timing difference between the gamma and the fastest neutron should be determined by F T n F T γ = 2T RF + (T γ T n ), where F T n(γ) and T n(γ) are the flight time and the peak position in the timing spectrum of the neutron (or gamma), respectively, and T RF is the RF period. For the same reason, the TOF spectrum of high-energy neutrons overlapped with those of low-energy neutrons and gave a large background in the neutron spectrum (dotted line in Fig. 4). To remove this overlapping and to study the energy resolution of the detector system, we imposed an additional ADC cut (ADC > 500). As one Fig. 4. Time of flight (TOF) spectra for gammas (solid line) and neutrons (dotted line) from the target as obtained by the NE213 detector. Each spectrum was drawn after particle identification using PSD spectrum. Fig. 6. Neutron-energy spectrum measured by the NE213 scintillation detector. One can see the ground state and the excited states of 9 B clearly.

5 -466- Journal of the Korean Physical Society, Vol. 32, No. 4, April 1998 Table 3. The various the contributions of the finite neutron-energy resolutions. All quoted values are one standard deviation. δl Detector δt OF δe t (%) l T OF E Total(%) BC NE state and the excited state of 9 B. The sharp peak appearing at the leftmost side is self-timing events due to the finite width of the RF logic signal. Fig. 7. Same as Fig. 6, but measured with the BC408 scintillation detector. can see from the PSD plot (Fig. 3), this ADC cut also rejects most of the gamma events. 3. Neutron Energy Spectra The neutron velocity was calculated from the time of flight difference between the gammas and the neutrons in the spectrum of Fig. 4. Using relativistic kinematics, the energy of neutrons was obtained from the velocity and the mass of the neutron after particle identification. Figure 6 shows the calculated neutron-energy spectrum detected with the NE213 liquid scintillator. The peak position of the fastest neutrons was 33.4 MeV, which is consistent with the expected energy of 32.6 MeV for the ground state of 9 B. In the figure, we can identify the neutrons from the excited states of 9 B at the position of 30.5 MeV, which is also consistent with the expected excitation energies of MeV for the 1st excited state and MeV for the 2nd excited state [6]. The overall spectrum is consistent with the previous experimental result with a similar TOF distance [7]. Fig. 7 shows the same figure as Fig. 6, but measured with the plastic scintillation detector (BC408). In this figure, we can also see the clear separation of the ground Table 2. The overall neutron energy resolution obtained in this experiment. The σ means one standard deviation (68% confidence level) of a Gaussian fitting of the ground-state peak. Detector Neutron Energy FWHM σ Resolution (MeV) (MeV) (MeV) (%) BC NE IV. SUMMARY Table shows a summary of the results. We got an overall energy resolution of 2% for the neutrons of 33 MeV in one standard deviation (68% confidence level). There are many factors which contribute to the finite energy resolution of the neutron-energy measurement. Some of them come from the detection side, and the others from the cyclotron itself. For the detection side, these are the intrinsic timing resolution of the detectors, the time-walk effect of the electronics, the finite depth of the detector, beam-energy straggling inside target, etc. For the cyclotron side, we should consider the beam pulse width, the RF timing resolution, the beam energy resolution, etc. Using a non-relativistic approximation, the relative uncertainties in the energy can be written as δe E = (δl l ) 2 ( ) 2 δt OF + + T OF ( ) 2 δet E where δt OF 2 = δtd 2 + δt b 2, δt d being the intrinsic timing resolution of the detector, and δt b the pulse width of the beam. δt OF was dominated by δt b because the intrinsic resolution of the detector was on the order of 100 ps, but the beam pulse width was 2 ns. Also, δe t is the beam-energy straggling inside target, and δl is the depth of detector. Here, the time-walk effect was corrected during the off-line analysis. The detailed procedure for the time-walk correction was shown in Ref. 5. The beam-energy resolution was not considered. Table shows the contribution of each term. The summation of all these factors is about 430 kev (1.3%). The estimated energy resolution is smaller than the experimental energy resolution of 660 kev (2%) for both NE213 and BC408, which means that some additional factors of about 500 kev (1.5%) are missing. One of these factors could be the beam-energy spreading. The energy resolution for the 35-MeV proton beam of this cyclotron is known to be about 500 kev (1.4%). If we adopt this value for the beam-energy resolution, the experimental resolution for the neutrons is exactly reproduced.

6 A Measurement of Monoenergetic Neutrons from J. H. Kim et al V. DISCUSSION We measured the monoenergetic neutrons from the reaction 9 Be(p, n) 9 B by using BC408 and NE213 scintillation detectors. The neutron energy was measured with the time of flight methods, and we got an energy resolution of about 2% which was dominated by the beamenergy straggling inside target, the beam pulse width, the distance from the target to detector, and the beamenergy spreading. To improve the neutron-energy resolution in this energy range, we may have to reduce the beam pulse width or improve the energy spreading of the beam. However, currently, the flight path of the neutron should be lengthened considerably in connection with the thin target. Also, the beam pulse separation should be large enough to enlarge the dynamic range of the neutron-energy measurements. The results of this experiment show the possibility of measuring various physics quantities, e.g., the total and the differential cross sections, and the angular distributions of various neutron reactions involved with the MC-50 cyclotron. ACKNOWLEDGMENTS We appreciate very much the generous support from the staff members of the Korea Cancer Center Hospital. H. B. acknowledges the partial supports from the Ministry of Education through the Basic Science Research Institute of Seoul National University and from the Ministry of Science and Technology through the 97 Atomic Energy Research and Development Project. J. S. C. acknowledges the support from the Ministry of Science and Technology. Y. D. K. acknowledges the support from the Korea Science and Engineering Foundation. REFERENCES [1] Conference Proceedings of Kongneung Symposium on Nuclear Physics 96, edited by C. S. Lee, J. C. Kim and J. S. Chai (1996). [2] C. S. Lee, J. C. Kim, H. T. Chung, J. H. Ha, Y. K. Kim, S. J. Chae, J. S. Chai, Y. S. Kim and J. D. Lee, J. Korean Phys. Soc. 27, 474 (1994). [3] W. R. Leo, Techniques for Nuclear and Particle Physics Experiments (Springer-Verlag, Berlin, Heidelberg, 1994), Chap. 7. [4] M. Ahmed, Nucl. Instru. Meth. 143, 255 (1977). [5] Y. D. Kim, H. Bhang, O. Hashimoto, K. Maeda, K. Omata, H. Outa, H. Park and M. Youn, Nucl. Instru. Meth. A372, 431 (1996), and references therein. [6] Table of Isotopes, 8th Edition. [7] J. W. Watson, F. J. Wilson, C. A. Miller and D. O. Wells, Nucl. Instru. Meth. 164, 129 (1979).

