(INCLUDING THIS FRONT PAGE)

Size: px
Start display at page:

Download "(INCLUDING THIS FRONT PAGE)"

Transcription

1 I'IFIITIIBIFI UNIVERSITY OF SCIEI'ICE RITD TECHNOLOGY FACULTY OF HEALTH AND APPLIED SCIENCES DEPARTMENT OF NATURAL AND APPLIED SCIENCES QUALIFICATION: BACHELOR OF SCIENCE (MAJOR AND MINOR) QUALIFICATION CODE: 07BSC LEVEL: 7 COURSE CODE: BPH7OZS SESSION: NOVEMBER 2017 COURSE NAME: BIOMEDICAL PHYSICS PAPER: THEORY DURATION: 3 HOURS MARKS: 100 FIRST OPPORTUNITY EXAMINATION PAPER EXAMINER(S) MR. VAINO INDONGO MODERATOR: MRS. NDESHIHAFELA VERA UUSHONA INSTRUCTIONS 1. Write all your answers in the answer booklet provided. 2. Read the whole question before answering. 3. Begin each question on a new page. PERMISSIBLE MATERIALS Scientific Calculator THIS EXAMINATION PAPER CONSISTS OF 6 PAGES (INCLUDING THIS FRONT PAGE) 1 Page

2 QUESTION 1: [40] Answer all questions. Each correct answer weighs two marks. 1.1 A gamma camera (y-camera), also called an Anger camera, is a device used to image gamma radiation emitting radioisotopes, a technique known as... A. Positron emission computed tomography B. Scintigraphy C. Electrocardiography D Nuclear medicine imaging 1.2 The first processing layer of a gamma camera that encounter photons from radioactive source, and which restricts the gamma rays from the source so that each point in the image corresponds to a unique point in the source is called... A. Sodium iodide crystal B. Collimator C. Photomultiplier tube D. Multichannel analyser 1.3 Sievert is a unit of: A. Exposure B. Equivalent dose C. Dose rate D. Activity 1.4 Which of the following is/are CORRECT in the gamma camera? A. Each photon interacting with scintilator crystal gives a light flash. B. The total signal amplitudes depend on the energy of a gamma photon. C. Compton scattering energy events are rejected. D. All of the above 1.5 The attenuation of photons in matter is a function of: A. photon energy and Z number B. linear energy transfer C. photon energy and conversion electrons D. mode of decay 1.6 If you received a 40 mci dose of FDG at 6:00 AM and inject a patient at noon, how much activity would there be at the time of injection? A. 40 mci B. 20 mci C. 10 mci D. 5 mci Note: fluorine has a half-life of 110 minutes. 1.7 The Mo-99/Tc-99m generator is an example of which theory of equilibrium? A. First order B Secular C. Specific D Transient 2 Page

3 1.8 Which of the following types of radiation has the greatest linear energy transfer (LET)? A. Alpha B. Beta C. Positron D. Gamma 1.9 Which of the following types of radiation has the greatest penetration in human tissue? A. Alpha B. Beta C. Positron D. Gamma 1.10 Which component of an ultrasound system is made of lead zirconate titanate (PZT)?.005»? transducer's matching layer transducer's active element transducer's damping material scan converter's computer chips 1.11 The impedance of a transducer's matching layer is 2.6 MRayls and the impedance of the piezoelectric crystal is 3.4 MRayls. If this is assumed to be a good imaging system, what is the best estimate for the impedance of the skin? A. 1.5M Rayls B. 3.8 MRays C. 3.4 MRayls D. 5.1 MRayls 1.12 Which of the following lists orders the impedance from highest to lowest? A. skin, gel, matching layer, PZT B. PZT, gel, matching layer, skin C. gel, PZT, matching layer, skin D. PZT, matching layer, gel, skin 1.13 An ultrasonic pulse is traveling in soft tissue. Which of the following is most important in the determination of the frequency of the sound? A. The propagation speed of the ultrasound transducer's matching layer B the thickness of the transducer's backing material C. the impedance of the transducer's matching layer D the propagation speed of the transducer's active element 1.14 What is the region from the transducer to the smallest cross sectional area of a sound beam called? A. Focus B half-value layer thickness C. near zone D Fraunhofer zone 1.15 The area that starts at the ultrasound beam's smallest diameter and extends deeper is; A. the distant zone B the Fresnel zone C. the Fraunhofer zone D the depth of penetration 3 Page

4 1.16 All of the following are true of the focus except: A. It is at the end of the near zone B. It is at the beginning of the Fraunhofer zone C. it has the highest spatial peak intensity l2) D. it is at the start of the Fresnel zone 1.17 The lateral resolution of an ultrasound system is primarily determined by the. A. width of the sound pole B. length of the ultrasound pulse C. duration of the sound pulse D. none of the above 1.18 In the presence of a uniform magnetic field, hydrogen protons; A. Line up along the field and rotate around its axis B. Line up along the field and precess around its axis C. Remain oriented mostly randomly and precess D. Are not affected by the magnetic field around the field axis 1.19 MRI measures hydrogen magnetization; A. Along the main magnetic field B Perpendicular to the main magnetic field C. At inclined angle with the main magnetic field. D When magnetic field is set to zero 1.20 A spin echo is formed by; A. Reversing the direction of B0 B. Flipping proton direction by a radiofrequency pulse C. Applying a negative magnetic field gradient D. None of the above QUESTION 2: [20] 2.1 Define the radiation protection term ALARA and discuss this principle in terms of: (i) time, (ii) distance and (iii) shielding. (7) 2.2 A M099m/Tc99m Generator is in transient equilibrium. The radioactivity of Mo-99m at time to is 16 GBq, (i) find the time (t) elapsed when the activity of Mo-99m turns to be 3.2 GBq later if no milking took place during this time interval? (ii) Estimate the activity ofthe daughter nuclide after time t found in (i). Note: Mo-99m Tm: 67 hours and Tc-99m T1,; = 6 hours. (10) 4 Page

