SCI-O11. Design of a Compton Spectrometer Experiment for Studying Electron Response of a Scintillator

Size: px
Start display at page:

Download "SCI-O11. Design of a Compton Spectrometer Experiment for Studying Electron Response of a Scintillator"

Transcription

1 88 The 1 st NPRU Academic Conference SCI-O11 Design of a Compton Spectrometer Experiment for Studying Electron Response of a Scintillator P. Limkitjaroenporn and W.Chewpraditkul Radiation Physics Laboratory, Department of Physics, Faculty of Science King Mongkut s University of Technology Thonburi, Bangkok 114, Thailand Abstract The scintillation response of a plastic scintillator (NE12) has been characterized using Compton coincidence technique. The coincidence technique allowed detection of nearly monoenergetic internal electrons resulting from the scattering of incident 662 kev gamma rays within a primary NE12 detector. Scattered gamma rays were detected using a secondary NaI(Tl) detector in a coincidence mode. The electron response nonproportionality of NE12 plastic scintillator was measured using this technique for electron energies ranging from 28 kev to 436 kev, by varying the scattering angle. The NE12 showed a good proportionality of light yield within 3% at energies between 9 kev and 436 kev. Below 9 kev, the light yield decreases by about 2% upon lowering the electron energy to 28 kev. The electron energy resolution of NE12 was also measured using this technique in energy range from 68 kev to 436 kev. It has been found that the energy resolution varies from 25.2% at 68 kev to 11.8% at 436 kev. Keywords: Plastic scintillator, Electron response, Energy resolution 1. INTRODUCTION Scintillation detectors are widely used in experimental nuclear physics, high energy physics, nuclear medicine,medical imaging, environmental studies, geological exploration and many other fields of use. Important requirements for the scintillation materials used in these applications include high light output, fast decay time of the light pulse, high stopping power, good energy resolution, good proportionality of light yield, minimal afterglow and low production costs. A good reviews on development of inorganics scintillators and inorganic scintillation detectors systems have been published by van Eijk[1],Moszynski[2], and recently by Lecoq et al.[3]. Plastic scintillators are widely used in detection and spectroscopy of charged particles and neutrons. Although its light output is lower than that of most inorganic scintillators, it has many advantages e.g. fast decay time of light pulse, non-hygroscopic, easy to fabricate in any shape and low costs. Light yield nonproportionality can be characterized as a function of either photon energy (photon response) or electron energy (electron response). Photon response is defined as the ratio of light yield to the energy deposited by photon. Similarly, electron response is defined as the ratio of light yield to the energy of the electron. While electron response is believed to be an intrinsic characteristic of a scintillation materials, very few studies have reported this scintillator characteristic. Porter at al.[4] have studied the electron response of NaI(Tl), anthracene and plastic(pilot B) scintillators using photomultiplier tube. They measured electron response nonproportionality by using external electron source(magnetic

2 The 1 st NPRU Academic Conference 89 spectrometer-energy selected electrons).the light yield response from external electron sources may be influenced by the surface effects in scintillators. The Compton Coincidence Technique(CCT) has been implemented for the purpose of characterizing NaI(Tl) light yield nonproportionality [5],[6]. Subsequently, the electron scintillation response of CaF 2, BGO, LSO, CsI(Tl), CsI(Na) and YAP were characterized using the CCT [7], [8]. This technique allowed a more accurate characterization of the electron response because the energetic electrons are produced internally in the scintillator by γ-rays. In this paper, the CCT has been firstly used to measure the electron response of plastic scintillator (NE12) 2.54x2.54 cm 3 covering energies from 28 kev to 43 kev. Consequently, the electron energy resolution has been determined over the energy range from 68 kev to 436 kev using the CCT measured energy spectra. 2. COMPTON COINCIDENCE TECHNIQUE A schematic of the Compton Coincidence Technique(CCT) used for measuring electron scintillation response is shown in Fig.1[6]. In this technique, the tested scintillator is exposed to a collimated beam of monoenergetic γ-rays of known energy E γ.some of the γ- rays will undergo a Compton scattering within the scintillator, transferring energy E e to an electron and exit the scintillator at some angle θ with energy E' γ, given by E γ Eγ = 2 1+ (Eγ / m c )(1 cosθ) where E γ is initial γ-ray energy and m c 2 is the rest mass energy of an electron. The Compton electron energy within the tested scintillator can be calculated by using conservation of energy, (1) E e = E γ E γ (2) The response of the scintillator to Compton electrons is recorded in coincidence with the Compton scattered photon detected by a secondary high-purity germanium(hpge) detector at a given angle defined by the next collimator. In CCT technique, the Compton electrons within the primary scintillation detector approximate a monoenergetic internal electron source and can be used to characterize the nonproportionality of scintillator light yield as a function of electron energy by using variable angle of the HPGe detector. Fig. 1 Schematic of the Compton Coincidence Technique(CCT)

3 9 The 1 st NPRU Academic Conference 3. EXPERIMENTAL PROCEDURES The plastic scintillator (NE12) used in this study was supplied by Nuclear Enterprise, England, with dimension of 1x1 inch 3.The plastic scintillator was first wrapped with several layers of Teflon tape and mounted to the RCA 8575 PMT using DC 2 silicone grease. The PMT with plastic scintillator was wrapped with black tape and covered with thin aluminum housing. In this study, a 25 mci 137 Cs source(e γ =662 kev) was placed about 5 cm. from plastic scintillator with 1 cm diameter collimators as indicated in Fig. 1. The 2x2 inch 3 NaI(Tl) detector was used to detect the Compton scattered gamma rays. Ten difference angle(θ) were used with the CCT to produce ten electron energies ranging from 28 kev to 436 kev. NaI(Tl) Detector 137 Cs Plastic Scintillator PMT PA AMP PC PA TSCA MCA Board AMP DL AMP GATE ADC PC 32 Bit I/O Board Fig. 2 Nuclear instrumentation used in the CCT NE Cs (E γ = 662 kev) Counts Channel number Fig. 3 Energy spectrum of 662 kev γ-rays from 137 Cs source measured with NE12 scintillator.

