Notes: Part 1 - Nuclear Chemistry

Size: px
Start display at page:

Download "Notes: Part 1 - Nuclear Chemistry"

Transcription

1 Notes: Part 1 - Nuclear Chemistry NUCLEAR REACTIONS: NUCLEAR FISSION: NUCLEAR FUSION: NUCLIDES: -most nuclides have even # of protons and neutrons the neutron-to-proton ratio determines the stability of the nucleus: -for low atomic # s: -above atomic #20: nuclei whose neutron-to-proton ratio is unstable undergo radioactive decay by emitting 1 or more particles and/or electromagnetic rays: Type Symbol Identity Mass (amu) Charge Penetration Alpha Beta Gamma Proton Neutron NUCLEAR EQUATIONS: Example 1: Radon-226 transmutates by alpha decay. Write the nuclear equation that represents this process. Example 2: Write the nuclear equation for the beta-decay of boron-12. Example 3: Write the nuclear equation representing gamma radiation given off by the unstable radionuclide cobalt-226.

2 NOTES: Part 2 - Nuclear Fission & Fusion FISSION: *some elements fission spontaneously * some elements can be induced to undergo fission when bombarded with other particles (e.g. neutrons) FUSION: *the sun is a tremendous fusion reaction; the major fusion reaction in the sun is thought to be: *both fission & fusion release large amounts of energy (fusion more than fission) The Atomic Bomb (FISSION) -when the nucleus of U-235 splits, 2 isotopes are formed, plus neutrons are emitted -these neutrons collide with other U-235 atoms, causing them to undergo fission; they release neutrons, and so on The Result CHAIN REACTION!! -there is a minimum mass of fissionable material that must be used to sustain a chain reaction: CRITICAL MASS! -1 type of bomb: Nuclear Reactors (FISSION) *use subcritical masses of fissionable material CORE: *control rods: absorb neutrons *pull rods out of core: fission increases *push rods back into the core: fission decreases **Safety feature: if power is lost, rods will automatically fall into the core and shut the reaction down. TO GENERATE ELECTRICITY: 1) 2) 3) 4) PROS OF NUCLEAR ENERGY: CONS OF NUCLEAR ENERGY:

3 Notes: Part 3 Rates of Decay and Half-Life Radionuclides have different stabilities and decay at different rates. Intro to Half-Life: Half-life (t 1/2): Half-Life Examples 1. How much of the original sample remains after 1 half-life? 2. How much of the original sample remains after 2 half-lives? 3. Approximately how many half-lives does it take for 12.5% of the radioisotope to remain? 4. Compared to the energy liberated per gram during a typical chemical reaction, the amount of energy liberated per gram during the decay of a radioisotope is: 5. Based on the decay curve of thorium-234: a. What is the shape of this curve? b. What is the half-life of Thorium-234? c. What percent of the isotope remains after 60 days? d. How many grams of a 250 g sample of thorium- 234 would remain after 40 days had passed? 6. Carbon-14 emits beta radiation and decays with a half-life of 5730 years. Assume you start with a mass of 2.00 x g of carbon-14 a. How long is 3 half-lives? b. How many grams of the isotope remain at the end of 3 half-lives? 7. A sample of thorium-234 has a half-life of 24.1 days. Will all the thorium undergo radioactive decay in 48.2 days? Explain.

4 Integrated rate equation: A = the amt. of decaying sample remaining at some time, t A o= the amt. of sample present at the beginning K = rate constant; different for each radionuclide t = time --- OR --- N = # of disintegrations per unit of time; relative activity N o= original activity Half-life = the amount of time required for half of the original sample to decay Example: Cobalt-60 decays with the emission of beta particles and gamma rays, with a helf-life of 5.27 years. How much of a 3.42 g of cobalt-60 remains after 30.0 years?

5 Uses of Radionuclides Radiocarbon dating: the ages of specimens of organic origin can be estimated by measuring the amount of cabon-14 in a sample. Example: A piece of wood taken from a cave dwelling in New Mexico is found to have a carbon-14 activity (per gram of carbon) only times that of wood today. Estimate the age of the wood. (The half-life of carbon-14 is 5730 years.) ***NOTE: Objects older than 50,000 years have too little activity to be dated accurately using carbon dating; instead the following methods are used: 1. Potassium-40 decays to argon-40: half-life = 1.3 x 10 9 years 2. Uranium-238 decays to lead-206: half-life = 4.51 x 10 9 years Example: A sample of uranium ore is found to contain 4.64 mg of uranium-238 and 1.22 mg of lead-206. Estimate the age of the ore.