5 A previously fit and healthy 52 year old woman presents with diarrhoea and weight loss. At the hospital, diagnostic imaging reveals a mass in the head of the pancreas. Biopsy confirms adenocarcinoma. Discuss radiation therapy or control measures taken in the management of patients with pancreatic cancer in general. (3) QUESTION 3 [19] 3.1 A collagen of cross-sectional of 1.2 x 10 7 m2 and mass m kg has a tensile strength of 5.0 x 107 Nm z. Calculate the breaking force of the collagen and the value of mass m. (4) 3.2 In medical physics profession, scientists apply physics concepts, theories and methods to healthcare. Discuss four (4) physical applications applied to life sciences on each of the following: (i) Medical imaging techniques. (4) (ii) Medical research using electrical activities in the human body. (4) 3.3 Discuss the similarities and differences between x-rays and gamma rays (5) 3.4 Discuss how bremsstrahlung radiations are produced QUESTION 4 [21] 4.1 Estimate the relative sound intensity on the logarithmic scale corresponding to a (i) 2 fold increase and (ii) 70% decrease in intensity. (4) 4.2 Given that the ultrasound frequency of 5 MHz and wavelengths of 5.9 nm was used in taking an image of a bone. Determine the acoustic impedance of a bone if the density of a bone is 7.2 x 103 kg/ma. 4.3 Resonant frequency is the natural frequency of oscillation in the piezoelectric crystal. Suppose the crystal of diameter 0.94 mm and a volume of 3.2 x 10 '5 m3 has been used in medical imaging department. The third patient attended had to be diagnosed by ultrasound and the velocity of the organ under study was 2050 m/s. approximate the value of frequency of the crystal. (6) = 4.4 if the intensity of reflected ultrasound is R, (22 31) 2 1 transmitted ultrasound wave IS given by T _[Zl+Zz]2' _ _ 2 show that the intensity for (5) 5 Page

6 4.5 Explain the following terms: (4) (i) Radiography (ii) Fluoroscopy END!!!llllllllllllllllllllll 6 Page

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS OPTION I-2 MEDICAL IMAGING Reading Activity Answers IB Assessment Statements Option I-2, Medical Imaging: X-Rays I.2.1. I.2.2. I.2.3. Define

More information

Structure of Biological Materials

Structure of Biological Materials ELEC ENG 3BA3: Structure of Biological Materials Notes for Lecture #19 Monday, November 22, 2010 6.5 Nuclear medicine imaging Nuclear imaging produces images of the distribution of radiopharmaceuticals

More information

Radioisotopes and PET

Radioisotopes and PET Radioisotopes and PET 1 Radioisotopes Elements are defined by their number of protons, but there is some variation in the number of neutrons. Atoms resulting from this variation are called isotopes. Consider

More information

Doppler echocardiography & Magnetic Resonance Imaging. Doppler echocardiography. History: - Langevin developed sonar.

Doppler echocardiography & Magnetic Resonance Imaging. Doppler echocardiography. History: - Langevin developed sonar. 1 Doppler echocardiography & Magnetic Resonance Imaging History: - Langevin developed sonar. - 1940s development of pulse-echo. - 1950s development of mode A and B. - 1957 development of continuous wave

More information

Technical University of Denmark

Technical University of Denmark Technical University of Denmark Page 1 of 11 pages Written test, 9 December 2010 Course name: Introduction to medical imaging Course no. 31540 Aids allowed: none. "Weighting": All problems weight equally.

More information

Electrical Engineering 3BA3: Structure of Biological Materials

Electrical Engineering 3BA3: Structure of Biological Materials Electrical Engineering 3BA3: Structure of Biological Materials Day Class Instructor: Dr. I. C. BRUCE Duration of Examination: 3 Hours McMaster University Final Examination December, 2004 This examination

More information

MEDICAL EQUIPMENT: NUCLEAR MEDICINE. Prof. Yasser Mostafa Kadah

MEDICAL EQUIPMENT: NUCLEAR MEDICINE. Prof. Yasser Mostafa Kadah MEDICAL EQUIPMENT: NUCLEAR MEDICINE Prof. Yasser Mostafa Kadah www.k-space.org Recommended Textbook Introduction to Medical Imaging: Physics, Engineering and Clinical Applications, by Nadine Barrie Smith

More information

3. Which of the following statements is (are) TRUE about detector crystals in Anger cameras?

3. Which of the following statements is (are) TRUE about detector crystals in Anger cameras? BioE 1330 - Exam 2 11/13/2018 Answer Sheet - Correct answer is A for all questions 1. Unlike CT, in nuclear medicine A. Bremsstrahlung is not used to produce high-energy photons. B. signal can be increased

More information

AQA Physics /7408

AQA Physics /7408 AQA Physics - 7407/7408 Module 10: Medical physics You should be able to demonstrate and show your understanding of: 10.1 Physics of the eye 10.1.1 Physics of vision The eye as an optical refracting system,