V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber

V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber CYRIC Annual Report 2001 V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber Kawata N. Baba M. Kato M.*, Miura T.**, and Yamadera A.***, Cyclotron and Radioisotope Center, Tohoku

More information

Measurement of nuclear recoil responses of NaI(Tl) crystal for dark matter search

Measurement of nuclear recoil responses of NaI(Tl) crystal for dark matter search Measurement of nuclear recoil responses of NaI(Tl) crystal for dark matter search Hanwool Joo on behalf of the KIMS-NaI collaboration Department of Physics and Astronomy, 1 Gwanak-ro, Gwanak-gu, Seoul

More information

Response function measurements of an NE102A organic scintillator using an 241 Am-Be source

Response function measurements of an NE102A organic scintillator using an 241 Am-Be source Nuclear Instruments and Methods m Physics Research A 345 (1994) 514-519 North-Holland NCLEAR INSTRMENTS & METHODS IN PHYSICS RESEARCH Section A Response function measurements of an NE12A organic scintillator

More information

1 Introduction. KOPIO charged-particle vetos. K - RARE Meeting (Frascati) May Purpose of CPV: veto Kl

1 Introduction. KOPIO charged-particle vetos. K - RARE Meeting (Frascati) May Purpose of CPV: veto Kl Introduction - Purpose of CPV: veto Kl decay modes with a real or apparent π and a pair of charged particles - Examples of background modes: (i) K l π π + π (ii) K l π π ± eν there are always (iii) K l

More information

DETECTORS. I. Charged Particle Detectors

DETECTORS. I. Charged Particle Detectors DETECTORS I. Charged Particle Detectors A. Scintillators B. Gas Detectors 1. Ionization Chambers 2. Proportional Counters 3. Avalanche detectors 4. Geiger-Muller counters 5. Spark detectors C. Solid State

More information

STUDY ON THE ENERGY RESPONSE OF PLASTIC SCINTILLATION DETECTOR TO MEV NEUTRONS ABSTRACT

STUDY ON THE ENERGY RESPONSE OF PLASTIC SCINTILLATION DETECTOR TO MEV NEUTRONS ABSTRACT STUDY ON THE ENERGY RESPONSE OF PLASTIC SCINTILLATION DETECTOR TO 0.75-14.75 MEV NEUTRONS Jianfu Zhang 1, 2, Xiaoping Ouyang 1, 2, Suizheng Qiu 1, Xichao Ruan 3, Jinlu Ruan 2 1 School of Nuclear Science

More information

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV Dedicated Arrays: MEDEA GDR studies (E γ = 10-25 MeV) Highly excited CN E*~ 250-350 MeV, 4 T 8 MeV γ-ray spectrum intermediate energy region 10 MeV/A E beam 100 MeV/A - large variety of emitted particles

More information

Energy response for high-energy neutrons of multi-functional electronic personal dosemeter

Energy response for high-energy neutrons of multi-functional electronic personal dosemeter Energy response for high-energy neutrons of multi-functional electronic personal dosemeter T. Nunomiya 1, T. Ishikura 1, O. Ueda 1, N. Tsujimura 2,, M. Sasaki 2,, T. Nakamura 1,2 1 Fuji Electric Systems

More information

Measurements of liquid xenon s response to low-energy particle interactions

Measurements of liquid xenon s response to low-energy particle interactions Measurements of liquid xenon s response to low-energy particle interactions Payam Pakarha Supervised by: Prof. L. Baudis May 5, 2013 1 / 37 Outline introduction Direct Dark Matter searches XENON experiment

More information

EXPERIMENTAL STUDY OF NEUTRON FIELDS PRODUCED IN PROTON REACTIONS WITH HEAVY TARGETS. Nuclear Physics Institute AS CR, Rez Czech Republic

EXPERIMENTAL STUDY OF NEUTRON FIELDS PRODUCED IN PROTON REACTIONS WITH HEAVY TARGETS. Nuclear Physics Institute AS CR, Rez Czech Republic EXPERIMENTAL STUDY OF NEUTRON FIELDS PRODUCED IN PROTON REACTIONS WITH HEAVY TARGETS A. Kugler, V. Wagner Nuclear Physics Institute AS CR, 25068 Rez Czech Republic I. Introduction One of important aspects

More information

Timing and Energy Response of Six Prototype Scintillators

Timing and Energy Response of Six Prototype Scintillators Timing and Energy Response of Six Prototype Scintillators CCM Kyba 1, J Glodo 2, EVD van Loef 2, JS Karp 1, KS Shah 2 1 University of Pennsylvania 2 Radiation Monitoring Devices SCINT 2007 June 7, 2007

More information

Alpha-Gamma discrimination by Pulse Shape in LaBr 3 :Ce and LaCl 3 :Ce

Alpha-Gamma discrimination by Pulse Shape in LaBr 3 :Ce and LaCl 3 :Ce Alpha-Gamma discrimination by Pulse Shape in LaBr 3 :Ce and LaCl 3 :Ce F.C.L. Crespi 1,2, F.Camera 1,2, N. Blasi 2, A.Bracco 1,2, S. Brambilla 2, B. Million 2, R. Nicolini 1,2, L.Pellegri 1, S. Riboldi

More information

Measurement of 40 MeV Deuteron Induced Reaction on Fe and Ta for Neutron Emission Spectrum and Activation Cross Section

