Diagnostic Capabilities of Line-Integrated Neutron Pulse Height Spectra Measurements

Size: px
Start display at page:

Download "Diagnostic Capabilities of Line-Integrated Neutron Pulse Height Spectra Measurements"

Transcription

1 Diagnostic Capabilities of Line-Integrated Neutron Pulse Height Spectra Measurements Daniele Marocco Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, C.P. 65, Frascati I-00044, Roma, Italy

2 Preface Two main quantities characterize neutron emission in fusion experiments: Neutron emissivity Neutron spectrum On present devices they are measured by separate diagnostics: Neutron cameras (multi channel diagnostics providing neutron emissivity along a plasma poloidal section) Neutron spectrometers (single channel diagnostics providing line-integrated neutron spectra) Thanks to digital technologies new systems using compact spectrometers can be developed which will allow to combine neutron spectra and 2-D neutron profile measurements The present work aims at exploring the capability of a collimated compact spectrometer detector array equipped with a digital acquisition system

3 Outline Introduction: Plama neutron emissivity Plasma neutron emission spectrum Diagnostics for neutron spectrometry: organic liquid scintillators Diagnostics neutron emissivity measurements: neutron cameras Research activity

4 Introduction: neutron emissivity Main nuclear reactions in plasma experiments: D+ D t (1.01 MeV) + p (3.02MeV) } Nearly equal probability: the emission of 2.5 MeV neutrons D + D 3 He (0.82 MeV) + n (2.45MeV) indicates the birth of 1.0 MeV tritons D + T 4 He (3.56 MeV) + n (14.03 MeV) When undergone by the fusion product tritons from the first D-D reaction branch = triton burn-up Emissivity: plasma local neutron yield (n s -1 m -3 ) expressed as Y(r) n (r)n δ A = 1+ B AB (r) σ v n A n B = particle densities; δ AB = Kronecker symbol; <σ v> AB = neutron reactivity AB D. Marocco Fusion science and engineering Doctorate

5 Introduction: Neutron Emission Spectrum The neutron emission spectrum in a tokamak reflects the velocity distribution of the fusing ion pairs Thermal plasma: Gaussian-shaped neutron spectrum (width W Ti) Non thermal plasma: Non-Gaussian tails and Doppler energy shifts

6 Diagnostics For Neutron Spectrometry Large neutron spectrometers: Magnetic proton recoil (MPR): neutrons from the plasma are converted into recoil protons by means of a thin hydrogen-reach target; the recoil protons are momentum discriminated through a magnetic field Time of Flight (TOF): measurements of the times of correlated neutron scattering events in a start and stop detector Compact neutron spectrometers: Diamond detectors (14 MeV only): based on the 12 C(n, α) threshold reaction ( 8 MeV) Scintillator detectors All measurements performed using a single collimated line of sight through the plasma: single line-integrated spectra

7 Liquid Scintillators (1/2) Based on neutron scattering with hydrogen atoms: Recoil protons excite scintillator molecular compounds with consequent ligth emission Ligth pulses are converted into electron signals and amplified coupling the detector to photomultipliers (PMT) γ pulses can be discriminated through pulse shape analysis E n scintillator PMT dn/de Scintillator energy response function E n E Scintillator non linearity, finite energy resolution, multiple scattering from hydrogen atoms, alter the response function: specific codes or experimental measurements are needed

8 Liquid Scintillators (2/2) For a non monocromatic neutron beam a Pulse Height Spectrum (PHS) given by the superposition of the different energy response function is provided by the scintillator The actual neutron spectrum is obtained by means of unfolding codes PHS Unfolding

9 Neutron Cameras: ITER RNC-VNC System A neutron camera system equipped with organic liquid scintillators and digital electronics is foreseen for ITER: Radial neutron camera (RNC) to be installed in equatorial port plug#1: Ex-port system: 12 LOS (x 3 on planes at different toroidal angles) In-port system: 9 LOS Vertical neutron camera (VNC) to be installed in a lower divertor port: 10 LOS PHS covering a whole poloidal plasma section: possibility to observe spatial and time evolution of neutron spectra

10 Neutron Cameras: JET Neutron Profile Monitor (1/2) 2 concrete shields each including a fan-shaped array of collimators: 10 collimated channels with a horizontal view; 9 channels with a vertical view Each LOS equipped with: NE213 liquid organic scintillator Analogue pulse shape discrimination (PSD) electronics for simultaneous measurements of the 2.5MeV-14MeV neutrons and γ -rays

11 Neutron Cameras: JET Neutron Profile Monitor (2/2) The JET profile monitor due to limitations imposed by analog electronics: Works just as a counter calibrated to provide neutron counts in specific energy windows (1.8 MeV MeV for DD; > 7 MeV for DT). No PHS during discharges Is limited to count rates ~200 khz An ENEA project for a full digital upgrade of all neutron profile monitor channels has been approved As a part of this project the development of a single channel digitizer (SCD) to be installed at JET has been carried out

12 Doctorate Research: Scope & Program Scope: Investigate the diagnostic capability of multiple line integrated neutron PHS (scintillators+digital electronics) by scanning with the SCD all the JET neutron profile monitor channels Program: Set up of SCD and elaboration software SCD benchmarking SCD installation at JET Data acquisition and Analysis (on-going) Modeling activity: feasibility study of deriving a 2D neutron energy profile using a combined inversion-unfolding technique (to be started) D. Marocco Fusion science and engineering Doctorate

13 Program: SCD and elaboration software set up (1/2) 200 MSamples/s &14-bit resolution FPGA- based (Altera 1S25) (mainly used for data compression) Data transfer to PC through PCI Estimated Sustainable Count Rates: ~ 500 khz DT ~ 900 khz DD DPSD rack unit

14 Program: SCD and elaboration software set up (2/2) LabVIEW TM code managing off-line data analysis : n and γ separation through digital charge comparison Separated n & γ count rates and PHS provided via pulse integration γ n n/γ separation plot

15 Program: SCD Benchmarking 12 khz acquisition The system has been benchmarked at the PTB accelerator (Braunshweig Germany) with 2.5 and 14 MeV neutrons against an analog acquisition chain using a fully caraterized liquid scintillator: comparable energy resolution up to ~ 420 khz

16 Program: SCD installation at JET Scintillator PMT // Splitter Analog PSD Module SCD The digitizer can be connected to a single profile monitor channel in place of the analog PSD module normally used to detect 14 MeV neutrons

17 Program: Data Acquisition and Analysis Acquisition of data (Na-22 γ sources and plasma discharges) obtained placing the digitizer on each channel of neutron profile monitor presently on going Identify a data sub-sets with quasi-similar plasma conditions and: Characterize single PHS Compare PHS from different channels (channel to channel variations & temporal evolution) Perform PHS unfolding