More information

11/10/2014. Chapter 1: Introduction to Medical Imaging. Projection (Transmission) vs. Emission Imaging. Emission Imaging

11/10/2014. Chapter 1: Introduction to Medical Imaging. Projection (Transmission) vs. Emission Imaging. Emission Imaging Chapter 1: Introduction to Medical Imaging Overview of Modalities Properties of an Image: Limitations on Information Content Contrast (both object & image): Brightness difference Sharpness (blur): Smallest

More information

Part III Minor Option in Medical Physics 2018 Examples Sheet

Part III Minor Option in Medical Physics 2018 Examples Sheet Part III Minor Option in Medical Physics 2018 Examples Sheet Any errors or comments should be addressed sent to: seb53@cam.ac.uk URLs that may be useful: Stanford Event Generation Simulator: http://tinyurl.com/pkg476r

More information

Number of protons. 2. What is the nuclear symbol for a radioactive isotope of copper with a mass number of 60? A) Cu

Number of protons. 2. What is the nuclear symbol for a radioactive isotope of copper with a mass number of 60? A) Cu Chapter 5 Nuclear Chemistry Practice Problems 1. Fill in the missing information in the chart: Medical Use Atomic Mass symbol number Heart imaging 201 Tl 81 Number of protons Number of neutrons Abdominal

More information

A. I, II, and III B. I C. I and II D. II and III E. I and III

A. I, II, and III B. I C. I and II D. II and III E. I and III BioE 1330 - Review Chapters 7, 8, and 9 (Nuclear Medicine) 9/27/2018 Instructions: On the Answer Sheet, enter your 2-digit ID number (with a leading 0 if needed) in the boxes of the ID section. Fill in

More information

MEDICAL IMAGING. METHODS OF MODERN IMAGING, BASED ON ELECTRO-MAGNETIC RADIATION (radiowaves, infrared radiation, X-rays, γ-rays ) AND ULTRASOUND

MEDICAL IMAGING. METHODS OF MODERN IMAGING, BASED ON ELECTRO-MAGNETIC RADIATION (radiowaves, infrared radiation, X-rays, γ-rays ) AND ULTRASOUND MEDICAL IMAGING MEDICAL IMAGING METHODS OF MODERN IMAGING, BASED ON ELECTRO-MAGNETIC RADIATION (radiowaves, infrared radiation, X-rays, γ-rays ) AND ULTRASOUND MEDICAL IMAGING RADIOLOGY NUCLEAR MEDICINE

More information

Technical University of Denmark

Technical University of Denmark Technical University of Denmark Page 1 of 10 pages Written test, 12 December 2012 Course name: Introduction to medical imaging Course no. 31540 Aids allowed: None. Pocket calculator not allowed "Weighting":

More information

Nuclear Medicine RADIOPHARMACEUTICAL CHEMISTRY

Nuclear Medicine RADIOPHARMACEUTICAL CHEMISTRY Nuclear Medicine RADIOPHARMACEUTICAL CHEMISTRY An alpha particle consists of two protons and two neutrons Common alpha-particle emitters Radon-222 gas in the environment Uranium-234 and -238) in the environment

More information

Rad T 290 Worksheet 2

Rad T 290 Worksheet 2 Class: Date: Rad T 290 Worksheet 2 1. Projectile electrons travel from a. anode to cathode. c. target to patient. b. cathode to anode. d. inner shell to outer shell. 2. At the target, the projectile electrons

More information

Introduction to Medical Imaging. Medical Imaging

Introduction to Medical Imaging. Medical Imaging Introduction to Medical Imaging BME/EECS 516 Douglas C. Noll Medical Imaging Non-invasive visualization of internal organs, tissue, etc. I typically don t include endoscopy as an imaging modality Image

More information

This Week. 3/23/2017 Physics 214 Summer

This Week. 3/23/2017 Physics 214 Summer This Week Atoms and nuclei What are we made of? The periodic table Why does it stop? How were the elements made? Radioactive decay Useful but can be toxic Discovery of X Rays: Cathode Rays and TV sets

More information

SCHOOL OF HEALTH AND APPLIED SCIENCES DEPARTMENT OF NATURAL AND APPLIED SCIENCES BSC PROGRAMME

SCHOOL OF HEALTH AND APPLIED SCIENCES DEPARTMENT OF NATURAL AND APPLIED SCIENCES BSC PROGRAMME SCHOOL OF HEALTH AND APPLIED SCIENCES DEPARTMENT OF NATURAL AND APPLIED SCIENCES BSC PROGRAMME QUALIFICATION(S): Bachelor of Science (Major and Minor in Natural Sciences) QUALIFICATION CODE: 07BOSC NQF

More information

Basic physics of nuclear medicine

Basic physics of nuclear medicine Basic physics of nuclear medicine Nuclear structure Atomic number (Z): the number of protons in a nucleus; defines the position of an element in the periodic table. Mass number (A) is the number of nucleons

More information

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam (closed book, 1 sheets of notes double sided allowed, no calculator or other electronic devices allowed) 1. Ultrasound Physics (15 pt) A) (9

More information

Wednesday 21 June 2017 Morning

Wednesday 21 June 2017 Morning Oxford Cambridge and RSA Wednesday 21 June 2017 Morning A2 GCE PHYSICS A G485/01 Fields, Particles and Frontiers of Physics *6808554474* Candidates answer on the Question Paper. OCR supplied materials:

More information

12/1/17 OUTLINE KEY POINTS ELEMENTS WITH UNSTABLE NUCLEI Radioisotopes and Nuclear Reactions 16.2 Biological Effects of Nuclear Radiation