4 The 1 st NPRU Academic Conference NE12 E e = 68.2 kev Counts Counts FWHM 52.% Channel number FWHM 22.5% NE12 E e = kev Channel number Counts Channel number NE12 E e = kev FWHM 15.2% Fig. 4 Energy spectra of Compton electrons with the indicated energies for NE12 scintillator measured with the CCT. A schematic of the nuclear instrumentation used in this study is shown in Fig.2. The signal from NaI(Tl) detector was passed to a preamplifier, amplifier and then to a timing single channel analyzer(tsca). The TSCA output was used to gate the plastic scintillator analog-to-digital convertor(adc). The electron energy spectra from the plastic scintillator in coincidence with the Compton scattered gamma rays were then recorded using a 32 Bit I/O

5 92 The 1 st NPRU Academic Conference board in the computer. A multichannel analyzer board(mca board) in the second computer was used to record the entire energy spectra of the Compton scattered gamma rays at various scattering angles. The coincidence electron energy spectrum for the plastic scintillator was a Gaussian shaped peak. For each electron peak, the centroid and full width at half maximum(fwhm) of the full energy peak were obtained from Gaussian fitting software of Canberra MCA. 4. RESULTS AND DISCUSSION Fig.3 presents the energy spectrum of 662 kev γ-rays from a 137 Cs source measured with NE12 plastic scintillator. One first notices that the pulse height distribution is shaped by the Compton scattered electrons and there is no full energy peak in the γ-ray spectrum. Fig.4 presents some of the Compton electrons with the indicated energies for NE12 scintillator measured in coincidence with the Compton scattered γ-rays at energies 68, 248 and 413 kev, respectively. 1 Light output (a.u.) Electron energy (kev) Fig. 5 Light output of NE12 scintillator as a function of electron energy.the solid line is the fit to points above 16 kev Light output (a.u.) Electron energy (kev) Fig. 6 Expansion of Fig.5. Light output as a function of electron energy,for energies up to 167 kev.

6 The 1 st NPRU Academic Conference 93 Fig.5 shows the relative light output(proportional to the centroid of the electron peak) as a function of the electron energy. The solid line is determined by the points above 16 kev. Expansion of the low energy region is shown in Fig.6. The CCT measured electron response for NE12 plastic scintillator is shown in Fig.7. These results are normalized to unity at 436 kev. These results indicated a nearly proportional electron response above 9 kev (~3% change). Below 9 kev, the electron response decreases more significantly indicating a larger light yield nonproportionality for the low energy electrons. The electron response decreases about 2% over the measured energy range. Below 28 kev, accurate electron response measurements were not achievable due to photomultiplier thermal noise and the relatively low light yield of plastic scintillator. Consequently, the electron response below 28 kev is not reported in this study Electron response, Re Electron energy (kev) Fig. 7 Electron response of NE12 plastic scintillator measured using CCT and normalized to unity at 436 kev. 1 η e = 29.64e -.2E e Energy resolution (%) 1 Total Geometric Component, η g Electron energy resolution, η e Electron energy (kev) Fig. 8 Electron energy resolution (η e ) of NE12 plastic scintillator determined using CCT. Also shown is the geometric component (η g ) due to finite solid angle subtended by the NaI(Tl). The total NE12 electron energy resolution is shown for comparison.

7 94 The 1 st NPRU Academic Conference.1 Porter at.al.[4] measured the electron response of plastic(pilot B) scintillators,for and.6 thick samples, coupled to a PMT. They exposed the detectors to a magnetic spectrometer-energy-selected electrons and measured a nonproportionality effect of ~5% and ~2%, respectively for.1 and.6 thick samples, in the energy range from 2 to 1 kev and a flat behavior in the energy range from 1 to 35 kev. The electron energy resolution, η e defined as the ratio between the full width at half maximum and the peak position, for the electron energy range from 68 to 436 kev, was also measured. In Fig.8 the electron energy resolutions are plotted versus the electron energies. The geometric broadening η e of the measured coincidence spectrum due to the range of electron energies associated with the finite solid angle subtended by the NaI(Tl) detector in CCT was also determined in analysis and is shown in Fig. 8. It is observed that the geometric component is significant at electron energies below about 15 kev. The energy resolution of plastic scintillator η e decreases exponentially with electron energy. Below 68 kev, accurate energy resolution measurements were not achievable due to photomultiplier noise and the relatively low light yield of plastic scintillator. Consequently, the energy resolution below 68 kev is not reported in this study. 5. CONCLUSIONS In this study the electron response for plastic scintillator(ne12) has been measured using CCT for electron energies ranging from 28 kev to 436 kev. The electron response of plastic scintillator was observed to increase monotonically with increasing energy. The light yield becomes proportional to within 3% at energies above about 9 kev. Below 9 kev, the electron response decreases by about 2% upon lowering the electron energy to 28 kev. The electron energy resolution for plastic scintillator has been measured using CCT for electron energies ranging from 68 kev to 436 kev. The measured energy resolution decreases exponentially with increasing electron energy. It varies from 25.2% at 68 kev to 11.8% at 436 kev. Further investigations of the intrinsic energy resolution and light yield non proportionality of the crystals are in progress, especially with inorganic scintillators by using Compton Coincidence Technique(CCT). 6. REFERENCES [1] van Eijk, C. W. E. (21). Inorganic-scintillator development. Nucl. Instrum. Methods. Phys. Res., A46, [2] Moszynski, M. (23). Inorganic scintillation detectors in γ-ray spectrometry. Nucl. Instrum. Methods. Phy.s Res., A55, [3] Lecoq, P., Annenkov, A., Gektin, A., Korzhik, M.,& Pedrini, C. (26). Inorganic scintillators for detector systems. The Netherlands: Springer. [4] Porter, F. T., Freedman, M. S., Wagner, F., Jr., & Sherman, I. S. (1966). Response of NaI, anthracene and plastic scintillators to electrons and the problems of detecting low energy electrons with scintillation counters. Nucl. Instrum. Methods, 39, [5] Rooney, B. D., & Valentine, J. D. (1996). Benchmarking the Compton Coincidence Technique for measuring electron response nonproportionality in inorganic scintillators. IEEE Trans. Nucl. Sci., 43(3), [6] Rooney, B. D., & Valentine, J. D. (1994). Design of a Compton spectrometer experiment for studying scintillator nonlinearity and intrinsic energy ersolution. Nucl. Instrum. Methods, A353, 33-7.

8 The 1 st NPRU Academic Conference 95 [7] Taulbee, T. D., Rooney, B. D., Mengesha, W. & Valentine, J.D. (1997). The measured electron response nonproportionalities of CaF 2, BGO, and LSO. IEEE Trans. Nucl. Sci., 44, [8] Mengesha, W., Taulbee, T. D., Rooney, B. D., & Valentine, J. D. (1998). Light yield nonproportionality of CsI(Tl), CsI(Na), and YAP. IEEE Trans. Nucl. Sci., 45,

Light yield non-proportionality and intrinsic energy resolution of doped CsI scintillators

Light yield non-proportionality and intrinsic energy resolution of doped CsI scintillators NUKLEONIKA 2008;53(2):51 56 ORIGINAL PAPER Light yield non-proportionality and intrinsic energy resolution of doped CsI scintillators Weerapong Chewpraditkul, Lukasz Swiderski, Marek Moszynski Abstract.