Measurement of 40 MeV Deuteron Induced Reaction on Fe and Ta for Neutron Emission Spectrum and Activation Cross Section Measurement of 40 MeV Deuteron Induced Reaction on Fe and Ta for Neutron Emission Spectrum and Activation Cross Section Toshiro Itoga, Masayuki Hagiwara, Takuji Oishi, So Kamada, Mamoru Baba Cyclotron

More information

Neutron Time-Of-Flight Spectrometer Based on HIRFL for Studies of Spallation Reactions Related to ADS Project

Neutron Time-Of-Flight Spectrometer Based on HIRFL for Studies of Spallation Reactions Related to ADS Project Neutron Time-Of-Flight Spectrometer Based on HIRFL for Studies of Spallation Reactions Related to ADS Project ZHANG Suyalatu 1,2, CHEN Zhiqiang 1,*, HAN Rui 1, WADA Roy 1, LIU Xingquan 1,2, LIN Weiping

More information

Diagnostic Capabilities of Line-Integrated Neutron Pulse Height Spectra Measurements

Diagnostic Capabilities of Line-Integrated Neutron Pulse Height Spectra Measurements Diagnostic Capabilities of Line-Integrated Neutron Pulse Height Spectra Measurements Daniele Marocco Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, C.P. 65, Frascati I-00044, Roma, Italy Preface

More information

SCI-O11. Design of a Compton Spectrometer Experiment for Studying Electron Response of a Scintillator

SCI-O11. Design of a Compton Spectrometer Experiment for Studying Electron Response of a Scintillator 88 The 1 st NPRU Academic Conference SCI-O11 Design of a Compton Spectrometer Experiment for Studying Electron Response of a Scintillator P. Limkitjaroenporn and W.Chewpraditkul Radiation Physics Laboratory,

More information

LAB 4: Gamma-ray coincidence spectrometry (2018)

LAB 4: Gamma-ray coincidence spectrometry (2018) LAB 4: Gamma-ray coincidence spectrometry (2018) As you have seen, in several of the radioactive sources we encountered so far, they typically emit more than one gamma photon per decay or even more than

More information

Investigation of fast neutron spectroscopy capability of 7 Li and 6. Li enriched CLYC scintillator for nuclear physics experiments

Investigation of fast neutron spectroscopy capability of 7 Li and 6. Li enriched CLYC scintillator for nuclear physics experiments ANSRI Application of Novel Scintillators for Research and Industry 16 May, 1 th _ 6 th 16 Dublin, Ireland Investigation of fast neutron spectroscopy capability of 7 Li and 6 Li enriched CLYC scintillator

More information

Neutron pulse height analysis (R405n)

Neutron pulse height analysis (R405n) Neutron pulse height analysis (R405n) Y. Satou April 6, 2011 Abstract A pulse height analysis was made for the neutron counter hodoscope used in R405n. By normalizing the pulse height distributions measured

More information

Neutron and Gamma-ray Emission Double Dierential Cross Sections. *5 Energy Conversion Engineering, Kyushu University, Kasuga-koen, Kasuga-shi 816.

Neutron and Gamma-ray Emission Double Dierential Cross Sections. *5 Energy Conversion Engineering, Kyushu University, Kasuga-koen, Kasuga-shi 816. Neutron and Gamma-ray Emission Double Dierential Cross Sections for the Nuclear Reaction by 1.5 GeV + Incidence Kiminori IGA 1, Kenji ISHIBASHI 1, Nobuhiro SHIGYO 1, Naruhiro MATSUFUJI 1;+1, Tatsushi NAKAMOTO

More information

Precision neutron flux measurement with a neutron beam monitor

Precision neutron flux measurement with a neutron beam monitor Journal of Physics: Conference Series OPEN ACCESS Precision neutron flux measurement with a neutron beam monitor To cite this article: T Ino et al 2014 J. Phys.: Conf. Ser. 528 012039 View the article

More information

Nuclear Lifetimes. = (Eq. 1) (Eq. 2)

Nuclear Lifetimes. = (Eq. 1) (Eq. 2) Nuclear Lifetimes Theory The measurement of the lifetimes of excited nuclear states constitutes an important experimental technique in nuclear physics. The lifetime of a nuclear state is related to its

More information

Scintillation Detector

Scintillation Detector Scintillation Detector Introduction The detection of ionizing radiation by the scintillation light produced in certain materials is one of the oldest techniques on record. In Geiger and Marsden s famous

More information

1.E Neutron Energy (MeV)

1.E Neutron Energy (MeV) Proceedings of the Second International Workshop on EGS, 8.-12. August 2000, Tsukuba, Japan KEK Proceedings 200-20, pp.130-134 Measurements of Photoneutron Spectra from Thick Pb Target Bombarded by 1.2

More information

arxiv: v1 [physics.ins-det] 3 Feb 2011

arxiv: v1 [physics.ins-det] 3 Feb 2011 Nuclear Instruments and Methods in Physics Research A 00 (2018) 1 5 Alogo.pdf Nuclear Instruments and Methods in Physics Research A Scintillation decay time and pulse shape discrimination in oxygenated

More information

arxiv: v1 [physics.ins-det] 16 May 2017

arxiv: v1 [physics.ins-det] 16 May 2017 Measurement of the response of a liquid scintillation detector to monoenergetic electrons and neutrons arxiv:175.5532v1 [physics.ins-det] 16 May 217 P. C. Rout a, A. Gandhi b, T. Basak c, R. G. Thomas

More information

JRPR. Measurement of Neutron Production Doubledifferential Cross-sections on Carbon Bombarded with 430 MeV/Nucleon Carbon Ions.