12/1/17 OUTLINE KEY POINTS ELEMENTS WITH UNSTABLE NUCLEI Radioisotopes and Nuclear Reactions 16.2 Biological Effects of Nuclear Radiation OUTLINE 16.1 Radioisotopes and Nuclear Reactions 16.2 Biological Effects of Nuclear Radiation PET scan X-ray technology CT scan 2009 W.H. Freeman KEY POINTS Radioactivity is the consequence of an unstable

More information

Modern physics ideas are strange! L 36 Modern Physics [2] The Photon Concept. How are x-rays produced? The uncertainty principle

Modern physics ideas are strange! L 36 Modern Physics [2] The Photon Concept. How are x-rays produced? The uncertainty principle L 36 Modern Physics [2] X-rays & gamma rays How lasers work Medical applications of lasers Applications of high power lasers Medical imaging techniques CAT scans MRI s Modern physics ideas are strange!

More information

Waves & Radiation exam questions

Waves & Radiation exam questions National 5 Physics Waves & Radiation exam questions these questions have been collated from previous Standard Grade (Credit) and Intermediate 2 exams Thurso High School 1. A mountain climber carries a

More information

Elec Eng 3BA3: Structure of Biological Materials

Elec Eng 3BA3: Structure of Biological Materials Elec Eng 3BA3: Structure of Biological Materials Page 1 of 12 Day Class Instructor: Dr. I. C. BRUCE Duration of Examination: 3 Hours McMaster University Final Examination December 5, 2008 This examination

More information

QUIZ: Physics of Nuclear Medicine Atomic Structure, Radioactive Decay, Interaction of Ionizing Radiation with Matter

QUIZ: Physics of Nuclear Medicine Atomic Structure, Radioactive Decay, Interaction of Ionizing Radiation with Matter QUIZ: Physics of Nuclear Medicine Atomic Structure, Radioactive Decay, Interaction of Ionizing Radiation with Matter 1. An atomic nucleus contains 39 protons and 50 neutrons. Its mass number (A) is a)

More information

Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA ramsey

Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA   ramsey SPECIAL FEATURE: MEDICAL PHYSICS www.iop.org/journals/physed Nuclear medicine Ramsey D Badawi Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA E-mail: ramsey badawi@dfci.harvard.edu

More information

A small object is placed a distance 2.0 cm from a thin convex lens. The focal length of the lens is 5.0 cm.

A small object is placed a distance 2.0 cm from a thin convex lens. The focal length of the lens is 5.0 cm. TC [66 marks] This question is about a converging (convex) lens. A small object is placed a distance 2.0 cm from a thin convex lens. The focal length of the lens is 5.0 cm. (i) Deduce the magnification

More information

ELG7173 Topics in signal Processing II Computational Techniques in Medical Imaging

ELG7173 Topics in signal Processing II Computational Techniques in Medical Imaging ELG7173 Topics in signal Processing II Computational Techniques in Medical Imaging Topic #1: Intro to medical imaging Medical Imaging Classifications n Measurement physics Send Energy into body Send stuff

More information

Nuclear Medicine Intro & Physics from Medical Imaging Signals and Systems, Chapter 7, by Prince and Links

Nuclear Medicine Intro & Physics from Medical Imaging Signals and Systems, Chapter 7, by Prince and Links Nuclear Medicine Intro & Physics from Medical Imaging Signals and Systems, Chapter 7, by Prince and Links NM - introduction Relies on EMISSION of photons from body (versus transmission of photons through

More information

Nuclear Chemistry. Background Radiation. Three-fourths of all exposure to radiation comes from background radiation.

Nuclear Chemistry. Background Radiation. Three-fourths of all exposure to radiation comes from background radiation. Chapter 11 Nuclear Chemistry Background Radiation Three-fourths of all exposure to radiation comes from background radiation. Most of the remaining one-fourth comes from medical irradiation such as X-rays.

More information

Wednesday 23 January 2013 Afternoon

Wednesday 23 January 2013 Afternoon Wednesday 23 January 2013 Afternoon A2 GCE PHYSICS A G485/01 Fields, Particles and Frontiers of Physics *G411600113* Candidates answer on the Question Paper. OCR supplied materials: Data, Formulae and

More information

Michael G. Stabin. Radiation Protection and Dosimetry. An Introduction to Health Physics. 4) Springer

Michael G. Stabin. Radiation Protection and Dosimetry. An Introduction to Health Physics. 4) Springer Michael G. Stabin Radiation Protection and Dosimetry An Introduction to Health Physics 4) Springer Table of Contents Preface Acknowledgments Chapter 1. Introduction to Health Physics 1 1.1 Definition of

More information

INAYA MEDICAL COLLEGE (IMC) RAD LECTURE 1 RADIATION PHYSICS DR. MOHAMMED MOSTAFA EMAM

INAYA MEDICAL COLLEGE (IMC) RAD LECTURE 1 RADIATION PHYSICS DR. MOHAMMED MOSTAFA EMAM INAYA MEDICAL COLLEGE (IMC) RAD 232 - LECTURE 1 RADIATION PHYSICS DR. MOHAMMED MOSTAFA EMAM Radiation: It is defined as the process by which energy is emitted from a source and propagated through the surrounding

More information

www.aask24.com www.aask24.com www.aask24.com P=Positron E= Emission T=Tomography Positron emission or beta plus decay (+ ) is a particular type of radioactive decay, in which a proton inside a radionuclide

More information

Radionuclide Imaging MII Positron Emission Tomography (PET)

Radionuclide Imaging MII Positron Emission Tomography (PET) Radionuclide Imaging MII 3073 Positron Emission Tomography (PET) Positron (β + ) emission Positron is an electron with positive charge. Positron-emitting radionuclides are most commonly produced in cyclotron

More information

Bases of radioisotope diagnostic methods

Bases of radioisotope diagnostic methods Medical, pharmaceutical applications of radioisotopes Bases of radioisotope diagnostic methods Dr. István Voszka Basis of application: radioisotopes have identical behavior in the organism to corresponding

More information

Nuclear Radiation. Natural Radioactivity. A person working with radioisotopes wears protective clothing and gloves and stands behind a shield.