More information

OPPORTUNITY TO JOIN IEEE AND NPSS

OPPORTUNITY TO JOIN IEEE AND NPSS OPPORTUNITY TO JOIN IEEE AND NPSS If you are NOT an IEEE Member, IEEE & NPSS offers you a FREE: Half-year membership in IEEE (value= ~$80)* Half-year membership in NPSS (value= ~$13)* Half-year subscription

More information

Light yield non-proportionality and energy resolution of Lu 1.95 Y 0.05 SiO 5 :Ce and Lu 2 SiO 5 :Ce scintillation crystals

Light yield non-proportionality and energy resolution of Lu 1.95 Y 0.05 SiO 5 :Ce and Lu 2 SiO 5 :Ce scintillation crystals Available online at www.sciencedirect.com Procedia Engineering 32 (2012) 765 771 I-SEEC2011 Light yield non-proportionality and energy resolution of Lu 1.95 Y 0.05 SiO 5 :Ce and Lu 2 SiO 5 :Ce scintillation

More information

Non-proportionality of organic scintillators and BGO

Non-proportionality of organic scintillators and BGO Winston-Salem June 4, 2007 Non-proportionality of organic scintillators and BGO A. Nassalski, M. Moszyński, A. Syntfeld-Każuch, Ł. Świderski, T. Szczęśniak. The Soltan Institute for Nuclear Studies, PL

More information

SCINTILLATION DETECTORS & GAMMA SPECTROSCOPY: AN INTRODUCTION

SCINTILLATION DETECTORS & GAMMA SPECTROSCOPY: AN INTRODUCTION SCINTILLATION DETECTORS & GAMMA SPECTROSCOPY: AN INTRODUCTION OBJECTIVE The primary objective of this experiment is to use an NaI(Tl) detector, photomultiplier tube and multichannel analyzer software system

More information

Compton suppression spectrometry

Compton suppression spectrometry Compton suppression spectrometry In gamma ray spectrometry performed with High-purity Germanium detectors (HpGe), the detection of low intensity gamma ray lines is complicated by the presence of Compton

More information

The Compton Effect. Martha Buckley MIT Department of Physics, Cambridge, MA (Dated: November 26, 2002)

The Compton Effect. Martha Buckley MIT Department of Physics, Cambridge, MA (Dated: November 26, 2002) The Compton Effect Martha Buckley MIT Department of Physics, Cambridge, MA 02139 marthab@mit.edu (Dated: November 26, 2002) We measured the angular dependence of the energies of 661.6 kev photons scattered

More information

Energy Resolution of Scintillation Detectors New Observations

Energy Resolution of Scintillation Detectors New Observations Energy Resolution of Scintillation Detectors New Observations M. Moszyński, A. Nassalski, Ł. Świderski, A. Syntfeld-Każuch, T. Szczęśniak, Soltan Institute for Nuclear Studies PL 05-400 Otwock-Świerk,

More information

New Scintillators for the Border Monitoring Equipment

New Scintillators for the Border Monitoring Equipment New Scintillators for the Border Monitoring Equipment M. Moszynski a a Soltan Institute for Nuclear Studies, PL 05-400 Otwock-Swierk, Poland Performance of new scintillators characterized by a high energy

More information

Scintillation Detector

Scintillation Detector Scintillation Detector Introduction The detection of ionizing radiation by the scintillation light produced in certain materials is one of the oldest techniques on record. In Geiger and Marsden s famous

More information

Energy resolution and absolute detection efficiency for LSO crystals: a comparison between Monte Carlo simulation and experimental data

Energy resolution and absolute detection efficiency for LSO crystals: a comparison between Monte Carlo simulation and experimental data Energy resolution and absolute detection efficiency for LSO crystals: a comparison between Monte Carlo simulation and experimental data Harold Rothfuss a,b, Larry Byars c, Michael E. Casey a, Maurizio

More information

SCINTILLATION DETECTORS AND PM TUBES

SCINTILLATION DETECTORS AND PM TUBES SCINTILLATION DETECTORS AND PM TUBES General Characteristics Introduction Luminescence Light emission without heat generation Scintillation Luminescence by radiation Scintillation detector Radiation detector

More information

Measurements of CsI(Tl) Crystals with PMT and APD. ipno.in2p3.fr Jean Peyré Milano - October 2006

Measurements of CsI(Tl) Crystals with PMT and APD. ipno.in2p3.fr Jean Peyré Milano - October 2006 Measurements of I(Tl) Crystals with PMT and APD Jean Peyré Milano - Oct 2006 IPNO-RDD-Jean Peyré 1 1.Characteristics of I(Tl), PMT and APD 2.Measurements on I(Tl) a) I(Tl) /Teflon + XP5300B b) I(Tl) /VM2000

More information

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous?

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? 2. Briefly discuss dead time in a detector. What factors are important

More information

Evaluation of the Nonlinear Response Function and Efficiency of a Scintillation Detector Using Monte Carlo and Analytical Methods

Evaluation of the Nonlinear Response Function and Efficiency of a Scintillation Detector Using Monte Carlo and Analytical Methods Asian J. Exp. Sci., Vol. 28, No. 2, 2014; 23-31 Evaluation of the Nonlinear Response Function and Efficiency of a Scintillation Detector Using Monte Carlo and Analytical Methods Rahim Khabaz, Farhad Yaghobi

More information

Nuclear Lifetimes. = (Eq. 1) (Eq. 2)

Nuclear Lifetimes. = (Eq. 1) (Eq. 2) Nuclear Lifetimes Theory The measurement of the lifetimes of excited nuclear states constitutes an important experimental technique in nuclear physics. The lifetime of a nuclear state is related to its

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Labr3:Ce scintillators for gamma ray spectroscopy Permalink https://escholarship.org/uc/item/38f0c7zv Authors Shah, K.S.