18 Program: Data Acquisition and Analysis - 14 MeV to 2.5 MeV Ratio Rough estimate of the actual DD and DT counts for each channel using PHS Counts converted to brightness by means of intrinsic efficiency of the detectors and inverted: A 2D profile of the fuel ratio can be obtained (Ratio Method) n n T D = Y Y 2 σv σv DD DD 2D information on 1 MeV tritons slowing down can be obtained from the comparison of the time evolution of DD and DT signals DT DT channel #15 SHOT # MeV neutrons +14 MeV contribution 14 MeV neutron signal due to triton burn-up reactions Proton energy (MeV)

19 Program: Data Acquisition and Analysis - Fast neutron tails Rough estimate of the fast neutron component in each channel boxing the PHS channel #15 PHS unfolding: A Line-integrated ion temperature profile can be obtained during the ohmic phase Line-integrated profile information on intensities and temperature of different ion components can be derived during the additionally heated phase the

20 Program: Modeling Activity (1/3) Aim: develop a combined unfolding - inversion technique to derive a 2D neutron energy profile starting from a set of line integrated PHS (feasibility study) b k = brigthness measurement from chord k e j = neutron emissivity ψ = normalized poloidal flux coordinate ill-posed problem: small variations in input data produce high variations in the solutions regularization techniques are needed

21 Program: Modeling Activity (2/3) Each brightness measurement b k can be thought as the energy integral of a line integrated neutron spectrum S k b = unfolding of the line integrated PHS k sk ( E) de representing the measurement of a camera LOS Each emissivity e J can be thought as the energy integral of a local energy spectrum h J e j = h j ( E) de Local energy spectrum to be derived Inserting back these definitions in the emissivity linear equation system s ( E) = Lh( E) With respect to typical inversion problems the response matrix L connects energy functions rather than real numbers

22 Program: Modeling Activity (3/3) If a feasible method is identified its robustness will be tested through simulation using a reference plasma and neutron camera layout (ITER, JET): Set up a reference 2D neutron enegy profile (phantom) Derive a set of synthetic meaurements (line-integrated PHS): Integration along LOS Folding with the detector response functions (including statistical, background and random errors) Apply the combined unfolding-inversion algorithm to obtain an inverted 2D neutron energy profile Compare the phantom and the inverted profile

23 Francesco Activity BringMyDaddyBack Home! F. Marocco My cradle Rome when mammy and daddy are lucky

24 Liquid scintillators: detection principle Liquid organic Scintillators: molecular compounds characterized by a molecular structure in which unbound π-electrons are prone to excitation by incident radiation S 3 S 2 Fluorescence S γ S 0 Delayed fluorescence S 3 S 1 T T 2 T S 0 D. Marocco Fusion science and engineering Doctorate

25 Liquid scintillators: n/γ separation The proportion of delayed fluorescence of the pulse is related to the triplet density in the wake of the incident particle (determined by the rate of energy loss,de/dx, of the incident particle) Heavier particle 4000 Greater energy loss rate More delayed fluorescence in the output channel γ n Pulses that decay more slowly then those from lighter particles 10 Δt F ΔtS time (ns) 500 D. Marocco Fusion science and engineering Doctorate

26 Charge comparison channel 100 Δt F Δt S time (ns) 500

27 The acquisition process Input ± 2.8 V Coupled in Interleaved mode (5 ns delay) giving an actual sampling rate of 200 MSamples/s on one input channel Data first stored in a portion of the RAM ( 1.2 GB). When the programmed acquisition time is reached the acquisition stops and data are saved to disk Operates on an endless ring of digitized data performing: Offset Removal Dynamic data window creation Window cutting Packs window data and timing information (time of the first over threshold sample) Matches the different speed in input and output

28 The Elaboration Process

29 N b k = l kj e j k =1, M j=1 b = L e If the bk coefficients are affected by noise the system could be inconsistent meaning that there is no emissivity that exactly solves the system. Le b 2 L T b = L T Le Least squares soultion Le b 2 + α D e 2 Thikonov regularization L T b = (L T L + αd T D)e

30 Program: Modeling Activity (3/3) Ion Temperature Profile Magnetic Surfaces Layout 2D Ion Temperature profile Gaussian Shaped Spectra Reference 2D Energy Profile Los Layout Combined unfolding - inversion Inverted 2D Energy Profile Line Integrated Spectra Line Integrated PHS: Synthetic Measurements Detector Response Functions Noise: Statistics Background Random

31 Neutron Cameras Diagnostic providing line-integrated neutron counts (brightness, ns -1 m -2 ) along a large number lines of sight (LOS) The emissivity over a poloidal section of the plasma is obtained by Inversion/tomographic techniques

High resolution neutron spectrometry with liquid scintillation detectors for fusion applications

High resolution neutron spectrometry with liquid scintillation detectors for fusion applications High resolution neutron spectrometry with liquid scintillation detectors for fusion applications Andreas Zimbal *, Horst Klein, Marcel Reginatto, Helmut Schuhmacher Physikalisch-Technische Bundesanstalt

More information

Bolometry. H. Kroegler Assciazione Euratom-ENEA sulla Fusione, Frascati (Italy)

Bolometry. H. Kroegler Assciazione Euratom-ENEA sulla Fusione, Frascati (Italy) Bolometry H. Kroegler Assciazione Euratom-ENEA sulla Fusione, Frascati (Italy) Revised May 28, 2002 1. Radiated power Time and space resolved measurements of the total plasma radiation can be done by means

More information

A Measurement of Monoenergetic Neutrons from 9 Be(p,n) 9 B

A Measurement of Monoenergetic Neutrons from 9 Be(p,n) 9 B Journal of the Korean Physical Society, Vol. 32, No. 4, April 1998, pp. 462 467 A Measurement of Monoenergetic Neutrons from 9 Be(p,n) 9 B J. H. Kim, H. Bhang, J. H. Ha, J. C. Kim, M. J. Kim, Y. D. Kim

More information

The Deuterium-Deuterium Neutron Time-of- Flight Spectrometer TOFED at EAST

The Deuterium-Deuterium Neutron Time-of- Flight Spectrometer TOFED at EAST The Deuterium-Deuterium Neutron Time-of- Flight Spectrometer TOFED at EAST Tieshuan Fan (tsfan@pku.edu.cn) Lijian Ge, Tengfei Du, Zhimeng Hu, Yimo Zhang, Jiaqi Sun, Xingyu Peng,Zhongjing Chen, Xing Zhang,

More information

A gamma-ray spectrometer system for fusion applications

A gamma-ray spectrometer system for fusion applications Nuclear Instruments and Methods in Physics Research A 476 (2002) 522 526 A gamma-ray spectrometer system for fusion applications B. Esposito a, *, L. Bertalot a, Yu.A. Kaschuck b, D.V. Portnov b, J.R.