Nuclear Radiation. Natural Radioactivity. A person working with radioisotopes wears protective clothing and gloves and stands behind a shield. Nuclear Radiation Natural Radioactivity A person working with radioisotopes wears protective clothing and gloves and stands behind a shield. 1 Radioactive Isotopes A radioactive isotope has an unstable

More information

This Week. 7/20/2016 Physics 214 Spring

This Week. 7/20/2016 Physics 214 Spring This Week Atoms and nuclei What are we made of? The periodic table Why does it stop? How were the elements made? Radioactive decay Useful but can be toxic Discovery of X Rays: Cathode Rays and TV sets

More information

AEPHY: Nuclear Physics Practise Test

AEPHY: Nuclear Physics Practise Test AEPHY: Nuclear Physics Practise Test Name: OVERALL: Additional 1 mark for units and significant figures. 1. Complete the table below: (2 marks) (63 marks + overall = 64 marks) Element Nuclide Atomic Number

More information

UNCORRECTED PROOF. Table of Contents

UNCORRECTED PROOF. Table of Contents 00-Stabin-Prelims SNY001-Stabin (Typeset by spi publisher services, Delhi) vii of xvi June 1, 2007 17:15 Preface xiii Acknowledgments xv Chapter 1. Introduction to Health Physics 1 1.1 Definition of Health

More information

Medical Imaging Signals and Systems Jerry L. Prince and Jonathan M. Links Upper Saddle River, NJ: Pearson Prentice Hall, 2006

Medical Imaging Signals and Systems Jerry L. Prince and Jonathan M. Links Upper Saddle River, NJ: Pearson Prentice Hall, 2006 i Medical Imaging Signals and Systems Jerry L. Prince and Jonathan M. Links Upper Saddle River, NJ: Pearson Prentice Hall, 2006 Errata, Version 1.02, August 8, 2006 This errata applies to the first printing

More information

Sound wave bends as it hits an interface at an oblique angle. 4. Reflection. Sound wave bounces back to probe

Sound wave bends as it hits an interface at an oblique angle. 4. Reflection. Sound wave bounces back to probe : Ultrasound imaging and x-rays 1. How does ultrasound imaging work?. What is ionizing electromagnetic radiation? Definition of ionizing radiation 3. How are x-rays produced? Bremsstrahlung Auger electron

More information

Application of Nuclear Physics

Application of Nuclear Physics Application of Nuclear Physics Frontier of gamma-ray spectroscopy 0.1 IR visible light UV soft X-ray X-ray hard X-ray gamma-ray 1 10 100 1e3 1e4 1e5 1e6 energy [ev] Photoelectric effect e - Compton scattering

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-302 Dr. E. Rizvi Lecture 24 Medical Imaging Effects of Radiation We now know what radiation is But what does it mean for our bodies? Radioactivity is quantified in

More information

INAYA MEDICAL COLLEGE (IMC) RAD LECTURE 1 RADIATION PHYSICS DR. MOHAMMED MOSTAFA EMAM

INAYA MEDICAL COLLEGE (IMC) RAD LECTURE 1 RADIATION PHYSICS DR. MOHAMMED MOSTAFA EMAM INAYA MEDICAL COLLEGE (IMC) RAD 232 - LECTURE 1 RADIATION PHYSICS DR. MOHAMMED MOSTAFA EMAM LECTURES & CLASS ACTIVITIES https://inayacollegedrmohammedemam.wordpress.com/ Password: drmohammedemam 16-02-2015

More information

Radioisotopes in action. Diagnostic application of radioisotopes. Steps of diagnostic procedure. Information from various medical imaging techniques

Radioisotopes in action. Diagnostic application of radioisotopes. Steps of diagnostic procedure. Information from various medical imaging techniques Radioisotopes in action Diagnostic application of radioisotopes Steps of diagnostic procedure - Radioactive material introduced into the patient - Distribution and alteration of activity is detected -

More information

Differentiating Chemical Reactions from Nuclear Reactions

Differentiating Chemical Reactions from Nuclear Reactions Differentiating Chemical Reactions from Nuclear Reactions 1 CHEMICAL Occurs when bonds are broken or formed. Atoms remained unchanged, though may be rearranged. Involves valence electrons Small energy

More information

CHAPTER 7 TEST REVIEW

CHAPTER 7 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 94 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 7 TEST REVIEW 1. An alpha particle is accelerated through a potential difference of 10 kv.