More information

Dual Isotope Imaging with LaBr3:Ce Crystal and H8500 PSPMT

Dual Isotope Imaging with LaBr3:Ce Crystal and H8500 PSPMT Dual Isotope Imaging with LaBr3:Ce Crystal and H8500 PSPMT Dr. Andrea Fabbri, University of Rome Roma Tre I.N.F.N. (National Institue of Nuclear Physics) γ-ray imaging with scintillator and PSPMT γ-ray

More information

Measurement of nuclear recoil responses of NaI(Tl) crystal for dark matter search

Measurement of nuclear recoil responses of NaI(Tl) crystal for dark matter search Measurement of nuclear recoil responses of NaI(Tl) crystal for dark matter search Hanwool Joo on behalf of the KIMS-NaI collaboration Department of Physics and Astronomy, 1 Gwanak-ro, Gwanak-gu, Seoul

More information

DEVELOPMENT OF ADVANCED NEUTRON INDUCED PROMPT GAMMA- RAY ANALYSIS SYSTEM FOR SURVEY OF ANTI-PERSONNEL MINES

DEVELOPMENT OF ADVANCED NEUTRON INDUCED PROMPT GAMMA- RAY ANALYSIS SYSTEM FOR SURVEY OF ANTI-PERSONNEL MINES DEVELOPMENT OF ADVANCED NEUTRON INDUCED PROMPT GAMMA- RAY ANALYSIS SYSTEM FOR SURVEY OF ANTI-PERSONNEL MINES T. Iguchi 1, J. Kawarabayashi 1, K. Watanabe 1, K. Nishimura 2, T. Handa 2 and H. Sawamura 2

More information

A dual scintillator - dual silicon photodiode detector module for intraoperative gamma\beta probe and portable anti-compton spectrometer

A dual scintillator - dual silicon photodiode detector module for intraoperative gamma\beta probe and portable anti-compton spectrometer University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2008 A dual scintillator - dual silicon photodiode detector module for

More information

A Prototype of LaBr3:Ce in situ Gamma-Ray Spectrometer for Marine Environmental Monitoring

A Prototype of LaBr3:Ce in situ Gamma-Ray Spectrometer for Marine Environmental Monitoring A Prototype of LaBr3:Ce in situ Gamma-Ray Spectrometer for Marine Environmental Monitoring 1 Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education Department of Engineering

More information

ORTEC AN34 Experiment 10 Compton Scattering

ORTEC AN34 Experiment 10 Compton Scattering EQUIPMENT NEEDED FROM ORTEC 113 Preamplifier (2 ea.) TRUMP-PCI-2K MCA System including suitable PC operating Windows 98/2000/XP (other ORTEC MCAs may be used) 266 Photomultiplier Tube Base (2 ea.) 4001A/4002D

More information

1 of :32

1 of :32 Home Page Products Price List Links & PDFs DISCONTINUED: SEE GAMMA-RAD Gamma Ray & X-Ray Spectroscopy System Hand-Held, High Efficiency NaI(Tl) Detector The GAMMA-8000 is a powerful, portable instrument

More information

4- Locate the channel number of the peak centroid with the software cursor and note the corresponding energy. Record these values.

4- Locate the channel number of the peak centroid with the software cursor and note the corresponding energy. Record these values. EXPERIMENT 2.1 GAMMA ENERGY CALIBRATION 1- Turn the power supply on to 900 V. Turn the NIM crate on to power the amplifiers. Turn the Oscilloscope on to check the gamma pulses. The main amplifier should

More information

Alpha-Gamma discrimination by Pulse Shape in LaBr 3 :Ce and LaCl 3 :Ce

Alpha-Gamma discrimination by Pulse Shape in LaBr 3 :Ce and LaCl 3 :Ce Alpha-Gamma discrimination by Pulse Shape in LaBr 3 :Ce and LaCl 3 :Ce F.C.L. Crespi 1,2, F.Camera 1,2, N. Blasi 2, A.Bracco 1,2, S. Brambilla 2, B. Million 2, R. Nicolini 1,2, L.Pellegri 1, S. Riboldi

More information

A Measurement of Monoenergetic Neutrons from 9 Be(p,n) 9 B

A Measurement of Monoenergetic Neutrons from 9 Be(p,n) 9 B Journal of the Korean Physical Society, Vol. 32, No. 4, April 1998, pp. 462 467 A Measurement of Monoenergetic Neutrons from 9 Be(p,n) 9 B J. H. Kim, H. Bhang, J. H. Ha, J. C. Kim, M. J. Kim, Y. D. Kim

More information

Detection and measurement of gamma-radiation by gammaspectroscopy

Detection and measurement of gamma-radiation by gammaspectroscopy Detection and measurement of gamma-radiation by gammaspectroscopy Gamma-radiation is electromagnetic radiation having speed equal to the light in vacuum. As reaching a matter it interact with the different

More information

Figure 1. Decay Scheme for 60Co

Figure 1. Decay Scheme for 60Co Department of Physics The University of Hong Kong PHYS3851 Atomic and Nuclear Physics PHYS3851- Laboratory Manual A. AIMS 1. To learn the coincidence technique to study the gamma decay of 60 Co by using

More information

Mass of the electron m 0

Mass of the electron m 0 Mass of the electron m 0 1 Objective To determine the rest mass of the electron, m e, via γ-ray interactions (mainly Compton scattering and photoeffect) in a NaI scintillation detector. Based on the enclosed

More information

Chapter 4 Scintillation Detectors

Chapter 4 Scintillation Detectors Med Phys 4RA3, 4RB3/6R03 Radioisotopes and Radiation Methodology 4-1 4.1. Basic principle of the scintillator Chapter 4 Scintillation Detectors Scintillator Light sensor Ionizing radiation Light (visible,

More information

Unit 2. Instrumentation. Experts Teaching from Practical Experience

Unit 2. Instrumentation. Experts Teaching from Practical Experience Unit 2 Instrumentation Experts Teaching from Practical Experience Gas-Filled Detectors Gas-filled detectors measure the charge released when radiation interacts with the gas Three types: Ion Chambers,

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN 316 Effective atomic number of composite materials by Compton scattering - nondestructive evaluation method Kiran K U a, Ravindraswami K b, Eshwarappa K M a and Somashekarappa H M c* a Government Science

More information

Radiation Detection and Measurement

Radiation Detection and Measurement Radiation Detection and Measurement June 2008 Tom Lewellen Tkldog@u.washington.edu Types of radiation relevant to Nuclear Medicine Particle Symbol Mass (MeV/c 2 ) Charge Electron e-,! - 0.511-1 Positron

More information

EEE4106Z Radiation Interactions & Detection

EEE4106Z Radiation Interactions & Detection EEE4106Z Radiation Interactions & Detection 2. Radiation Detection Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za May 06, 2015 EEE4106Z :: Radiation

More information

Ultra High Quantum Efficiency PMT for energy resolution measurements of LaBr 3 (Ce) scintillation crystals