More information

GA A22407 THRESHOLD BUBBLE CHAMBER FOR MEASUREMENT OF KNOCK-ON DT NEUTRON TAILS FROM MAGNETIC AND INERTIAL CONFINEMENT EXPERIMENTS

GA A22407 THRESHOLD BUBBLE CHAMBER FOR MEASUREMENT OF KNOCK-ON DT NEUTRON TAILS FROM MAGNETIC AND INERTIAL CONFINEMENT EXPERIMENTS GA A22407 THRESHOLD BUBBLE CHAMBER FOR MEASUREMENT OF KNOCK-ON DT NEUTRON TAILS FROM MAGNETIC AND INERTIAL CONFINEMENT EXPERIMENTS by R.K. FISHER, V.S. ZAVERYAEV, AND S.V. TRUSILLO JULY 1996 GA A22407

More information

(Tandem Collimators for the Tangential GammaRay Spectrometer - KM6T-TC)

(Tandem Collimators for the Tangential GammaRay Spectrometer - KM6T-TC) 2009 Annual Report of the EURATOM-MEdC Association 188 Tandem Collimators System (Tandem Collimators for the Tangential GammaRay Spectrometer - KM6T-TC) S. Soare 1, T. Craciunescu 2, M. Curuia 1, V. Zoita

More information

Neutron emission spectroscopy of fusion plasmas with a NE213 liquid scintillator at JET

Neutron emission spectroscopy of fusion plasmas with a NE213 liquid scintillator at JET Neutron emission spectroscopy of fusion plasmas with a NE213 liquid scintillator at JET Federico Binda Licentiate Thesis Department of Physics and Astronomy Uppsala University 2015 Abstract Neutron diagnostics

More information

Alpha-Energies of different sources with Multi Channel Analyzer

Alpha-Energies of different sources with Multi Channel Analyzer Physical Structure of Matter Radioactivity Alpha-Energies of different sources with Multi Channel Analyzer What you can learn about Decay series Radioactive equilibrium Isotopic properties Decay energy

More information

D-D FUSION NEUTRONS FROM A STRONG SPHERICAL SHOCK WAVE FOCUSED ON A DEUTERIUM BUBBLE IN WATER. Dr. Michel Laberge General Fusion Inc.

D-D FUSION NEUTRONS FROM A STRONG SPHERICAL SHOCK WAVE FOCUSED ON A DEUTERIUM BUBBLE IN WATER. Dr. Michel Laberge General Fusion Inc. D-D FUSION NEUTRONS FROM A STRONG SPHERICAL SHOCK WAVE FOCUSED ON A DEUTERIUM BUBBLE IN WATER Dr. Michel Laberge General Fusion Inc. SONOFUSION Sonofusion is making some noise A bit short in energy, ~mj

More information

Unfolding of neutron spectra with an experimentally determined diamond detector response function

Unfolding of neutron spectra with an experimentally determined diamond detector response function Unfolding of neutron spectra with an experimentally determined diamond detector response function Physikalisch-Technische Bundesanstalt, D-38116 Braunschweig, Germany E-mails: Andreas.Zimbal@ptb.de, Marcel.Reginatto@ptb.de,

More information

Measurement of nuclear recoil responses of NaI(Tl) crystal for dark matter search

Measurement of nuclear recoil responses of NaI(Tl) crystal for dark matter search Measurement of nuclear recoil responses of NaI(Tl) crystal for dark matter search Hanwool Joo on behalf of the KIMS-NaI collaboration Department of Physics and Astronomy, 1 Gwanak-ro, Gwanak-gu, Seoul

More information

Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, Milano 2. Istituto di Fisica del Plasma, CNR, Milano

Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, Milano 2. Istituto di Fisica del Plasma, CNR, Milano Misure di ioni veloci mediante la spettroscopia di neutroni e raggi gamma nei plasmi termonucleari ad alte prestazioni: risultati recenti e prospettive future M. Nocente 1,2, G. Gorini 1,2 and M. Tardocchi

More information

STUDY ON THE ENERGY RESPONSE OF PLASTIC SCINTILLATION DETECTOR TO MEV NEUTRONS ABSTRACT

STUDY ON THE ENERGY RESPONSE OF PLASTIC SCINTILLATION DETECTOR TO MEV NEUTRONS ABSTRACT STUDY ON THE ENERGY RESPONSE OF PLASTIC SCINTILLATION DETECTOR TO 0.75-14.75 MEV NEUTRONS Jianfu Zhang 1, 2, Xiaoping Ouyang 1, 2, Suizheng Qiu 1, Xichao Ruan 3, Jinlu Ruan 2 1 School of Nuclear Science

More information

Data analysis for neutron spectrometry with liquid scintillators: applications to fusion diagnostics

Data analysis for neutron spectrometry with liquid scintillators: applications to fusion diagnostics Data analysis for neutron spectrometry with liquid scintillators: applications to fusion diagnostics Bayes Forum Garching, January 25, 2013 Marcel Reginatto Physikalisch-Technische Bundesanstalt (PTB)

More information

PFC/JA MEASUREMENT OF THE D-D FUSION NEUTRON ENERGY SPECTRUM AND VARIATION OF THE PEAK WIDTH WITH PLASMA ION TEMPERATURE

PFC/JA MEASUREMENT OF THE D-D FUSION NEUTRON ENERGY SPECTRUM AND VARIATION OF THE PEAK WIDTH WITH PLASMA ION TEMPERATURE 1 PFC/JA-83-19 MEASUREMENT OF THE D-D FUSION NEUTRON ENERGY SPECTRUM AND VARIATION OF THE PEAK WIDTH WITH PLASMA ION TEMPERATURE W. A. Fisher, S. H. Chen, D. Gwinn, R. R. Parker Plasma Fusion Center Massachusetts

More information

Study of Collimated Neutron Flux Monitors for MAST and MAST Upgrade

Study of Collimated Neutron Flux Monitors for MAST and MAST Upgrade Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1141 Study of Collimated Neutron Flux Monitors for MAST and MAST Upgrade SIRIYAPORN SANGAROON ACTA UNIVERSITATIS

More information

Measurements of liquid xenon s response to low-energy particle interactions

Measurements of liquid xenon s response to low-energy particle interactions Measurements of liquid xenon s response to low-energy particle interactions Payam Pakarha Supervised by: Prof. L. Baudis May 5, 2013 1 / 37 Outline introduction Direct Dark Matter searches XENON experiment