More information

Chapter 11 Nuclear Chemistry

Chapter 11 Nuclear Chemistry Chapter 11 Nuclear Chemistry 11.1 Nuclear Reactions Nuclear reactions involve the particles located in the nucleus of the atom: The nucleus contains: An atom is characterized by: X A Z - Z the gives the

More information

Name Date Class NUCLEAR RADIATION. alpha particle beta particle gamma ray

Name Date Class NUCLEAR RADIATION. alpha particle beta particle gamma ray 25.1 NUCLEAR RADIATION Section Review Objectives Explain how an unstable nucleus releases energy Describe the three main types of nuclear radiation Vocabulary radioisotopes radioactivity radiation alpha

More information

The Photon Concept. Modern Physics [2] How are x-rays produced? Gamma rays. X-ray and gamma ray photons. X-rays & gamma rays How lasers work

The Photon Concept. Modern Physics [2] How are x-rays produced? Gamma rays. X-ray and gamma ray photons. X-rays & gamma rays How lasers work Modern Physics [2] X-rays & gamma rays How lasers work Medical applications of lasers Applications of high power lasers Medical imaging techniques CAT scans MRI s The Photon Concept a beam of light waves

More information

NORM and TENORM: Occurrence, Characterizing, Handling and Disposal

NORM and TENORM: Occurrence, Characterizing, Handling and Disposal NORM and TENORM: Occurrence, Characterizing, Handling and Disposal Ionizing Radiation and Hazard Potential John R. Frazier, Ph.D. Certified Health Physicist May 12, 2014 Radiation Radiation is a word that

More information

Radiation Protection Fundamentals and Biological Effects: Session 1

Radiation Protection Fundamentals and Biological Effects: Session 1 Radiation Protection Fundamentals and Biological Effects: Session 1 Reading assignment: LLE Radiological Controls Manual (LLEINST 6610): Part 1 UR Radiation Safety Training Manual and Resource Book: Parts

More information

69 Ga Ga

69 Ga Ga Stable isotope Relative atomic mass Mole fraction 69 Ga 68.925 574 0.601 08 71 Ga 70.924 703 0.398 92 Gallium isotopes in medicine 68 Ga is a radioactive isotope that emits positrons, which are used to

More information

Chapter 20 Nuclear Chemistry. 1. Nuclear Reactions and Their Characteristics

Chapter 20 Nuclear Chemistry. 1. Nuclear Reactions and Their Characteristics Chapter 2 Nuclear Chemistry 1. Nuclear Reactions and Their Characteristics Nuclear reactions involve the particles located in the nucleus of the atom: nucleons:. An atom is characterized by its atomic

More information

CLINICALLY USEFUL RADIONUCLIDES:

CLINICALLY USEFUL RADIONUCLIDES: INTRODUCTION It is important that Nuclear Medicine Technologists be familiar with the imaging properties of all commonly used radionuclides to insure correct choice of isotope for a particular study as

More information

The physics of medical imaging US, CT, MRI. Prof. Peter Bogner

The physics of medical imaging US, CT, MRI. Prof. Peter Bogner The physics of medical imaging US, CT, MRI Prof. Peter Bogner Clinical radiology curriculum blocks of lectures and clinical practice (7x2) Physics of medical imaging Neuroradiology Head and neck I. Head

More information

RADIOCHEMICAL METHODS OF ANALYSIS

RADIOCHEMICAL METHODS OF ANALYSIS RADIOCHEMICAL METHODS OF ANALYSIS 1 Early Pioneers in Radioactivity Rutherfo rd: Discoverer Alpha and Beta rays 1897 Roentge n: Discoverer of X- rays 1895 The Curies: Discoverers of Radium and Polonium

More information

FXA UNIT G485 Module X-Rays. Candidates should be able to : I = I 0 e -μx

FXA UNIT G485 Module X-Rays. Candidates should be able to : I = I 0 e -μx 1 Candidates should be able to : HISTORY Describe the nature of X-rays. Describe in simple terms how X-rays are produced. X-rays were discovered by Wilhelm Röntgen in 1865, when he found that a fluorescent

More information

Homework 06. Nuclear

Homework 06. Nuclear HW06 - Nuclear Started: Mar 22 at 11:05am Quiz Instruc!ons Homework 06 Nuclear Question 1 How does a nuclear reaction differ from a chemical reaction? In a nuclear reaction, the elements change identities

More information

Year 12 Notes Radioactivity 1/5

Year 12 Notes Radioactivity 1/5 Year Notes Radioactivity /5 Radioactivity Stable and Unstable Nuclei Radioactivity is the spontaneous disintegration of certain nuclei, a random process in which particles and/or high-energy photons are

More information

Mitigation of External Radiation Exposures

Mitigation of External Radiation Exposures Mitigation of External Radiation Exposures The three (3) major principles to assist with maintaining doses ALARA are :- 1) Time Minimizing the time of exposure directly reduces radiation dose. 2) Distance

More information

Chapter 21

Chapter 21 Chapter 21 http://youtu.be/kwasz59f8ga Nuclear reactions involve the nucleus The nucleus opens, and protons and neutrons are rearranged. The opening of the nucleus releases a tremendous amount of energy

More information

Name: COMBINED SCIENCE Topics 4, 5 & 6 LEARNING OUTCOMES. Maintain a record of your progress Use the booklet to guide revision

Name: COMBINED SCIENCE Topics 4, 5 & 6 LEARNING OUTCOMES. Maintain a record of your progress Use the booklet to guide revision Name: COMBINED SCIENCE Topics 4, 5 & 6 LEARNING OUTCOMES Maintain a record of your progress Use the booklet to guide revision Close the Gap Contemporary record of the Topics / Learning outcomes that I