Ultra High Quantum Efficiency PMT for energy resolution measurements of LaBr 3 (Ce) scintillation crystals Ultra High Quantum Efficiency PMT for energy resolution measurements of LaBr 3 (Ce) scintillation crystals Roberto Pani INFN and Sapienza - University of Rome, Italy On behalf of ECORAD Collaboration Cinti

More information

V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber

V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber CYRIC Annual Report 2001 V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber Kawata N. Baba M. Kato M.*, Miura T.**, and Yamadera A.***, Cyclotron and Radioisotope Center, Tohoku

More information

A Radiation Monitoring System With Capability of Gamma Imaging and Estimation of Exposure Dose Rate

A Radiation Monitoring System With Capability of Gamma Imaging and Estimation of Exposure Dose Rate IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 49, NO. 3, JUNE 2002 1547 A Radiation Monitoring System With Capability of Gamma Imaging and Estimation of Exposure Dose Rate Wanno Lee, Gyuseong Cho, and Ho

More information

Quality Assurance. Purity control. Polycrystalline Ingots

Quality Assurance. Purity control. Polycrystalline Ingots Quality Assurance Purity control Polycrystalline Ingots 1 Gamma Spectrometry Nuclide Identification Detection of Impurity Traces 1.1 Nuclides Notation: Atomic Mass Atomic Number Element Neutron Atomic

More information

III. Energy Deposition in the Detector and Spectrum Formation

III. Energy Deposition in the Detector and Spectrum Formation 1 III. Energy Deposition in the Detector and Spectrum Formation a) charged particles Bethe-Bloch formula de 4πq 4 z2 e 2m v = NZ ( ) dx m v ln ln 1 0 2 β β I 0 2 2 2 z, v: atomic number and velocity of

More information

COMPTON SCATTERING OF GAMMA RAYS

COMPTON SCATTERING OF GAMMA RAYS COMPTON SCATTERING OF GAMMA RAYS v2.7 Last revised: R. A. Schumacher, January 2017 I. INTRODUCTION Compton scattering is the name given to the scattering of high-energy gamma rays from electrons. The gamma

More information

II. 5. Study for NaI(Tl) and Scintillation Fiber with 80 MeV Proton Beam Toward ESPRI Experiment at NIRS-HIMAC, RIKEN-RIBF

II. 5. Study for NaI(Tl) and Scintillation Fiber with 80 MeV Proton Beam Toward ESPRI Experiment at NIRS-HIMAC, RIKEN-RIBF CYRIC Annual Report 2005 II. 5. Study for NaI(Tl) and Scintillation Fiber with 80 MeV Proton Beam Toward ESPRI Experiment at NIRS-HIMAC, RIKEN-RIBF Zenihiro J. 1, Matsuda Y. 2, Sakaguchi H. 3, Takeda H.

More information

Gamma-ray spectroscopy with the scintillator/photomultiplierand with the high purity Ge detector: Compton scattering, photoeffect, and pair production

Gamma-ray spectroscopy with the scintillator/photomultiplierand with the high purity Ge detector: Compton scattering, photoeffect, and pair production Experiment N2: Gamma-ray spectroscopy with the scintillator/photomultiplierand with the high purity Ge detector: Compton scattering, photoeffect, and pair production References: 1. Experiments in Nuclear

More information

Warsaw University of Technology, Faculty of Physics. Laboratory of Nuclear Physics & Technology. Compton effect

Warsaw University of Technology, Faculty of Physics. Laboratory of Nuclear Physics & Technology. Compton effect Warsaw University of Technology, Faculty of Physics Laboratory of Nuclear Physics & Technology Compton effect Author: MSc. Eng. Dariusz Aksamit, Dariusz.Aksamit@pw.edu.pl, Faculty of Physics on the basis

More information

Development of a Hard X-Ray Polarimeter for Solar Flares and Gamma-Ray Bursts

Development of a Hard X-Ray Polarimeter for Solar Flares and Gamma-Ray Bursts Development of a Hard X-Ray Polarimeter for Solar Flares and Gamma-Ray Bursts M.L. McConnell, D.J. Forrest, J. Macri, M. McClish, M. Osgood, J.M. Ryan, W.T. Vestrand and C. Zanes Space Science Center University

More information

Gamma-ray spectroscopy with the scintillator/photomultiplierand with the high purity Ge detector: Compton scattering, photoeffect, and pair production

Gamma-ray spectroscopy with the scintillator/photomultiplierand with the high purity Ge detector: Compton scattering, photoeffect, and pair production Experiment N2: Gamma-ray spectroscopy with the scintillator/photomultiplierand with the high purity Ge detector: Compton scattering, photoeffect, and pair production References: 1. Experiments in Nuclear

More information

Introduction to Environmental Measurement Techniques Radioactivity. Dana Pittauer 1of 48

Introduction to Environmental Measurement Techniques Radioactivity. Dana Pittauer 1of 48 Introduction to Environmental Measurement Techniques 2016 Radioactivity Dana Pittauer (dpittauer@marum.de) 1of 48 Introduction Radioisotopes are of interest in environmental physics for several reasons:

More information

arxiv: v2 [physics.ed-ph] 23 Jan 2018

arxiv: v2 [physics.ed-ph] 23 Jan 2018 Studying the effect of Polarisation in Compton scattering in the undergraduate laboratory arxiv:7.0650v2 [physics.ed-ph] 23 Jan 208 P. Knights, F. Ryburn 2, G. Tungate, K. Nikolopoulos School of Physics

More information

arxiv:physics/ v1 3 Aug 2006

arxiv:physics/ v1 3 Aug 2006 Gamma Ray Spectroscopy with Scintillation Light in Liquid Xenon arxiv:physics/6834 v1 3 Aug 26 K. Ni, E. Aprile, K.L. Giboni, P. Majewski, M. Yamashita Physics Department and Columbia Astrophysics Laboratory

More information

DETECTORS. I. Charged Particle Detectors

DETECTORS. I. Charged Particle Detectors DETECTORS I. Charged Particle Detectors A. Scintillators B. Gas Detectors 1. Ionization Chambers 2. Proportional Counters 3. Avalanche detectors 4. Geiger-Muller counters 5. Spark detectors C. Solid State

More information

Scintillation Detectors

Scintillation Detectors Scintillation Detectors J.L. Tain Jose.Luis.Tain@ific.uv.es http://ific.uv.es/gamma/ Instituto de Física Corpuscular C.S.I.C - Univ. Valencia Scintillation detector: SCINTILLATION MATERIAL LIGHT-GUIDE