JRPR. Measurement of Neutron Production Doubledifferential Cross-sections on Carbon Bombarded with 430 MeV/Nucleon Carbon Ions. Journal of Radiation Protection and Research 2016;41(4):344-349 pissn 2508-1888 eissn 2466-2461 Measurement of Neutron Production Doubledifferential Cross-sections on Carbon Bombarded with 430 MeV/Nucleon

More information

PoS(PD07)020. Timing Properties of MCP-PMT. Kenji Inami. Nagoya university, Nagoya, Japan

PoS(PD07)020. Timing Properties of MCP-PMT. Kenji Inami. Nagoya university, Nagoya, Japan Nagoya university, Nagoya, Japan E-mail: kenji@hepl.phys.nagoya-u.ac.jp We have studied timing properties of 4 different types of micro-channel-plate photo-multiplier tubes (MCP-PMT) by irradiating with

More information

II. 5. Study for NaI(Tl) and Scintillation Fiber with 80 MeV Proton Beam Toward ESPRI Experiment at NIRS-HIMAC, RIKEN-RIBF

II. 5. Study for NaI(Tl) and Scintillation Fiber with 80 MeV Proton Beam Toward ESPRI Experiment at NIRS-HIMAC, RIKEN-RIBF CYRIC Annual Report 2005 II. 5. Study for NaI(Tl) and Scintillation Fiber with 80 MeV Proton Beam Toward ESPRI Experiment at NIRS-HIMAC, RIKEN-RIBF Zenihiro J. 1, Matsuda Y. 2, Sakaguchi H. 3, Takeda H.

More information

JRC Place on dd Month YYYY Event Name 1

JRC Place on dd Month YYYY Event Name 1 JRC Place on dd Month YYYY Event Name 1 A new measurement of the prompt fission neutron emission spectrum of 235 U(n,f) Correlation of prompt neutron emission with fission fragment properties F.-J. Hambsch

More information

Measurements of Neutron Total and Capture Cross Sections at the TOF spectrometers of the Moscow Meson Factory

Measurements of Neutron Total and Capture Cross Sections at the TOF spectrometers of the Moscow Meson Factory Measurements of Neutron Total and Capture Cross Sections at the TOF spectrometers of the Moscow Meson Factory Yu.V. Grigoriev 1,2, D.V. Khlustin 1, Zh.V. Mezentseva 2, Yu.V. Ryabov 1 1 Institute for Nuclear

More information

Hands on Project: Large Photocathode PMT Characterization

Hands on Project: Large Photocathode PMT Characterization Hands on Project: Large Photocathode PMT Characterization Rickard Stroem Dept. of Physics and Astronomy, Uppsala University E-mail: rickard.strom@physics.uu.se Institute of Cosmic Ray Research, University

More information

arxiv:physics/ v1 3 Aug 2006

arxiv:physics/ v1 3 Aug 2006 Gamma Ray Spectroscopy with Scintillation Light in Liquid Xenon arxiv:physics/6834 v1 3 Aug 26 K. Ni, E. Aprile, K.L. Giboni, P. Majewski, M. Yamashita Physics Department and Columbia Astrophysics Laboratory

More information

Chapter 4 Scintillation Detectors

Chapter 4 Scintillation Detectors Med Phys 4RA3, 4RB3/6R03 Radioisotopes and Radiation Methodology 4-1 4.1. Basic principle of the scintillator Chapter 4 Scintillation Detectors Scintillator Light sensor Ionizing radiation Light (visible,

More information

arxiv: v1 [physics.ins-det] 29 Jun 2011

arxiv: v1 [physics.ins-det] 29 Jun 2011 Investigation of Large LGB Detectors for Antineutrino Detection P. Nelson a,, N. S. Bowden b, a Department of Physics, Naval Postgraduate School, Monterey, CA 99, USA b Lawrence Livermore National Laboratory,

More information

THE COMPTON EFFECT Last Revised: January 5, 2007

THE COMPTON EFFECT Last Revised: January 5, 2007 B2-1 THE COMPTON EFFECT Last Revised: January 5, 2007 QUESTION TO BE INVESTIGATED: How does the energy of a scattered photon change after an interaction with an electron? INTRODUCTION: When a photon is

More information

SCINTILLATION DETECTORS & GAMMA SPECTROSCOPY: AN INTRODUCTION

SCINTILLATION DETECTORS & GAMMA SPECTROSCOPY: AN INTRODUCTION SCINTILLATION DETECTORS & GAMMA SPECTROSCOPY: AN INTRODUCTION OBJECTIVE The primary objective of this experiment is to use an NaI(Tl) detector, photomultiplier tube and multichannel analyzer software system

More information

MoNA: the Modular Neutron Array

MoNA: the Modular Neutron Array MoNA: the Modular Neutron Array Melanie Evanger National Superconducting Cyclotron Laboratory Michigan State University REU Fellowship e-mail: mrevange@cord.edu August 9, 2002 Abstract The Modular Neutron

More information

Scintillation Detectors

Scintillation Detectors Scintillation Detectors Introduction Components Scintillator Light Guides Photomultiplier Tubes Formalism/Electronics Timing Resolution Elton Smith JLab 2006 Detector/Computer Summer Lecture Series Experiment

More information

Scintillation Detectors

Scintillation Detectors Scintillation Detectors Introduction Components Scintillator Light Guides Photomultiplier Tubes Formalism/Electronics Timing Resolution Elton Smith JLab 2009 Detecto Summer Lecture Series Experiment basics

More information

Journal of Radiation Protection and Research

Journal of Radiation Protection and Research 1) JONG WOON KIM AND YOUNG-OUK LEE: DETAILED ANALYSIS OF THE KAERI ntof FACILITY Journal of Radiation Protection and Research pissn 2508-1888 eissn 2466-2461 http://dx.doi.org/10.14407/jrpr.2016.41.2.141

More information

Nuclear Cross-Section Measurements at the Manuel Lujan Jr. Neutron Scattering Center

Nuclear Cross-Section Measurements at the Manuel Lujan Jr. Neutron Scattering Center 1 Nuclear Cross-Section Measurements at the Manuel Lujan Jr. Neutron Scattering Center M. Mocko 1, G. Muhrer 1, F. Tovesson 1, J. Ullmann 1 1 LANSCE, Los Alamos National Laboratory, Los Alamos NM 87545,

More information

Prompt gamma measurements for the verification of dose deposition in proton therapy. Contents. Two Proton Beam Facilities for Therapy and Research

Prompt gamma measurements for the verification of dose deposition in proton therapy. Contents. Two Proton Beam Facilities for Therapy and Research Prompt gamma measurements for the verification of dose deposition in proton therapy Two Proton Beam Facilities for Therapy and Research Ion Beam Facilities in Korea 1. Proton therapy facility at National