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 19 Modern Physics Nuclear Physics Nuclear Reactions Medical Applications Radiation Detectors Chapter 29 http://www.physics.wayne.edu/~alan/2140website/main.htm 1 Lightning

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lightning Review Lecture 19 Modern Physics Nuclear Physics Nuclear Reactions Medical Applications Radiation Detectors Chapter 29 http://www.physics.wayne.edu/~alan/2140website/main.htm

More information

Radiation Safety Training Session 1: Radiation Protection Fundamentals and Biological Effects

Radiation Safety Training Session 1: Radiation Protection Fundamentals and Biological Effects Radiation Safety Training Session 1: Radiation Protection Fundamentals and Biological Effects Reading Assignment: LLE Radiological Controls Manual (LLEINST 6610) Part 1 UR Radiation Safety Training Manual

More information

EE 5345 Biomedical Instrumentation Lecture 6: slides

EE 5345 Biomedical Instrumentation Lecture 6: slides EE 5345 Biomedical Instrumentation Lecture 6: slides 129-147 Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University slides can be viewed at: http:// www.seas.smu.edu/~cd/ee5345.html

More information

BNG/ECE 487 FINAL (W16)

BNG/ECE 487 FINAL (W16) BNG/ECE 487 FINAL (W16) NAME: 4 Problems for 100 pts This exam is closed-everything (no notes, books, etc.). Calculators are permitted. Possibly useful formulas and tables are provided on this page. Fourier

More information

Basic physics Questions

Basic physics Questions Chapter1 Basic physics Questions S. Ilyas 1. Which of the following statements regarding protons are correct? a. They have a negative charge b. They are equal to the number of electrons in a non-ionized

More information

Radiation Detection and Measurement

Radiation Detection and Measurement Radiation Detection and Measurement June 2008 Tom Lewellen Tkldog@u.washington.edu Types of radiation relevant to Nuclear Medicine Particle Symbol Mass (MeV/c 2 ) Charge Electron e-,! - 0.511-1 Positron

More information

Procesamiento de Imágenes y Bioseñales

Procesamiento de Imágenes y Bioseñales Procesamiento de Imágenes y Bioseñales Dr. Víctor Castañeda Agenda Physical basis of X-ray- CT, NMR, Ultrasound, Nuclear Medicine Sensors (cameras, gamma probes, microphone) Computational Tomography (CT)

More information

General, Organic, and Biological Chemistry, 3e (Frost) Chapter 2 Atoms and Radioactivity. 2.1 Multiple-Choice

General, Organic, and Biological Chemistry, 3e (Frost) Chapter 2 Atoms and Radioactivity. 2.1 Multiple-Choice General, Organic, and Biological Chemistry, 3e (Frost) Chapter 2 Atoms and Radioactivity 2.1 Multiple-Choice 1) The smallest particle of an element that can be identified as that element is: A) a proton

More information

A Brief Introduction to Medical Imaging. Outline

A Brief Introduction to Medical Imaging. Outline A Brief Introduction to Medical Imaging Outline General Goals Linear Imaging Systems An Example, The Pin Hole Camera Radiations and Their Interactions with Matter Coherent vs. Incoherent Imaging Length

More information

Tuesday 28 June 2016 Morning

Tuesday 28 June 2016 Morning Oxford Cambridge and RSA Tuesday 28 June 2016 Morning A2 GCE PHYSICS A G485/01 Fields, Particles and Frontiers of Physics *1321073468* Candidates answer on the Question Paper. OCR supplied materials: Data,

More information

INTERACTIONS OF RADIATION WITH MATTER

INTERACTIONS OF RADIATION WITH MATTER INTERACTIONS OF RADIATION WITH MATTER Renée Dickinson, MS, DABR Medical Physicist University of Washington Medical Center Department of Radiology Diagnostic Physics Section Outline Describe the various

More information

Chapter 22 - Nuclear Chemistry

Chapter 22 - Nuclear Chemistry Chapter - Nuclear Chemistry - The Nucleus I. Introduction A. Nucleons. Neutrons and protons B. Nuclides. Atoms identified by the number of protons and neutrons in the nucleus 8 a. radium-8 or 88 Ra II.

More information

Radiation Awareness Training. Stephen Price Office of Research Safety

Radiation Awareness Training. Stephen Price Office of Research Safety Radiation Awareness Training Stephen Price Office of Research Safety Purpose This training is intended for Clemson University Faculty, Staff or Students who do not work directly with radioactive materials

More information

2. Which of the following statements help(s) to explain why gas can fill the vessel containing it completely while liquid cannot?

2. Which of the following statements help(s) to explain why gas can fill the vessel containing it completely while liquid cannot? Name: Class: ( ) There are 30 questions. Time Allowed: 45 min 1. Kinetic theory explains the behaviour of a substance in terms of the behaviour of the molecules in it. Which of the following is/are the

More information

Name: Nuclear Practice Test Ms. DeSerio

Name: Nuclear Practice Test Ms. DeSerio Name: Nuclear Practice Test Ms. DeSerio 1. Which nuclear emission has the greatest mass and the least penetrating power? 1) an alpha particle 2) a beta particle 3) a neutron 4) a positron 2. The nucleus

More information

Radiation Protection & Radiation Therapy

Radiation Protection & Radiation Therapy Radiation Protection & Radiation Therapy For Medical Students Professor of Medical Physics Radiation Units Activity Number disintegrations per second (Curie, Becquerel) Exposure (Roentgen, C/kg) Absorbed

More information

Study of the feasibility of a compact gamma camera for real-time cancer assessment

Study of the feasibility of a compact gamma camera for real-time cancer assessment Study of the feasibility of a compact gamma camera for real-time cancer assessment L. Caballero Instituto de Física Corpuscular - CSIC - University of Valencia; C/Catedrático José Beltrán, 2; E-46980;

More information

Final exam questions ED

Final exam questions ED Final exam questions ED 2015-2016 1. Radiation a) Properties and types of radiation b) Physical parameters of radiation 2. Law of attenuation of radiation a) Experimental interpretation of the law b) Forms

More information

Medical Biophysics II. Final exam theoretical questions 2013.