More information

Response function measurements of an NE102A organic scintillator using an 241 Am-Be source

Response function measurements of an NE102A organic scintillator using an 241 Am-Be source Nuclear Instruments and Methods m Physics Research A 345 (1994) 514-519 North-Holland NCLEAR INSTRMENTS & METHODS IN PHYSICS RESEARCH Section A Response function measurements of an NE12A organic scintillator

More information

Present status of fusion neutronics activity and comments to neutron diagnostics for TBM

Present status of fusion neutronics activity and comments to neutron diagnostics for TBM CBBI-13: Thirteenth International Workshop on Ceramic Breeder Blanket Interactions 30 Nov 2 Dec 2005 Fess Parker DoubleTree Resort Santa Barbara, CA, USA Present status of fusion neutronics activity and

More information

Calorimetry in particle physics experiments

Calorimetry in particle physics experiments Calorimetry in particle physics experiments Unit N. 9 The NA48 ECAL example (LKR) Roberta Arcidiacono R. Arcidiacono Calorimetry 1 Lecture overview The requirements Detector layout & construction Readout

More information

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV Dedicated Arrays: MEDEA GDR studies (E γ = 10-25 MeV) Highly excited CN E*~ 250-350 MeV, 4 T 8 MeV γ-ray spectrum intermediate energy region 10 MeV/A E beam 100 MeV/A - large variety of emitted particles

More information

Alpha-energies of different sources with Multi Channel Analyzer (Item No.: P )

Alpha-energies of different sources with Multi Channel Analyzer (Item No.: P ) Alpha-energies of different sources with Multi Channel Analyzer (Item No.: P2522015) Curricular Relevance Area of Expertise: ILIAS Education Level: Physik Topic: Hochschule Subtopic: Moderne Physik Experiment:

More information

Neutron and gamma ray measurements. for fusion experiments and spallation sources

Neutron and gamma ray measurements. for fusion experiments and spallation sources Neutron and gamma ray measurements for fusion experiments and spallation sources Carlo Cazzaniga prof.ssa Claudia Riccardi 1 External supervisor: dr. Marco Tardocchi Supervisor: 1) Istituto di Fisica del

More information

Neutron Transport Calculations Using Monte-Carlo Methods. Sean Lourette Fairport High School Advisor: Christian Stoeckl

Neutron Transport Calculations Using Monte-Carlo Methods. Sean Lourette Fairport High School Advisor: Christian Stoeckl Neutron Transport Calculations Using Monte-Carlo Methods Sean Lourette Fairport High School Advisor: Christian Stoeckl Laboratory for Laser Energetics University of Rochester Summer High School Research

More information

Measurements of Neutron Total and Capture Cross Sections at the TOF spectrometers of the Moscow Meson Factory

Measurements of Neutron Total and Capture Cross Sections at the TOF spectrometers of the Moscow Meson Factory Measurements of Neutron Total and Capture Cross Sections at the TOF spectrometers of the Moscow Meson Factory Yu.V. Grigoriev 1,2, D.V. Khlustin 1, Zh.V. Mezentseva 2, Yu.V. Ryabov 1 1 Institute for Nuclear

More information

Calibration of the Modular Neutron Array (MoNA)

Calibration of the Modular Neutron Array (MoNA) Calibration of the Modular Neutron Array (MoNA) Robert Pepin Gonzaga University ~1~ Calibration of the Modular Neutron Array (MoNA): Figure 1 - A rendering of the Modular Neutron Array In recent years

More information

Update on Calibration Studies of the Canadian High-Energy Neutron Spectrometry System (CHENSS)

Update on Calibration Studies of the Canadian High-Energy Neutron Spectrometry System (CHENSS) Update on Calibration Studies of the Canadian High-Energy Neutron Spectrometry System (CHENSS) K. Garrow 1, B.J. Lewis 2, L.G.I. Bennett 2, M.B. Smith, 1 H. Ing, 1 R. Nolte, 3 S. Röttger, R 3 R. Smit 4

More information

Tandem Collimators System

Tandem Collimators System EFDA JET R(10)01 S. Soare, T. Craciunescu, M. Curuia and V. Zoita Tandem Collimators System COPYRIGHT ECSC/EEC/EURATOM, LUXEMBOURG 2010 Enquiries about Copyright and reproduction should be addressed to

More information

in the pinch. This paper describes the computer modeling behind the shielding design of a

in the pinch. This paper describes the computer modeling behind the shielding design of a Modeling a 1-D Bremsstrahlung and Neutron maging Array For Use On Sandia s 2 Machine GA Rochau, MS Derzon, D Fehl, GE Rochau Sandia National Laboratories, Albuquerque, NM, 87 185-1 196 S Lazier, Ktech

More information

9/27 JUNE 2003 SUMMER STAGE PARTICLES REVELATION THROUGH CERENKOV AND SCINTILLATION COUNTER AND THE CEBAF EXPERIMENT

9/27 JUNE 2003 SUMMER STAGE PARTICLES REVELATION THROUGH CERENKOV AND SCINTILLATION COUNTER AND THE CEBAF EXPERIMENT 9/27 JUNE 2003 SUMMER STAGE PARTICLES REVELATION THROUGH CERENKOV AND SCINTILLATION COUNTER AND THE CEBAF EXPERIMENT Students: Riccardo Falcione, Elisa Paris Liceo Scientifico Statale Farnesina Tutor:

More information

SILVER NEUTRON ACTIVATION DETECTOR FOR MEASURING BURSTS OF 14 MEV NEUTRONS

SILVER NEUTRON ACTIVATION DETECTOR FOR MEASURING BURSTS OF 14 MEV NEUTRONS SILVER NEUTRON ACTIVATION DETECTOR FOR MEASURING BURSTS OF 14 MEV NEUTRONS Song Zhaohui, Guan Xinyin, Zhang Zichuan Northwest Institute of Nuclear Technology, Xi an, 71004, China In order to measure bursts

More information

CHAPTER 9 FUSION PRODUCT DIAGNOSTICS

CHAPTER 9 FUSION PRODUCT DIAGNOSTICS CHAPTER 9 M. SASAO* Tohoku University, Sendai 980-8579, Japan T. NISHITANI Japan Atomic Energy Agency, Naka, Ibaraki 319-0195, Japan A. KRASILNILOV SRC RF TRINITI, Troitsk, Russia S. POPOVICHEV and V.