More information

A method to measure transit time spread of photomultiplier tubes with Cherenkov light

A method to measure transit time spread of photomultiplier tubes with Cherenkov light Nuclear Science and Techniques 20 (2009) 344 348 A method to measure transit time spread of photomultiplier tubes with Cherenkov light WU Chong 1 DONG Huasong 2,* SUN Zhijia 3 1 Department of Mathematics

More information

Department of Physics and Astronomy, University of Kentucky, Lexington, KY , USA 2

Department of Physics and Astronomy, University of Kentucky, Lexington, KY , USA 2 Proceedings of the DAE Symp. on Nucl. Phys. 57 (2012) 126 Measurement of the Elastic and Inelastic Differential Neutron Cross Sections for 2 Na between 1 and 4 MeV Ajay Kumar 1, *, M.T. McEllistrem 1,

More information

Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold

Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold Jingke Xu, Princeton (now @LLNL) Sept 24, 2015 2015 LowECal Workshop, Chicago, IL Outline 1. Overview

More information

MuSIC- RCNP at Osaka University

MuSIC- RCNP at Osaka University Commissioning of new DC muon beam line, MuSIC- RCNP at Osaka University Dai Tomono Research Center for Nuclear Physics (RCNP), Osaka University On behalf of the MuSIC- RCNP collaboration tomono@rcnp.osaka-

More information

Time-of-Flight PET using Cherenkov Photons Produced in PbF 2

Time-of-Flight PET using Cherenkov Photons Produced in PbF 2 Photons Produced in PbF 2 R. Dolenec a, S. Korpar b,a, P. Križan c,a, R. Pestotnik a, A. Stanovnik d,a a, Ljubljana, Slovenia b Faculty of Chemistry and Chemical Engineering, University of Maribor, Slovenia

More information

1420 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 57, NO. 3, JUNE /$ IEEE

1420 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 57, NO. 3, JUNE /$ IEEE 1420 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 57, NO. 3, JUNE 2010 Multitracing Capability of Double-Scattering Compton Imager With NaI(Tl) Scintillator Absorber Hee Seo, Student Member, IEEE, Chan Hyeong

More information

A novel design of the MeV gamma-ray imaging detector with Micro-TPC

A novel design of the MeV gamma-ray imaging detector with Micro-TPC Elsevier Science 1 Journal logo A novel design of the MeV gamma-ray imaging detector with Micro-TPC R.Orito *,H.Kubo,K.Miuchi,T.Nagayoshi,A.Takada,T.Tanimori,M.Ueno Department of Physics,Graduate School

More information

Neutron Transport Calculations Using Monte-Carlo Methods. Sean Lourette Fairport High School Advisor: Christian Stoeckl

Neutron Transport Calculations Using Monte-Carlo Methods. Sean Lourette Fairport High School Advisor: Christian Stoeckl Neutron Transport Calculations Using Monte-Carlo Methods Sean Lourette Fairport High School Advisor: Christian Stoeckl Laboratory for Laser Energetics University of Rochester Summer High School Research

More information

Introduction to Radiological Sciences Neutron Detectors. Theory of operation. Types of detectors Source calibration Survey for Dose

Introduction to Radiological Sciences Neutron Detectors. Theory of operation. Types of detectors Source calibration Survey for Dose Introduction to Radiological Sciences Neutron Detectors Neutron counting Theory of operation Slow neutrons Fast neutrons Types of detectors Source calibration Survey for Dose 2 Neutrons, what are they?

More information

Time of Flight measurements with MCP-PMT

Time of Flight measurements with MCP-PMT International Symposium on the Development of Detectors, 2006/4 at SLAC Time of Flight measurements with MCP-PMT - Very high resolution TOF counter - Lifetime of MCP-PMTs T.Ohshima, K.Inami, N.Kishimoto,

More information

A measurement of the air fluorescence yield

A measurement of the air fluorescence yield Nuclear Instruments and Methods in Physics Research A 372 (1996) 527-533 A measurement of the air fluorescence yield F. Kakimoto a, E.C. Loh b, M. Nagano c.*, H. Okuno d, M. Teshima c, S. Ueno a a Department

More information

DELAYED COINCIDENCE METHOD FOR PICOSECOND LIFETIME MEASUREMENTS

DELAYED COINCIDENCE METHOD FOR PICOSECOND LIFETIME MEASUREMENTS 306 DELAYED COINCIDENCE METHOD FOR PICOSECOND LIFETIME MEASUREMENTS ZHANG WEIJIE China Institute of Atomic Energy E-mail: zhangreatest@163.com The advanced time delay (ATD) technique, based by delayed

More information

Radioactivity and Ionizing Radiation

Radioactivity and Ionizing Radiation Radioactivity and Ionizing Radiation QuarkNet summer workshop June 24-28, 2013 1 Recent History Most natural phenomena can be explained by a small number of simple rules. You can determine what these rules

More information

Michael Dunn Nuclear Data Group Leader Nuclear Science & Technology Division Medical Physics Working Group Meeting October 26, 2005

Michael Dunn Nuclear Data Group Leader Nuclear Science & Technology Division Medical Physics Working Group Meeting October 26, 2005 Nuclear Data Michael Dunn Nuclear Data Group Leader Nuclear Science & Technology Division Medical Physics Working Group Meeting October 26, 2005 ORELA LANSCE 0.1 00 Data Analyses ORELA data 0.0 75 Basic

More information

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous?