More information

Deposited on: 20 December 2010

Deposited on: 20 December 2010 Cresswell, A.J., Sanderson, D.C.W. and Murphy, S. (1999) Improved NaI(Tl) and CsI(Tl)Detector Arrays for Environmental Airborne Gamma Spectrometry: Technical Progress Report. Technical Report. Scottish

More information

M.J. CIESLAK, K.A.A. GAMAGE Department of Engineering, Lancaster University Lancaster, LA1 4YW United Kingdom ABSTRACT

M.J. CIESLAK, K.A.A. GAMAGE Department of Engineering, Lancaster University Lancaster, LA1 4YW United Kingdom ABSTRACT PULSE SHAPE DISCRIMINATION CHARACTERISTICS OF STILBENE CRYSTAL, EJ-299-33 AND 6 Li LOADED PLASTIC SCINTILLATORS FOR A HIGH RESOLUTION CODED-APERTURE NEUTRON IMAGER M.J. CIESLAK, K.A.A. GAMAGE Department

More information

THE COMPTON EFFECT Last Revised: January 5, 2007

THE COMPTON EFFECT Last Revised: January 5, 2007 B2-1 THE COMPTON EFFECT Last Revised: January 5, 2007 QUESTION TO BE INVESTIGATED: How does the energy of a scattered photon change after an interaction with an electron? INTRODUCTION: When a photon is

More information

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 4, AUGUST /$ IEEE

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 4, AUGUST /$ IEEE IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 4, AUGUST 2008 2425 Optical and Scintillation Properties of Inorganic Scintillators in High Energy Physics Rihua Mao, Member, IEEE, Liyuan Zhang, Member,

More information

Characterization of the Lanthanum Chloride Scintillation Detector

Characterization of the Lanthanum Chloride Scintillation Detector Characterization of the Lanthanum Chloride Scintillation Detector François Kazadi Kabuya 1*, Zslot Podolyak 2 1 Commissariat Général à l Energie Atomique, PO BOX 868 Kinshasa XI, DR Congo 2 Department

More information

Jazan University College of Science Physics Department. Lab Manual. Nuclear Physics (2) 462 Phys. 8 th Level. Academic Year: 1439/1440

Jazan University College of Science Physics Department. Lab Manual. Nuclear Physics (2) 462 Phys. 8 th Level. Academic Year: 1439/1440 Jazan University College of Science Physics Department جاهعة جازان كلية العل وم قسن الفيزياء Lab Manual Nuclear Physics (2) 462 Phys 8 th Level Academic Year: 1439/1440 1 Contents No. Name of the Experiment

More information

1842 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 5, OCTOBER M. Marisaldi, C. Labanti, H. Soltau, C. Fiorini, A. Longoni, and F.

1842 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 5, OCTOBER M. Marisaldi, C. Labanti, H. Soltau, C. Fiorini, A. Longoni, and F. 1842 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 5, OCTOBER 2005 X- and Gamma-Ray Detection With a Silicon Drift Detector Coupled to a CsI(Tl) Scintillator Operated With Pulse Shape Discrimination

More information

Gamma-ray Spectroscopy with LaBr 3 :Ce Scintillator Readout by a Silicon Drift Detector

Gamma-ray Spectroscopy with LaBr 3 :Ce Scintillator Readout by a Silicon Drift Detector Gamma-ray Spectroscopy with LaBr 3 :Ce Scintillator Readout by a Silicon Drift Detector C. Fiorini, member, IEEE, A. Gola, M. Zanchi, A. Longoni, P. Lechner, H. Soltau, L. Strüder Abstract In this work

More information

Neutron Induced Nuclear Counter Effect in Hamamatsu Silicon APDs and PIN Diodes

Neutron Induced Nuclear Counter Effect in Hamamatsu Silicon APDs and PIN Diodes Neutron Induced Nuclear Counter Effect in Hamamatsu Silicon APDs and PIN Diodes Rihua Mao, Liyuan Zhang, Ren-yuan Zhu California Institute of Technology Introduction Because of its immunity to magnetic

More information

A NEW GENERATION OF GAMMA-RAY TELESCOPE

A NEW GENERATION OF GAMMA-RAY TELESCOPE A NEW GENERATION OF GAMMA-RAY TELESCOPE Aleksandar GOSTOJIĆ CSNSM, Orsay, France 11 th Russbach School on Nuclear Astrophysics, March 2014. Introduction: Gamma-ray instruments GROUND BASED: ENERGY HIGHER

More information

Fast detectors for Mössbauer spectroscopy )

Fast detectors for Mössbauer spectroscopy ) Fast detectors for Mössbauer spectroscopy ) A.L. Kholmetskii Department of Physics, Belarus State University, Minsk, Belarus M. Mashlan Palacký University, Olomouc, Czech Republic K. Nomura School of Engineering,

More information

Design and production of Scintillation Detectors

Design and production of Scintillation Detectors Design and production of Scintillation Detectors Components for nuclear radiation detectors Fields of application: * Medicine * Industry * Science * Security Scintillation Detectors : Instruments using

More information

Applied Nuclear Physics (Fall 2006) Lecture 21 (11/29/06) Detection of Nuclear Radiation: Pulse Height Spectra

Applied Nuclear Physics (Fall 2006) Lecture 21 (11/29/06) Detection of Nuclear Radiation: Pulse Height Spectra 22.101 Applied Nuclear Physics (Fall 2006) Lecture 21 (11/29/06) Detection of Nuclear Radiation: Pulse Height Spectra References: W. E. Meyerhof, Elements of Nuclear Physics (McGraw-Hill, New York, 1967),

More information

Radiation (Particle) Detection and Measurement

Radiation (Particle) Detection and Measurement Radiation (Particle) Detection and Measurement Radiation detection implies that the radiation interacts (e.g. leaves at least part of its energy) in the material. A specific material is chosen, because

More information

Non-proportional scintillation response of NaI:Tl to low energy X-ray photons and electrons

Non-proportional scintillation response of NaI:Tl to low energy X-ray photons and electrons Non-proportional scintillation response of NaI:Tl to low energy X-ray photons and electrons I.V. Khodyuk 1,2, P.A. Rodnyi 2, and P. Dorenbos 1 1 Faculty of Applied Sciences, Delft University of Technology,

More information

Gamma ray coincidence and angular correlation

Gamma ray coincidence and angular correlation University of Cape Town Department of Physics Course III laboratory Gamma ray coincidence and angular correlation Introduction Medical imaging based on positron emission tomography (PET) continues to have