More information

Neutron diagnostics for reactor scale fusion experiments: a review of JET systems

Neutron diagnostics for reactor scale fusion experiments: a review of JET systems Neutron diagnostics for reactor scale fusion experiments: a review of JET systems LPP-ERM/KMS, Euratom-Belgian State Association, TEC, B-1000 Brussels, Belgium E-mail: Georges.Bonheure@rma.ac.be M.Angelone

More information

Diamond Neutral Particle Spectrometer at JET and proposal for ITER

Diamond Neutral Particle Spectrometer at JET and proposal for ITER Diamond Neutral Particle Spectrometer at JET and proposal for ITER Krasilnikov V.A. (vkrasilnikov@triniti.ru) SRC RF TRINITI, Troitsk, Moscow, Russia A compact fast corpuscular spectrometer with a detector

More information

THE INSTALLATION FOR EXPERIMENTAL NEUTRON SPECTRA RESEARCH IN REACTOR MATERIALS COMPOSITIONS Hliustin D.V. Institute for Nuclear Research, Moscow,

THE INSTALLATION FOR EXPERIMENTAL NEUTRON SPECTRA RESEARCH IN REACTOR MATERIALS COMPOSITIONS Hliustin D.V. Institute for Nuclear Research, Moscow, THE INSTALLATION FOR EXPERIMENTAL NEUTRON SPECTRA RESEARCH IN REACTOR MATERIALS COMPOSITIONS Hliustin D.V. Institute for Nuclear Research, Moscow, Russia Classical neutron spectrum of fast breeder reactors

More information

Neutron Emission Spectroscopy Measurements with a Single Crystal Diamond Detector at JET

Neutron Emission Spectroscopy Measurements with a Single Crystal Diamond Detector at JET EUROFUSION CP(15)02/16 Neutron Emission Spectroscopy Measurements with a Single Crystal Diamond Detector at JET (14th April 17th April 2015) Frascati, Italy This work has been carried out within the framework

More information

Neutron Spectrometry Using a 7 Li Enriched CLYC Scintillation Detector

Neutron Spectrometry Using a 7 Li Enriched CLYC Scintillation Detector Neutron Spectrometry Using a 7 Li Enriched CLYC Scintillation Detector Alexander Luke Miller, Rachid Machrafi, Nafisah Khan Faculty of Energy Systems and Nuclear Engineering, University of Ontario Institute

More information

arxiv: v1 [physics.ins-det] 3 Feb 2011

arxiv: v1 [physics.ins-det] 3 Feb 2011 Nuclear Instruments and Methods in Physics Research A 00 (2018) 1 5 Alogo.pdf Nuclear Instruments and Methods in Physics Research A Scintillation decay time and pulse shape discrimination in oxygenated

More information

Calibration of JET Neutron Detectors at 14 MeV neutron energy

Calibration of JET Neutron Detectors at 14 MeV neutron energy Calibration of JET Neutron Detectors at 14 MeV neutron energy Paola Batistoni, ENEA, Frascati (Italy) EUROfusion WPJET3 Project Leader Neutron Group User s Meeting, NPL, UK, 20.10.2015 Contributors CCFE:

More information

SURROGATE REACTIONS. An overview of papers by Jason Burke from LLNL

SURROGATE REACTIONS. An overview of papers by Jason Burke from LLNL SURROGATE REACTIONS An overview of papers by Jason Burke from LLNL Compound Nuclear Reaction cross sections Cross sections for compound-nuclear reactions are required input for astrophysical models and

More information

EEE4106Z Radiation Interactions & Detection

EEE4106Z Radiation Interactions & Detection EEE4106Z Radiation Interactions & Detection 2. Radiation Detection Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za May 06, 2015 EEE4106Z :: Radiation

More information

THE COMPTON EFFECT Last Revised: January 5, 2007

THE COMPTON EFFECT Last Revised: January 5, 2007 B2-1 THE COMPTON EFFECT Last Revised: January 5, 2007 QUESTION TO BE INVESTIGATED: How does the energy of a scattered photon change after an interaction with an electron? INTRODUCTION: When a photon is

More information

PARTICLES REVELATION THROUGH SCINTILLATION COUNTER

PARTICLES REVELATION THROUGH SCINTILLATION COUNTER 14-25 JUNE 2004 SUMMER STAGE PARTICLES REVELATION THROUGH SCINTILLATION COUNTER by Flavio Cavalli and Marcello De Vitis Liceo Scientifico Statale Farnesina Tutor: Marco Mirazita 1) COSMIC RAYS - The Muons

More information

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic Radioactivity, Spontaneous Decay: Nuclear Reactions A Z 4 P D+ He + Q A 4 Z 2 Q > 0 Nuclear Reaction, Induced Process: x + X Y + y + Q Q = ( m + m m m ) c 2 x X Y y Q > 0 Q < 0 Exothermic Endothermic 2

More information

Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold

Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold Jingke Xu, Princeton (now @LLNL) Sept 24, 2015 2015 LowECal Workshop, Chicago, IL Outline 1. Overview

More information

Shielded Scintillator for Neutron Characterization

Shielded Scintillator for Neutron Characterization Shielded Scintillator for Neutron Characterization A Thesis Submitted in Partial Fulfillment of the Requirements for Graduation with Research Distinction in Engineering Physics By Patrick X. Belancourt

More information

DETECTORS. I. Charged Particle Detectors

DETECTORS. I. Charged Particle Detectors DETECTORS I. Charged Particle Detectors A. Scintillators B. Gas Detectors 1. Ionization Chambers 2. Proportional Counters 3. Avalanche detectors 4. Geiger-Muller counters 5. Spark detectors C. Solid State

More information

V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber

V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber CYRIC Annual Report 2001 V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber Kawata N. Baba M. Kato M.*, Miura T.**, and Yamadera A.***, Cyclotron and Radioisotope Center, Tohoku

More information

A Project for High Fluence 14 MeV Neutron Source

A Project for High Fluence 14 MeV Neutron Source A Project for High Fluence 14 MeV Neutron Source Mario Pillon 1, Maurizio Angelone 1, Aldo Pizzuto 1, Antonino Pietropaolo 1 1 Associazione ENEA-EURATOM Sulla Fusione, ENEA C.R. Frascati, via E. Fermi,

More information

The EDM Polarimeter Development at COSY-Jülich

The EDM Polarimeter Development at COSY-Jülich Noname manuscript No. (will be inserted by the editor) The EDM Polarimeter Development at COSY-Jülich Fabian Müller for the JEDI Collaboration Received: date / Accepted: date Abstract The JEDI (Jülich

More information

This paper should be understood as an extended version of a talk given at the

This paper should be understood as an extended version of a talk given at the This paper should be understood as an extended version of a talk given at the Abstract: 1 st JINA workshop at Gull Lake, 2002. Recent experimental developments at LANL (Los Alamos, NM, USA) and CERN (Geneva,