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? 2. Briefly discuss dead time in a detector. What factors are important

More information

arxiv: v3 [nucl-ex] 12 Jan 2012

arxiv: v3 [nucl-ex] 12 Jan 2012 Fast-timing measurements in 95,96 Mo arxiv:2.539v3 [nucl-ex] 2 Jan 202 S Kisyov, S Lalkovski, N Mǎrginean 2, D Bucurescu 2, L Atanasova 3, D Balabanski 3, Gh Cata-Danil 2, I Cata-Danil 2, D Deleanu 2,

More information

arxiv: v1 [physics.ins-det] 27 Sep 2018

arxiv: v1 [physics.ins-det] 27 Sep 2018 Quenching factor measurement for a NaI(Tl) scintillation crystal arxiv:1809.10310v1 [physics.ins-det] 27 Sep 2018 H.W. Joo 1,2, H.S. Park 1,, J.H. Kim 1, S.K. Kim 2,, Y.D. Kim 3 H.S. Lee, 3, S.H. Kim 3

More information

PARTICLES REVELATION THROUGH SCINTILLATION COUNTER

PARTICLES REVELATION THROUGH SCINTILLATION COUNTER 14-25 JUNE 2004 SUMMER STAGE PARTICLES REVELATION THROUGH SCINTILLATION COUNTER by Flavio Cavalli and Marcello De Vitis Liceo Scientifico Statale Farnesina Tutor: Marco Mirazita 1) COSMIC RAYS - The Muons

More information

Design of a Lanthanum Bromide Detector for TOF PET

Design of a Lanthanum Bromide Detector for TOF PET Design of a Lanthanum Bromide Detector for TOF PET A. Kuhn, S. Surti, Member, IEEE, J. S. Karp, Senior Member, IEEE, P. S. Raby, K. S. Shah, A. E. Perkins, Member, IEEE, G. Muehllehner, Fellow Member,

More information

Development of a quasi-monoenergetic neutron field using the Li(p, n) Be reaction in the MeV energy range at RIKEN

Development of a quasi-monoenergetic neutron field using the Li(p, n) Be reaction in the MeV energy range at RIKEN Nuclear Instruments and Methods in Physics Research A 420 (1999) 218 231 Development of a quasi-monoenergetic neutron field using the Li(p, n)be reaction in the 70 210 MeV energy range at RIKEN Noriaki

More information

Positron-Electron Annihilation

Positron-Electron Annihilation Positron-Electron Annihilation Carl Akerlof September 13, 008 1. Introduction This experiment attempts to explore several features of positron-electron annihilation. One of the attractive aspects of e

More information

Angular and energy distributions of the prompt fission neutrons from thermal neutron-induced fission of 239 Pu

Angular and energy distributions of the prompt fission neutrons from thermal neutron-induced fission of 239 Pu Angular and energy distributions of the prompt fission neutrons from thermal neutron-induced fission of 239 Pu Vorobyev AS, Shcherbakov OA, Gagarski AM, Val ski GV, Petrov GA National Research Center Kurchatov

More information

ARTICLE IN PRESS. Nuclear Instruments and Methods in Physics Research A

ARTICLE IN PRESS. Nuclear Instruments and Methods in Physics Research A Nuclear Instruments and Methods in Physics Research A 62 (29) 52 524 Contents lists available at ScienceDirect Nuclear Instruments and Methods in Physics Research A journal homepage: www.elsevier.com/locate/nima

More information

Progress in measuring GMR in unstable nuclei: Decay detector calibration and inverse reaction experiment. J. Button, Y.-W. Lui, and D.H.

Progress in measuring GMR in unstable nuclei: Decay detector calibration and inverse reaction experiment. J. Button, Y.-W. Lui, and D.H. Progress in measuring GMR in unstable nuclei: Decay detector calibration and inverse reaction experiment J. Button, Y.-W. Lui, and D.H. Youngblood I. Introduction The Giant Monopole Resonance (GMR) is

More information

EEE4106Z Radiation Interactions & Detection

EEE4106Z Radiation Interactions & Detection EEE4106Z Radiation Interactions & Detection 2. Radiation Detection Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za May 06, 2015 EEE4106Z :: Radiation

More information

in2p , version 1-28 Nov 2008

in2p , version 1-28 Nov 2008 Author manuscript, published in "Japanese French Symposium - New paradigms in Nuclear Physics, Paris : France (28)" DOI : 1.1142/S21831391444 November 23, 28 21:1 WSPC/INSTRUCTION FILE oliveira International

More information

arxiv: v1 [nucl-ex] 4 Sep 2008

arxiv: v1 [nucl-ex] 4 Sep 2008 A large area plastic scintillator detector array for fast neutron measurements arxiv:0809.0794v1 [nucl-ex] 4 Sep 2008 P. C. Rout a,b, D. R. Chakrabarty a,b, V. M. Datar a,b, Suresh Kumar a, E. T. Mirgule

More information

Radiation safety of the Danish Center for Proton Therapy (DCPT) Lars Hjorth Præstegaard Dept. of Medical Physics, Aarhus University Hospital

Radiation safety of the Danish Center for Proton Therapy (DCPT) Lars Hjorth Præstegaard Dept. of Medical Physics, Aarhus University Hospital Radiation safety of the Danish Center for Proton Therapy (DCPT) Lars Hjorth Præstegaard Dept. of Medical Physics, Aarhus University Hospital Rationale of proton therapy Dose deposition versus depth in

More information

A Comparison between Channel Selections in Heavy Ion Reactions

A Comparison between Channel Selections in Heavy Ion Reactions Brazilian Journal of Physics, vol. 39, no. 1, March, 2009 55 A Comparison between Channel Selections in Heavy Ion Reactions S. Mohammadi Physics Department, Payame Noor University, Mashad 91735, IRAN (Received

More information

Detection and measurement of gamma-radiation by gammaspectroscopy

Detection and measurement of gamma-radiation by gammaspectroscopy Detection and measurement of gamma-radiation by gammaspectroscopy Gamma-radiation is electromagnetic radiation having speed equal to the light in vacuum. As reaching a matter it interact with the different

More information

Dual Isotope Imaging with LaBr3:Ce Crystal and H8500 PSPMT

Dual Isotope Imaging with LaBr3:Ce Crystal and H8500 PSPMT Dual Isotope Imaging with LaBr3:Ce Crystal and H8500 PSPMT Dr. Andrea Fabbri, University of Rome Roma Tre I.N.F.N. (National Institue of Nuclear Physics) γ-ray imaging with scintillator and PSPMT γ-ray

More information

Comments on the possible observation of d-d fusion in sonoluminescence (Reference-31 in Taleyarkhan et al. [2002] 1 )

Comments on the possible observation of d-d fusion in sonoluminescence (Reference-31 in Taleyarkhan et al. [2002] 1 ) Abstract Comments on the possible observation of d-d fusion in sonoluminescence (Reference-31 in Taleyarkhan et al. [] 1 ) D. Shapira, M. J. Saltmarsh Physics Division, Oak Ridge National Laboratory, Oak

More information

The Versatile Array of Neutron Detectors at Low Energy

The Versatile Array of Neutron Detectors at Low Energy The Versatile Array of Neutron Detectors at Low Energy S. V. Paulauskas, R. Grzywacz, M. Madurga, D. Miller, S. Padgett, W. A. Peters, and the VANDLE Collaboration Why use the time-of-flight technique?