Medical Biophysics II. Final exam theoretical questions 2013. Medical Biophysics II. Final exam theoretical questions 2013. 1. Early atomic models. Rutherford-experiment. Franck-Hertz experiment. Bohr model of atom. 2. Quantum mechanical atomic model. Quantum numbers.

More information

and have low penetrating power) Alpha particles are released through alpha decay. Beta Particles: An electron that comes from a nucleus through

and have low penetrating power) Alpha particles are released through alpha decay. Beta Particles: An electron that comes from a nucleus through TOPIC 13: Nuclear Chemistry 1. When the atomic nucleus of one element is changed into the nucleus of a different element, the reaction is called transmutation. Stability of a Nucleus: Any element containing

More information

MRI Homework. i. (0.5 pt each) Consider the following arrangements of bar magnets in a strong magnetic field.

MRI Homework. i. (0.5 pt each) Consider the following arrangements of bar magnets in a strong magnetic field. MRI Homework 1. While x-rays are used to image bones, magnetic resonance imaging (MRI) is used to examine tissues within the body by detecting where hydrogen atoms (H atoms) are and their environment (e.g.

More information

Chapter 21. Preview. Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions

Chapter 21. Preview. Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions Preview Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions Section 1 The Nucleus Lesson Starter Nuclear reactions result in much larger energy

More information

The physics US and MRI. Prof. Peter Bogner

The physics US and MRI. Prof. Peter Bogner The physics US and MRI Prof. Peter Bogner Sound waves mechanical disturbance, a pressure wave moves along longitudinal wave compression rarefaction zones c = nl, (c: velocity, n: frequency, l: wavelength

More information

SPECIMEN. Date Morning/Afternoon Time allowed: 2 hours 15 minutes. A Level Physics A H556/02 Exploring physics Sample Question Paper PMT

SPECIMEN. Date Morning/Afternoon Time allowed: 2 hours 15 minutes. A Level Physics A H556/02 Exploring physics Sample Question Paper PMT A Level Physics A H556/02 Exploring physics Sample Question Paper Date Morning/Afternoon Time allowed: 2 hours 15 minutes You must have: the Data, Formulae and Relationships Booklet You may use: a scientific

More information

fission and fusion and classify a nuclear reaction as either a fission or fusion reaction.

fission and fusion and classify a nuclear reaction as either a fission or fusion reaction. Chemistry HP Unit 11 Nuclear Chemistry Learning Targets (Your exam at the end of Unit 11 will assess the following:) 11. Nuclear Chemistry 11-1. Write the nuclide symbol for a given isotope. 11-2. Describe

More information

Physics of Radiotherapy. Lecture II: Interaction of Ionizing Radiation With Matter

Physics of Radiotherapy. Lecture II: Interaction of Ionizing Radiation With Matter Physics of Radiotherapy Lecture II: Interaction of Ionizing Radiation With Matter Charge Particle Interaction Energetic charged particles interact with matter by electrical forces and lose kinetic energy

More information

Radionuclide Imaging MII Detection of Nuclear Emission

Radionuclide Imaging MII Detection of Nuclear Emission Radionuclide Imaging MII 3073 Detection of Nuclear Emission Nuclear radiation detectors Detectors that are commonly used in nuclear medicine: 1. Gas-filled detectors 2. Scintillation detectors 3. Semiconductor

More information

Chapter 21 Nuclear Chemistry

Chapter 21 Nuclear Chemistry Chapter 21 Nuclear Chemistry The Nucleus Remember that the nucleus is comprised of the two nucleons, protons and neutrons. The number of protons is the atomic number. The number of protons and neutrons

More information

Chapter 18: Radioactivity And Nuclear Transformation. Presented by Mingxiong Huang, Ph.D.,

Chapter 18: Radioactivity And Nuclear Transformation. Presented by Mingxiong Huang, Ph.D., Chapter 18: Radioactivity And Nuclear Transformation Presented by Mingxiong Huang, Ph.D., mxhuang@ucsd.edu 18.1 Radionuclide Decay Terms and Relationships Activity Decay Constant Physical Half-Life Fundamental

More information

National 5- Nuclear Chemistry past paper revision

National 5- Nuclear Chemistry past paper revision National 5- Nuclear Chemistry past paper revision 1. The diagram shows the paths of alpha, beta and gamma radiations as they pass through an electric field. Which line in the table correctly identifies

More information

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc. Lecture Presentation Chapter 21, Inc. James F. Kirby Quinnipiac University Hamden, CT Energy: Chemical vs. Chemical energy is associated with making and breaking chemical bonds. energy is enormous in comparison.

More information

Radiation Quantities and Units

Radiation Quantities and Units Radiation Quantities and Units George Starkschall, Ph.D. Lecture Objectives Define and identify units for the following: Exposure Kerma Absorbed dose Dose equivalent Relative biological effectiveness Activity

More information