More information

NUCL 3000/5030 Laboratory 2 Fall 2013

NUCL 3000/5030 Laboratory 2 Fall 2013 Lab #2: Passive Gamma Spec Measurements in Decoding Natural Radioactivity in SLC Area Objectives a. Learn basics of gamma spectroscopy b. Learn the equipment in Counting stations #4, #5 and #8 c. Apply

More information

Contents. Charged Particles. Coulomb Interactions Elastic Scattering. Coulomb Interactions - Inelastic Scattering. Bremsstrahlung

Contents. Charged Particles. Coulomb Interactions Elastic Scattering. Coulomb Interactions - Inelastic Scattering. Bremsstrahlung Contents Marcel MiGLiERiNi Nuclear Medicine, Radiology and Their Metrological Aspects. Radiation in Medicine. Dosimetry 4. Diagnostics & Therapy 5. Accelerators in Medicine 6. Therapy Planning 7. Nuclear

More information

Analysis of γ spectrum

Analysis of γ spectrum IFM The Department of Physics, Chemistry and Biology LAB 26 Analysis of γ spectrum NAME PERSONAL NUMBER DATE APPROVED I. OBJECTIVES - To understand features of gamma spectrum and recall basic knowledge

More information

Prospects for achieving < 100 ps FWHM coincidence resolving time in time-of-flight PET

Prospects for achieving < 100 ps FWHM coincidence resolving time in time-of-flight PET Prospects for achieving < 100 ps FWHM coincidence resolving time in time-of-flight PET, 28-Feb-2012, ICTR-PHE, Geneva, Switzerland 1 Time-of-flight PET Colon cancer, left upper quadrant peritoneal node

More information

arxiv:hep-ex/ May 2000

arxiv:hep-ex/ May 2000 CsI(Tl) for WIMP dark matter searches V. A. Kudryavtsev, N. J. C. Spooner, D. R. Tovey, J. W. Roberts, M. J. Lehner, J. E. McMillan, P. K. Lightfoot, T. B. Lawson, C. D. Peak, R. Lüscher Department of

More information

High Purity Germanium Detector Calibration at ISOLDE

High Purity Germanium Detector Calibration at ISOLDE High Purity Germanium Detector Calibration at ISOLDE Guðmundur Kári Stefánsson Summer Student of Maria Borge September 5, 2013 Abstract: This Summer Student Project involved the test and calibration of

More information

Researchers at the University of Missouri-Columbia have designed a triple crystal

Researchers at the University of Missouri-Columbia have designed a triple crystal Childress, N. L. and W. H. Miller, MCNP Analysis and Optimization of a Triple Crystal Phoswich Detector, Nuclear Instruments and Methods, Section A, 490(1-2), 263-270 (Sept 1, 2002). Abstract Researchers

More information

Non-Destructive Assay Applications Using Temperature-Stabilized Large Volume CeBr Detectors 14277

Non-Destructive Assay Applications Using Temperature-Stabilized Large Volume CeBr Detectors 14277 Non-Destructive Assay Applications Using Temperature-Stabilized Large Volume CeBr Detectors 14277 D. Nakazawa and F. Bronson Canberra Industries Inc., 800 Research Parkway, Meriden, CT, 06450, USA. ABSTRACT

More information

Radiation Signals and Signatures in a Detector (Gamma spectroscopy) Sangkyu Lee

Radiation Signals and Signatures in a Detector (Gamma spectroscopy) Sangkyu Lee Radiation Signals and Signatures in a Detector (Gamma spectroscopy) Sangkyu Lee Photon interactions Photoelectric effect Compton scatter Pair production μ= τ + σ + κ μ = Total cross section τ = Photoelectric

More information

Gamma and X-Ray Detection

Gamma and X-Ray Detection Gamma and X-Ray Detection DETECTOR OVERVIEW The kinds of detectors commonly used can be categorized as: a. Gas-filled Detectors b. Scintillation Detectors c. Semiconductor Detectors The choice of a particular

More information

DETERMINING FUNDAMENTAL PARAMETERS OF A SINGLE-PHOTOTUBE LIQUID SCINTILLATION COUNTER

DETERMINING FUNDAMENTAL PARAMETERS OF A SINGLE-PHOTOTUBE LIQUID SCINTILLATION COUNTER DETERMINING FUNDAMENTAL PARAMETERS OF A SINGLE-PHOTOTUBE LIQUID SCINTILLATION COUNTER Pall Theodórsson Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavík, Iceland. Email: pth@raunvis.hi.is.

More information

arxiv: v1 [physics.ins-det] 29 Jun 2011

arxiv: v1 [physics.ins-det] 29 Jun 2011 Investigation of Large LGB Detectors for Antineutrino Detection P. Nelson a,, N. S. Bowden b, a Department of Physics, Naval Postgraduate School, Monterey, CA 99, USA b Lawrence Livermore National Laboratory,

More information

Characterizing New Multi-Channel Peak Sensing ADC-Mesytec MADC-32

Characterizing New Multi-Channel Peak Sensing ADC-Mesytec MADC-32 Armenian Journal of Physics, 2016, vol. 9, issue 1, pp. 29-33 Characterizing New Multi-Channel Peak Sensing ADC-Mesytec MADC-32 A. Gyurjinyan 1,2, R. Avetisyan 1,2 1 Experimental Physics Division, Yerevan

More information

05 - Scintillation detectors

05 - Scintillation detectors 05 - Scintillation detectors Jaroslav Adam Czech Technical University in Prague Version 2 Jaroslav Adam (CTU, Prague) DPD_05, Scintillation detectors Version 2 1 / 39 Scintillation detector principles

More information

Design of a Lanthanum Bromide Detector for TOF PET

Design of a Lanthanum Bromide Detector for TOF PET Design of a Lanthanum Bromide Detector for TOF PET A. Kuhn, S. Surti, Member, IEEE, J. S. Karp, Senior Member, IEEE, P. S. Raby, K. S. Shah, A. E. Perkins, Member, IEEE, G. Muehllehner, Fellow Member,

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN 308 Angular dependence of 662 kev multiple backscattered gamma photons in Aluminium Ravindraswami K a, Kiran K U b, Eshwarappa K M b and Somashekarappa H M c* a St Aloysius College (Autonomous), Mangalore

More information

Pulse height non-linearity in LaBr 3 :Ce crystal for gamma ray spectrometry and imaging

Pulse height non-linearity in LaBr 3 :Ce crystal for gamma ray spectrometry and imaging Pulse height non-linearity in LaBr 3 :Ce crystal for gamma ray spectrometry and imaging P A O L O B E N N A T I I N F N R O M A T R E E D E M O M P H D S C H O O L, R O M A T R E U N I V E R S I T Y P