More information

Beam Diagnostics and Instrumentation JUAS, Archamps Peter Forck Gesellschaft für Schwerionenforschnung (GSI)

Beam Diagnostics and Instrumentation JUAS, Archamps Peter Forck Gesellschaft für Schwerionenforschnung (GSI) Beam Diagnostics and Instrumentation JUAS, Archamps Peter Forck Gesellschaft für Schwerionenforschnung (GSI), 2003, A dedicated proton accelerator for 1p-physics at the future GSI Demands facilities for

More information

The MIT accelerator: A fusion product source for ICF diagnostics development and education

The MIT accelerator: A fusion product source for ICF diagnostics development and education The MIT accelerator: A fusion product source for ICF diagnostics development and education Johan Frenje MIT - Plasma Science and Fusion Center 47 th Annual Meeting of the Division of Plasma Physics Denver,

More information

Louis Baum University of Michigan, REU Student Summer UM Nuclear Sciences Group

Louis Baum University of Michigan, REU Student Summer UM Nuclear Sciences Group Louis Baum University of Michigan, REU Student Summer 2011 UM Nuclear Sciences Group Overview Background Why Detectors Time of Flight Road Blocks Conclusion Main Side Project Californium 252 Fission Source

More information

MEASUREMENTS OF PARTICULE EMISSION SPECTRA IN PROTON INDUCED REACTIONS OF INTEREST FOR THE DEVELOPMENT OF ACCELERATOR DRIVEN SYSTEMS

MEASUREMENTS OF PARTICULE EMISSION SPECTRA IN PROTON INDUCED REACTIONS OF INTEREST FOR THE DEVELOPMENT OF ACCELERATOR DRIVEN SYSTEMS MEASUREMENTS OF PARTICULE EMISSION SPECTRA IN PROTON INDUCED REACTIONS OF INTEREST FOR THE DEVELOPMENT OF ACCELERATOR DRIVEN SYSTEMS N. Marie, C. Le Brun, F.R. Lecolley, J.F. Lecolley, F. Lefèbres, M.

More information

Plasma Spectroscopy in ISTTOK

Plasma Spectroscopy in ISTTOK Plasma Spectroscopy in ISTTOK J. Figueiredo 1, R. B. Gomes 1, T. Pereira 1, H. Fernandes 1, A. Sharakovski 2 1 Associação EURATOM/IST, Centro de Fusão Nuclear, IST, 1049-001 Lisboa, Portugal 2 Association

More information

Neutronics experiments for validation of activation and neutron transport data for fusion application at the DT neutron generator of TU Dresden

Neutronics experiments for validation of activation and neutron transport data for fusion application at the DT neutron generator of TU Dresden Neutronics experiments for validation of activation and neutron transport data for fusion application at the DT neutron generator of TU Dresden A. Klix1, A. Domula2, U. Fischer1, D. Gehre2, J. Henniger2,

More information

Upgrade of the Magnetic Proton Recoil (MPRu) spectrometer for MeV neutrons for JET and the next step

Upgrade of the Magnetic Proton Recoil (MPRu) spectrometer for MeV neutrons for JET and the next step Upgrade of the Magnetic Proton Recoil (MPRu) spectrometer for 1.5-18 MeV neutrons for JET and the next step *, E.Andersson-Sundén, H.Sjöstrand, S.Conroy, M.Gatu-Johnson, L.Giacomelli, C.Hellesen, A.Hjalmarsson,

More information

Scintillation Detector

Scintillation Detector Scintillation Detector Introduction The detection of ionizing radiation by the scintillation light produced in certain materials is one of the oldest techniques on record. In Geiger and Marsden s famous

More information

GA A26741 SCINTILLATOR-BASED DIAGNOSTIC FOR FAST ION LOSS MEASUREMENTS ON DIII-D

GA A26741 SCINTILLATOR-BASED DIAGNOSTIC FOR FAST ION LOSS MEASUREMENTS ON DIII-D GA A26741 SCINTILLATOR-BASED DIAGNOSTIC FOR FAST ION LOSS MEASUREMENTS ON DIII-D by R.K. FISHER, D.C. PACE, M. GARCÍA-MUÑOZ, W.W. HEIDBRINK, C.M. MUSCATELLO, M.A. VAN ZEELAND and Y.B. ZHU JUNE 2010 DISCLAIMER

More information

X-Ray Measurements of the Levitated Dipole Experiment

X-Ray Measurements of the Levitated Dipole Experiment X-Ray Measurements of the Levitated Dipole Experiment J. L. Ellsworth, J. Kesner, MIT Plasma Science and Fusion Center, D.T. Garnier, A.K. Hansen, M.E. Mauel, Columbia University, S. Zweben, Princeton

More information

Plasma Accelerator for Detection of Hidden Objects by Using Nanosecond Impulse Neutron Inspection System (NINIS)

Plasma Accelerator for Detection of Hidden Objects by Using Nanosecond Impulse Neutron Inspection System (NINIS) Plasma Accelerator for Detection of Hidden Objects by Using Nanosecond Impulse Neutron Inspection System (NINIS) Cooperation Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland Institute

More information

A Report On DESIGN OF NEUTRON SOURCES AND INVESTIGATION OF NEUTRON BASED TECHNIQUES FOR THE DETECTION OF EXPLOSIVE MATERIALS

A Report On DESIGN OF NEUTRON SOURCES AND INVESTIGATION OF NEUTRON BASED TECHNIQUES FOR THE DETECTION OF EXPLOSIVE MATERIALS A Report On DESIGN OF NEUTRON SOURCES AND INVESTIGATION OF NEUTRON BASED TECHNIQUES FOR THE DETECTION OF EXPLOSIVE MATERIALS Name of contact person: Surender Kumar Sharma Name of other contributors: R.