More information

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09 Experimental production of many- positron systems: L2, techniques David B. Cassidy Department of Physics and Astronomy, University of California, Riverside, USA cassidy@physics.ucr.edu Varenna, July 09

More information

9/27 JUNE 2003 SUMMER STAGE PARTICLES REVELATION THROUGH CERENKOV AND SCINTILLATION COUNTER AND THE CEBAF EXPERIMENT

9/27 JUNE 2003 SUMMER STAGE PARTICLES REVELATION THROUGH CERENKOV AND SCINTILLATION COUNTER AND THE CEBAF EXPERIMENT 9/27 JUNE 2003 SUMMER STAGE PARTICLES REVELATION THROUGH CERENKOV AND SCINTILLATION COUNTER AND THE CEBAF EXPERIMENT Students: Riccardo Falcione, Elisa Paris Liceo Scientifico Statale Farnesina Tutor:

More information

Michigan State University, East Lansing MI48824, USA INTRODUCTION

Michigan State University, East Lansing MI48824, USA INTRODUCTION Two-Proton Decay of the First Excited State of 17 Ne M.J. Chromik 1;2,P.G. Thirolf 1;2, M. Thoennessen 1, M. Fauerbach 1, T. Glasmacher 1, R. Ibbotson 1, R.A. Kryger 1, H. Scheit 1, and P.J. Woods 3 1

More information

Copyright 2008, University of Chicago, Department of Physics. Experiment VI. Gamma Ray Spectroscopy

Copyright 2008, University of Chicago, Department of Physics. Experiment VI. Gamma Ray Spectroscopy Experiment VI Gamma Ray Spectroscopy 1. GAMMA RAY INTERACTIONS WITH MATTER In order for gammas to be detected, they must lose energy in the detector. Since gammas are electromagnetic radiation, we must

More information

Digital imaging of charged particle track structures with a low-pressure optical time projection chamber

Digital imaging of charged particle track structures with a low-pressure optical time projection chamber Digital imaging of charged particle track structures with a low-pressure optical time projection chamber U. Titt *, V. Dangendorf, H. Schuhmacher Physikalisch-Technische Bundesanstalt, Bundesallee 1, 38116

More information

QUESTION 8 GIVEN. Electron beam kinetic energy = 20 MeV Peak current = 1 A Beam pulse length = 1 microsecond Beam pulse frequency = 10 Hz

QUESTION 8 GIVEN. Electron beam kinetic energy = 20 MeV Peak current = 1 A Beam pulse length = 1 microsecond Beam pulse frequency = 10 Hz Page 1 of 2 QUESTION 8 You are asked to design the shielding for an electron accelerator facility with the facility information given below. Use the figures copied from the NCRP Report No. 51 (1977), Radiation

More information

5 th ASRC International Workshop, 14 th -16 th March 2012

5 th ASRC International Workshop, 14 th -16 th March 2012 Fission Fragment Fragment Spectroscopy with Large Arrays and STEFF A.G. Smith, J. Dare, A. Pollitt, E. Murray The University of Manchester W. Urban, T. Soldner ILL Grenoble I. Tsekhanovich, J. Marrantz

More information

Calorimetry in particle physics experiments

Calorimetry in particle physics experiments Calorimetry in particle physics experiments Unit N. 9 The NA48 ECAL example (LKR) Roberta Arcidiacono R. Arcidiacono Calorimetry 1 Lecture overview The requirements Detector layout & construction Readout

More information

Prospects for achieving < 100 ps FWHM coincidence resolving time in time-of-flight PET

Prospects for achieving < 100 ps FWHM coincidence resolving time in time-of-flight PET Prospects for achieving < 100 ps FWHM coincidence resolving time in time-of-flight PET, 28-Feb-2012, ICTR-PHE, Geneva, Switzerland 1 Time-of-flight PET Colon cancer, left upper quadrant peritoneal node

More information

A Radiation Monitoring System With Capability of Gamma Imaging and Estimation of Exposure Dose Rate

A Radiation Monitoring System With Capability of Gamma Imaging and Estimation of Exposure Dose Rate IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 49, NO. 3, JUNE 2002 1547 A Radiation Monitoring System With Capability of Gamma Imaging and Estimation of Exposure Dose Rate Wanno Lee, Gyuseong Cho, and Ho

More information

Development of a Hard X-Ray Polarimeter for Solar Flares and Gamma-Ray Bursts

Development of a Hard X-Ray Polarimeter for Solar Flares and Gamma-Ray Bursts Development of a Hard X-Ray Polarimeter for Solar Flares and Gamma-Ray Bursts M.L. McConnell, D.J. Forrest, J. Macri, M. McClish, M. Osgood, J.M. Ryan, W.T. Vestrand and C. Zanes Space Science Center University

More information

MEASUREMENTS OF PARTICULE EMISSION SPECTRA IN PROTON INDUCED REACTIONS OF INTEREST FOR THE DEVELOPMENT OF ACCELERATOR DRIVEN SYSTEMS

MEASUREMENTS OF PARTICULE EMISSION SPECTRA IN PROTON INDUCED REACTIONS OF INTEREST FOR THE DEVELOPMENT OF ACCELERATOR DRIVEN SYSTEMS MEASUREMENTS OF PARTICULE EMISSION SPECTRA IN PROTON INDUCED REACTIONS OF INTEREST FOR THE DEVELOPMENT OF ACCELERATOR DRIVEN SYSTEMS N. Marie, C. Le Brun, F.R. Lecolley, J.F. Lecolley, F. Lefèbres, M.