More information

Investigation of Ce-doped Gd2Si2O7 as a scintillator. Author(s) Kurashige, Kazuhisa; Ishibashi, Hiroyuki; Furusaka, Instructions for use

Investigation of Ce-doped Gd2Si2O7 as a scintillator. Author(s) Kurashige, Kazuhisa; Ishibashi, Hiroyuki; Furusaka, Instructions for use Title Investigation of Ce-doped Gd2Si2O7 as a scintillator Kawamura, Sohan; Kaneko, Junichi H.; Higuchi, Mikio; Author(s) Kurashige, Kazuhisa; Ishibashi, Hiroyuki; Furusaka, Nuclear Instruments and Methods

More information

Gamma Spectroscopy. References: Objectives:

Gamma Spectroscopy. References: Objectives: Gamma Spectroscopy References: G.F. Knoll, Radiation Detection and Measurement (John Wiley & Sons, New York, 2000) W. R. Leo, Techniques for Nuclear and Particle Physics Experiments: A How-to Approach,

More information

Large volume LaBr 3 :Ce detectors and HECTOR +

Large volume LaBr 3 :Ce detectors and HECTOR + Large volume LaBr 3 :Ce detectors and HECTOR + F. Camera University of Milano INFN sez. of Milano Outline: - Recent results in R&D with large volume 3.5 x8 LaBr 3 :Ce - Scientific Activity in Milano with

More information

PHYS 3446 Lecture #12

PHYS 3446 Lecture #12 PHYS 3446 Lecture #12 Wednesday, Oct. 18, 2006 Dr. 1. Particle Detection Ionization Detectors MWPC Scintillation Counters Time of Flight 1 Announcements Next LPCC Workshop Preparation work Each group to

More information

Radiation Detectors. How do we detect ionizing radiation? What are these effects? Types of Ionizing Radiation Detectors

Radiation Detectors. How do we detect ionizing radiation? What are these effects? Types of Ionizing Radiation Detectors Radiation Detectors 1 How do we detect ionizing radiation? Indirectly, by its effects as it traverses matter? What are these effects? Ionization and excitation of the atoms and molecules Heat 2 Types of

More information

Radiation Dose, Biology & Risk

Radiation Dose, Biology & Risk ENGG 167 MEDICAL IMAGING Lecture 2: Sept. 27 Radiation Dosimetry & Risk References: The Essential Physics of Medical Imaging, Bushberg et al, 2 nd ed. Radiation Detection and Measurement, Knoll, 2 nd Ed.

More information

(10%) (c) What other peaks can appear in the pulse-height spectrum if the detector were not small? Give a sketch and explain briefly.

(10%) (c) What other peaks can appear in the pulse-height spectrum if the detector were not small? Give a sketch and explain briefly. Sample questions for Quiz 3, 22.101 (Fall 2006) Following questions were taken from quizzes given in previous years by S. Yip. They are meant to give you an idea of the kind of questions (what was expected

More information

ARTICLE IN PRESS. Nuclear Instruments and Methods in Physics Research A

ARTICLE IN PRESS. Nuclear Instruments and Methods in Physics Research A Nuclear Instruments and Methods in Physics Research A 62 (29) 52 524 Contents lists available at ScienceDirect Nuclear Instruments and Methods in Physics Research A journal homepage: www.elsevier.com/locate/nima

More information

List of Nuclear Medicine Radionuclides. Nuclear Medicine Imaging Systems: The Scintillation Camera. Crystal and light guide

List of Nuclear Medicine Radionuclides. Nuclear Medicine Imaging Systems: The Scintillation Camera. Crystal and light guide Nuclear Medicine Imaging Systems: The Scintillation Camera List of Nuclear Medicine Radionuclides Tc99m 140.5 kev 6.03 hours I-131 364, 637 kev 8.06 days I-123 159 kev 13.0 hours I-125 35 kev 60.2 days

More information

Detector technology. Aim of this talk. Principle of a radiation detector. Interactions of gamma photons (gas) Gas-filled detectors: examples

Detector technology. Aim of this talk. Principle of a radiation detector. Interactions of gamma photons (gas) Gas-filled detectors: examples Aim of this tal Detector technology WMIC Educational Program Nuclear Imaging World Molecular Imaging Congress, Dublin, Ireland, Sep 5-8, 202 You can now the name of a bird in all the languages of the world,

More information

1420 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 57, NO. 3, JUNE /$ IEEE

1420 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 57, NO. 3, JUNE /$ IEEE 1420 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 57, NO. 3, JUNE 2010 Multitracing Capability of Double-Scattering Compton Imager With NaI(Tl) Scintillator Absorber Hee Seo, Student Member, IEEE, Chan Hyeong

More information

CHAPTER-II Experimental Techniques and Data Analysis (Positron annihilation spectroscopy)

CHAPTER-II Experimental Techniques and Data Analysis (Positron annihilation spectroscopy) CHAPTER-II Experimental Techniques and Data Analysis (Positron annihilation spectroscopy) 64 Techniques in Positron annihilation spectroscopy PAS comprises of different techniques which provide information

More information

DELAYED COINCIDENCE METHOD FOR PICOSECOND LIFETIME MEASUREMENTS

DELAYED COINCIDENCE METHOD FOR PICOSECOND LIFETIME MEASUREMENTS 306 DELAYED COINCIDENCE METHOD FOR PICOSECOND LIFETIME MEASUREMENTS ZHANG WEIJIE China Institute of Atomic Energy E-mail: zhangreatest@163.com The advanced time delay (ATD) technique, based by delayed

More information

Characterization and Monte Carlo simulations for a CLYC detector

Characterization and Monte Carlo simulations for a CLYC detector Characterization and Monte Carlo simulations for a CLYC detector A. Borella 1, E. Boogers 1, R.Rossa 1, P. Schillebeeckx 1 aborella@sckcen.be 1 SCK CEN, Belgian Nuclear Research Centre JRC-Geel, Joint

More information

INORGANIC crystal scintillators are widely used in high

INORGANIC crystal scintillators are widely used in high 29 IEEE Nuclear Science Symposium Conference Record N32-5 Gamma Ray Induced Radiation Damage in and LSO/LYSO Crystals Rihua Mao, Member, IEEE, Liyuan Zhang, Member, IEEE, and Ren-Yuan Zhu, Senior Member,

More information

2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies DESIGN AND MODELING OF A COMPTON-SUPPRESSED PHOSWICH DETECTOR FOR RADIOXENON MONITORING Abi T. Farsoni and David M. Hamby Oregon State University Sponsored by the National Nuclear Security Administration

More information