More information

Neutron pulse height analysis (R405n)

Neutron pulse height analysis (R405n) Neutron pulse height analysis (R405n) Y. Satou April 6, 2011 Abstract A pulse height analysis was made for the neutron counter hodoscope used in R405n. By normalizing the pulse height distributions measured

More information

Applied Nuclear Physics (Fall 2006) Lecture 21 (11/29/06) Detection of Nuclear Radiation: Pulse Height Spectra

Applied Nuclear Physics (Fall 2006) Lecture 21 (11/29/06) Detection of Nuclear Radiation: Pulse Height Spectra 22.101 Applied Nuclear Physics (Fall 2006) Lecture 21 (11/29/06) Detection of Nuclear Radiation: Pulse Height Spectra References: W. E. Meyerhof, Elements of Nuclear Physics (McGraw-Hill, New York, 1967),

More information

W. Udo Schröder Departments of Chemistry & of Physics and Astronomy

W. Udo Schröder Departments of Chemistry & of Physics and Astronomy W. Udo Schröder Departments of Chemistry & of Physics and Astronomy ANSEL Faculty Instructors ACS NuSci Acad Infrastructure 2 Prof. Frank Wolfs Prof. Udo Schrőder Research: Large Underground Xenon (LUX)

More information

MEASUREMENT AND DETECTION OF RADIATION

MEASUREMENT AND DETECTION OF RADIATION MEASUREMENT AND DETECTION OF RADIATION Second Edition Nicholas Tsoulfanidis University of Missouri-Rolla Ж Taylor &Francis * Publishers since I79H CONTENTS Preface to the First Edition Preface to the Second

More information

Plasma formation in MAST by using the double null merging technique

Plasma formation in MAST by using the double null merging technique 1 Plasma formation in MAST by using the double null merging technique P. Micozzi 1, F. Alladio 1, P. Costa 1, A. Mancuso 1, A. Sykes 2, G. Cunningham 2, M. Gryaznevich 2, J. Hicks 2, M. Hood 2, G. McArdle

More information

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09 Experimental production of many- positron systems: L2, techniques David B. Cassidy Department of Physics and Astronomy, University of California, Riverside, USA cassidy@physics.ucr.edu Varenna, July 09

More information

Rice University Physics 332 LIFETIME OF THE MUON I. INTRODUCTION...2! II. MEASUREMENT PROCEDURES...3! III. ANALYSIS PROCEDURES...7!

Rice University Physics 332 LIFETIME OF THE MUON I. INTRODUCTION...2! II. MEASUREMENT PROCEDURES...3! III. ANALYSIS PROCEDURES...7! Rice University Physics 332 LIFETIME OF THE MUON I. INTRODUCTION...2! II. MEAUREMENT PROCEDURE...3! III. ANALYI PROCEDURE...7! Revised July 2011 I. Introduction In this experiment you will measure the

More information

Scintillation Detectors

Scintillation Detectors Scintillation Detectors Introduction Components Scintillator Light Guides Photomultiplier Tubes Formalism/Electronics Timing Resolution Elton Smith JLab 2009 Detecto Summer Lecture Series Experiment basics

More information

Scintillation Detectors

Scintillation Detectors Scintillation Detectors Introduction Components Scintillator Light Guides Photomultiplier Tubes Formalism/Electronics Timing Resolution Elton Smith JLab 2006 Detector/Computer Summer Lecture Series Experiment

More information

Investigation of fast neutron spectroscopy capability of 7 Li and 6. Li enriched CLYC scintillator for nuclear physics experiments

Investigation of fast neutron spectroscopy capability of 7 Li and 6. Li enriched CLYC scintillator for nuclear physics experiments ANSRI Application of Novel Scintillators for Research and Industry 16 May, 1 th _ 6 th 16 Dublin, Ireland Investigation of fast neutron spectroscopy capability of 7 Li and 6 Li enriched CLYC scintillator

More information

Status of ISS-RAD. Cary Zeitlin, Southwest Research Institute On behalf of the ISS-RAD Team

Status of ISS-RAD. Cary Zeitlin, Southwest Research Institute On behalf of the ISS-RAD Team Status of ISS-RAD Cary Zeitlin, Southwest Research Institute On behalf of the ISS-RAD Team ISS-RAD MSL-RAD + FND Add Fast Neutron Detector (FND) to RAD. Measure neutrons 0.5 8 MeV Many design changes.

More information

Unpressurized steam reactor. Controlled Fission Reactors. The Moderator. Global energy production 2000

Unpressurized steam reactor. Controlled Fission Reactors. The Moderator. Global energy production 2000 From last time Fission of heavy elements produces energy Only works with 235 U, 239 Pu Fission initiated by neutron absorption. Fission products are two lighter nuclei, plus individual neutrons. These

More information

MHD-particle simulations and collective alpha-particle transport: analysis of ITER scenarios and perspectives for integrated modelling

MHD-particle simulations and collective alpha-particle transport: analysis of ITER scenarios and perspectives for integrated modelling MHD-particle simulations and collective alpha-particle transport: analysis of ITER scenarios and perspectives for integrated modelling G. Vlad, S. Briguglio, G. Fogaccia, F. Zonca Associazione Euratom-ENEA

More information

Diagnosing OMEGA and NIF Implosions Using the D 3 He Spectrum Line Width

Diagnosing OMEGA and NIF Implosions Using the D 3 He Spectrum Line Width Introduction Diagnosing OMEGA and NIF Implosions Using the D 3 He Spectrum Line Width A. B. Zylstra, M. Rosenberg, N. Sinenian, C. Li, F. Seguin, J. Frenje, R. Petrasso (MIT) R. Rygg, D. Hicks, S. Friedrich,

More information

Cherenkov Detector. Cosmic Rays Cherenkov Detector. Lodovico Lappetito. CherenkovDetector_ENG - 28/04/2016 Pag. 1

Cherenkov Detector. Cosmic Rays Cherenkov Detector. Lodovico Lappetito. CherenkovDetector_ENG - 28/04/2016 Pag. 1 Cherenkov Detector Cosmic Rays Cherenkov Detector Lodovico Lappetito CherenkovDetector_ENG - 28/04/2016 Pag. 1 Table of Contents Introduction on Cherenkov Effect... 4 Super - Kamiokande... 6 Construction

More information

Nuclear Astrophysics II

Nuclear Astrophysics II Nuclear Astrophysics II Lecture 5 Fri. June 1, 2012 Prof. Shawn Bishop, Office 2013, Ex. 12437 shawn.bishop@ph.tum.de http://www.nucastro.ph.tum.de/ 1 Where to from here? We are now at a crossroads for

More information

Radiation (Particle) Detection and Measurement

Radiation (Particle) Detection and Measurement Radiation (Particle) Detection and Measurement Radiation detection implies that the radiation interacts (e.g. leaves at least part of its energy) in the material. A specific material is chosen, because

More information

A New Microchannel-Plate Neutron Time-of-Flight Detector

A New Microchannel-Plate Neutron Time-of-Flight Detector A New Microchannel-Plate Neutron Time-of-Flight Detector 1 1 3 14. MCP ntof at.3 m 1. 16. 167. 17. T i ratio 1.6 1.4 1. 1..8.6.4.. T i 1.8-m ntof/ T i MCP ntof Average = 1. rms =.% 1 1 Shot number V. Yu.