More information

The Compton Effect. Martha Buckley MIT Department of Physics, Cambridge, MA (Dated: November 26, 2002)

The Compton Effect. Martha Buckley MIT Department of Physics, Cambridge, MA (Dated: November 26, 2002) The Compton Effect Martha Buckley MIT Department of Physics, Cambridge, MA 02139 marthab@mit.edu (Dated: November 26, 2002) We measured the angular dependence of the energies of 661.6 kev photons scattered

More information

RICE UNIVERSITY GAMMA-RAY SPECTRA FROM BE 3 AND N 1^ WITH C 12. Hsin-Min Kuan A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

RICE UNIVERSITY GAMMA-RAY SPECTRA FROM BE 3 AND N 1^ WITH C 12. Hsin-Min Kuan A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE RICE UNIVERSITY GAMMA-RAY SPECTRA FROM BE 3 REACTIONS WITH C 12 AND N 1^ by Hsin-Min Kuan A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS Houston, Texas April

More information

Measurements of the gamma-quanta angular distributions emitted from neutron inelastic scattering on 28 Si

Measurements of the gamma-quanta angular distributions emitted from neutron inelastic scattering on 28 Si Measurements of the gamma-quanta angular distributions emitted from neutron inelastic scattering on 8 Si N.A. Fedorov 1,,, D.N. Grozdanov 1,3,, V.M. Bystritskiy 1, Yu.N. Kopach 1, I.N. Ruskov 1,3, V.R.

More information

Development of a fast plastic scintillation detector with time resolution of less than 10 ps

Development of a fast plastic scintillation detector with time resolution of less than 10 ps Development of a fast plastic scintillation detector with time resolution of less than 10 ps J.W. Zhao a, B.H. Sun a,b, * 1, I. Tanihata a,b, *, S. Terashima a,b, L.H. Zhu a,b, A. Enomoto c, D. Nagae d,

More information

Drift plane. substrate (20ÉIm polyimide) 200ÉIm. Back strip (180ÉIm width) Base (Ceramic) Anode strip (10ÉIm width) Cathode strip (100ÉIm width)

Drift plane. substrate (20ÉIm polyimide) 200ÉIm. Back strip (180ÉIm width) Base (Ceramic) Anode strip (10ÉIm width) Cathode strip (100ÉIm width) Proceedings of the Second International Workshop on EGS, 8.-1. August, Tsukuba, Japan KEK Proceedings -, pp.11-17 Development of Gamma-Ray Direction Detector Based on MSGC T. Nagayoshi 1, H. Kubo 1, A.

More information

Measurement of neutron total cross-sections of 209 Bi at the Pohang Neutron Facility* WANG Tao-Feng ( 王涛峰 ) 1,2,

Measurement of neutron total cross-sections of 209 Bi at the Pohang Neutron Facility* WANG Tao-Feng ( 王涛峰 ) 1,2, Measurement of neutron total cross-sections of 209 Bi at the Pohang Neutron Facility* WANG Tao-Feng ( 王涛峰 ) 1,2,, A.K.M.M.H.Meaze 3, Guinyun KIM 4 1 International Research Center for Nuclei and Particles

More information

Fission Fragment characterization with FALSTAFF at NFS

Fission Fragment characterization with FALSTAFF at NFS EPJ Web of Conferences 42, 01001 (2013) DOI: 10.1051/ epjconf/ 20134201001 C Owned by the authors, published by EDP Sciences, 2013 Fission characterization with FALSTAFF at NFS D. Doré 1, F. Farget 2,

More information

DEVELOPMENT OF A COMBUSTION SYSTEM FOR LIQUID OR GAS SAMPLES

DEVELOPMENT OF A COMBUSTION SYSTEM FOR LIQUID OR GAS SAMPLES RADIOCARBON, Vol 46, Nr 1, 2004, p 141 145 2004 by the Arizona Board of Regents on behalf of the University of Arizona DEVELOPMENT OF A COMBUSTION SYSTEM FOR LIQUID OR GAS SAMPLES J H Park C S Lee 1 Department

More information

Assembly and test runs of decay detector for ISGMR study. J. Button, R. Polis, C. Canahui, Krishichayan, Y. -W. Lui, and D. H.

Assembly and test runs of decay detector for ISGMR study. J. Button, R. Polis, C. Canahui, Krishichayan, Y. -W. Lui, and D. H. Assembly and test runs of decay detector for ISGMR study J. Button, R. Polis, C. Canahui, Krishichayan, Y. -W. Lui, and D. H. Youngblood 1. ΔE- ΔE - E Plastic Scintillator Array Decay Detector In order

More information

Arjan Plompen. Measurements of sodium inelastic scattering and deuterium elastic scattering

Arjan Plompen. Measurements of sodium inelastic scattering and deuterium elastic scattering Arjan Plompen Measurements of sodium inelastic scattering and deuterium elastic scattering Overview Na inelastic scattering with GAINS C. Rouki et al., Nucl. Instrum. Meth. A 672 (2012) 82 Na elastic and

More information

SIMULATION OF LASER INDUCED NUCLEAR REACTIONS

SIMULATION OF LASER INDUCED NUCLEAR REACTIONS NUCLEAR PHYSICS SIMULATION OF LASER INDUCED NUCLEAR REACTIONS K. SPOHR 1, R. CHAPMAN 1, K. LEDINGHAM 2,3, P. MCKENNA 2,3 1 The Institute of Physical Research, University of Paisley, Paisley PA1 2BE, UK

More information

ICTP-IAEA Joint Workshop on Nuclear Data for Science and Technology: Medical Applications. 30 September - 4 October, 2013

ICTP-IAEA Joint Workshop on Nuclear Data for Science and Technology: Medical Applications. 30 September - 4 October, 2013 2484-11 ICTP-IAEA Joint Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September - 4 October, 2013 Experimental techniques (Nuclear reaction data, estimation of uncertainties)

More information