More information

Quality Assurance. Purity control. Polycrystalline Ingots

Quality Assurance. Purity control. Polycrystalline Ingots Quality Assurance Purity control Polycrystalline Ingots 1 Gamma Spectrometry Nuclide Identification Detection of Impurity Traces 1.1 Nuclides Notation: Atomic Mass Atomic Number Element Neutron Atomic

More information

Hard Xray Diagnostic for Lower Hybrid Current Drive on Alcator C- Mod

Hard Xray Diagnostic for Lower Hybrid Current Drive on Alcator C- Mod Hard Xray Diagnostic for Lower Hybrid Current Drive on Alcator C- Mod J. Liptac, J. Decker, R. Parker, V. Tang, P. Bonoli MIT PSFC Y. Peysson CEA Cadarache APS 3 Albuquerque, NM Abstract A Lower Hybrid

More information

Radionuclide Imaging MII Positron Emission Tomography (PET)

Radionuclide Imaging MII Positron Emission Tomography (PET) Radionuclide Imaging MII 3073 Positron Emission Tomography (PET) Positron (β + ) emission Positron is an electron with positive charge. Positron-emitting radionuclides are most commonly produced in cyclotron

More information

arxiv: v1 [physics.ins-det] 16 May 2017

arxiv: v1 [physics.ins-det] 16 May 2017 Measurement of the response of a liquid scintillation detector to monoenergetic electrons and neutrons arxiv:175.5532v1 [physics.ins-det] 16 May 217 P. C. Rout a, A. Gandhi b, T. Basak c, R. G. Thomas

More information

Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus)

Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus) Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus) PD/P-01 C. Castaldo 1), R. Cesario 1), Y, Andrew 2), A. Cardinali 1), V. Kiptly 2), M. Mantsinen

More information

Fast Neutron Imaging for SNM Detection

Fast Neutron Imaging for SNM Detection Fast Neutron Imaging for SNM Detection Victor Bom Delft University of Technology, The Netherlands Delft University of Technology, Faculty of Applied Physics Special Nuclear Materials Terrorist threat Detection

More information

The Versatile Array of Neutron Detectors at Low Energy

The Versatile Array of Neutron Detectors at Low Energy The Versatile Array of Neutron Detectors at Low Energy S. V. Paulauskas, R. Grzywacz, M. Madurga, D. Miller, S. Padgett, W. A. Peters, and the VANDLE Collaboration Why use the time-of-flight technique?

More information

On the physics of shear flows in 3D geometry

On the physics of shear flows in 3D geometry On the physics of shear flows in 3D geometry C. Hidalgo and M.A. Pedrosa Laboratorio Nacional de Fusión, EURATOM-CIEMAT, Madrid, Spain Recent experiments have shown the importance of multi-scale (long-range)

More information

Neutronics experiments for validation of activation and neutron transport data for fusion application at the DT neutron generator of TU Dresden

Neutronics experiments for validation of activation and neutron transport data for fusion application at the DT neutron generator of TU Dresden Neutronics experiments for validation of activation and neutron transport data for fusion application at the DT neutron generator of TU Dresden A. Klix1, A. Domula2, U. Fischer1, D. Gehre2 1 Karlsruhe

More information

SCI-O11. Design of a Compton Spectrometer Experiment for Studying Electron Response of a Scintillator

SCI-O11. Design of a Compton Spectrometer Experiment for Studying Electron Response of a Scintillator 88 The 1 st NPRU Academic Conference SCI-O11 Design of a Compton Spectrometer Experiment for Studying Electron Response of a Scintillator P. Limkitjaroenporn and W.Chewpraditkul Radiation Physics Laboratory,

More information

The Magnetic Recoil Spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF)

The Magnetic Recoil Spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF) PSFC/JA-16-32 The Magnetic Recoil Spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF) J.A. Frenje 1 T.J. Hilsabeck 2, C. Wink1, P. Bell 3,

More information

Characteristics of Filtered Neutron Beam Energy Spectra at Dalat Reactor

Characteristics of Filtered Neutron Beam Energy Spectra at Dalat Reactor World Journal of Nuclear Science and Technology, 2014, 4, 96-102 Published Online April 2014 in SciRes. http://www.scirp.org/journal/wjnst http://dx.doi.org/10.4236/wjnst.2014.42015 Characteristics of

More information

Beam diagnostics: Alignment of the beam to prevent for activation. Accelerator physics: using these sensitive particle detectors.

Beam diagnostics: Alignment of the beam to prevent for activation. Accelerator physics: using these sensitive particle detectors. Beam Loss Monitors When energetic beam particles penetrates matter, secondary particles are emitted: this can be e, γ, protons, neutrons, excited nuclei, fragmented nuclei... Spontaneous radiation and

More information

Diamond Neutral Par0cles Spectrometer at JET and proposal for ITER

Diamond Neutral Par0cles Spectrometer at JET and proposal for ITER Diamond Neutral Par0cles Spectrometer at JET and proposal for ITER V. Krasilnikov, V. Amosov, Yu Kaschuck, N. Marcenko, A. Krasilnikov. (TRINITI, Russia) I. Coffey, S. Popovichev, M. Beldishevski (EFDA

More information

Neutron Instruments I & II. Ken Andersen ESS Instruments Division

Neutron Instruments I & II. Ken Andersen ESS Instruments Division Neutron Instruments I & II ESS Instruments Division Neutron Instruments I & II Overview of source characteristics Bragg s Law Elastic scattering: diffractometers Continuous sources Pulsed sources Inelastic

More information

JRC Place on dd Month YYYY Event Name 1

JRC Place on dd Month YYYY Event Name 1 JRC Place on dd Month YYYY Event Name 1 A new measurement of the prompt fission neutron emission spectrum of 235 U(n,f) Correlation of prompt neutron emission with fission fragment properties F.-J. Hambsch

More information

New irradiation zones at the CERN-PS

New irradiation zones at the CERN-PS Nuclear Instruments and Methods in Physics Research A 426 (1999) 72 77 New irradiation zones at the CERN-PS M. Glaser, L. Durieu, F. Lemeilleur *, M. Tavlet, C. Leroy, P. Roy ROSE/RD48 Collaboration CERN,

More information

Fast Neutron and Gamma-Ray Detectors for the CSIRO Air Cargo Scanner

Fast Neutron and Gamma-Ray Detectors for the CSIRO Air Cargo Scanner Fast Neutron and Gamma-Ray Detectors for the CSIRO Air Cargo Scanner J.E. Eberhardt, A.J. McEwan, D. Milinkovic, V. Sharp, * and J.R. Tickner CSIRO Minerals, Private Mail Bag 5, Menai NSW 2234 Australia

More information