6 Worksheet 1: Nuclear Equations (1 pg) 1. Bombardment of aluminum-27 by alpha particles produces phosphorous-30 and one other particle. Write the nuclear equation for this reaction and identify the other particle. 2. Plutonium-239 can be produced by bombarding uranium-238 with alpha particles. How many neutrons will be produced as a by product of each reaction? Write the nuclear equation for this reaction? 3. When bombarded with neutrons, cobalt-59 is converted to cobalt-60. What is the nuclear equation for this reaction? 4. One method for producing plutonium-238 is by bombarding uranium-238 with deuterium (hydrogen-2), which produced neptunium-238 and 2 neutrons. The unstable neptunium then decays to form plutonium-238. Write the nuclear equations for this two-step reaction. What other particle is produced in the second reaction? 5. Neutron bombardment of plutonium-239 yields americium-240 and another particle. Write the nuclear equation and identify the other particle produced. 6. Alpha-particle bombardment of plutonium-239 produced a neutron and another radionuclide. Write the nuclear equation for this reaction and identify the radionuclide. 7. One possible result of the impact of a neutron on a uranium-235 nucleus is the splitting of the uranium into tellurium-137, zirconium-97 and two other particles. Write the nuclear equation for this reaction and identify the two other particles. 8. When bombarded with neutrons, lithium-6 produced an alpha particle and an isotope of hydrogen. Write the nuclear equation for this reaction. What isotope of hydrogen is produced? 9. With what particle would you bombard sulfur-32 to produce hydrogen-1 and phosphorus-32? Write the appropriate nuclear equation? 10. With what particle would you bombard bismuth-209 to produce astatine-211 and 2 neutrons? Express this reaction in the form of a nuclear equation.

7 Wkst 2: Half-Life Problem Set #1 (1 pg) 1. The half-life of cesium-137 is 30.2 years. If the initial mass of a sample of cesium-137 is 1.00 kg, how much will remain after 151 years? 2. Given that the half-life of carbon-14 is 5730 years, consider a sample of fossilized wood that, when alive, would have contained 24 g of carbon-14. It now contains 1.5 g of carbon. How old is the sample? 3. A 64-g sample of germanium-66 is left undisturbed for 12.5 hours. At the end of that period, only 2.0 g remain. What is the half-life of this material? 4. With a half-life of 28.8 years, how long will it take for 1 g of strontium-90 to decay to 125 mg? 5. Cobalt-60 has a half-life of 5.3 years. If a pellet that has been in storage for 26.5 years contains 14.5 g of cobalt- 60, how much of this radioisotope was present when the pellet was put into storage? 6. A kg block of phosphorus-32, which has a half-life of 14.3 days, is stored for days. At the end of this period, how much phosphorus-32 remains? 7. A sample of air from a basement is collected to test for the presence of radon-222, which has a half-life of 3.8 days. However, delays prevent the sample from being tested until 7.6 days have passed. Measurements indicate the presence of 6.5 g of radon-222. How much radon-222 was present in the sample when it was initially collected? 8. A M solution of iodine-131, which has a half-life of 8.0 days, is prepared. After 40. days, how much iodine will remain in 1.0 L if solution? Express the result in moles. 9. The half-life of sodium-25 is 1.0 minute. Starting with 1 kg if this isotope, how much will remain after half an hour? 10. What is the half-life of polonium-214 if, after 820. seconds, a 1.0-g sample decays to mg?

8 Wkst 3: Half- Life Problem Set #2 (2 pgs) 1) Nitrogen-13 decays to carbon-13 with a half-life of 10.0 minutes. Assume that you are given a starting mass of 2.00 grams of nitrogen-13. a) How long are four half-lives? b) How many grams of nitrogen-13 will remain after 42.7 minutes? 2) Maganese-56 has a half-life of 2.60 hours. Assuming you start with a sample of 10.0 grams of manganese-56, how much will remain after 24.3 hours? 3) The mass of cobalt-60 in a sample is found to have decreased from 5.40 grams to 1.20 grams in a period of 10.6 years. From this information, calculate the half-life of cobalt-60. 4) A patient is administered 20.0 mg of iodine-131. How much iodine-131 will remain in the patient s body after exactly 3 weeks (21 days) if the half-life of iodine-131 is 8.00 days? 5) Suppose you have a sample containing 800. grams of a radioactive substance. If after exactly 1 hour only 22.7 grams of the original compound remain, what is the half-life of this isotope?

9 6) You are an archaeologist and you have discovered the remains of an ancient civilization. In one of the human bones that you find, you determine that of the original 60.6 grams of carbon-14 present in the bone, only 12.2 grams remain. Knowing that the half-life of carbon-14 is about 5730 years, what do you determine is the age of the bone? 7) You are a famous paleontologist and an expert in radioactive-dating techniques. One day, two visitors come to your laboratory and present you with two different fossils. One fossil is a dinosaur footprint, the other a human jawbone. Both were found at the bottom of a deep valley cut by a stream through cliffs of sedimentary rock. Your guests are very exited. Because they found these fossils next to each other near the steam bed, they feel they have found conclusive evidence that humans and dinosaurs lived at the same time. You are asked to date the samples to confirm their claims. a) You first test the human jawbone. You determine that the carbon-14 activity is only times that of a human bone today. Estimate the age of the human jawbone. b) You next examine the fossil footprint. You discover that the fresh mud that the dinosaur stepped in had just been covered with a thin layer of volcanic ash. You study the amount of potassium-40 and argon-40 in the ash. You find that the sample contains 2.76 mg of potassium-40 and mg of argon-40. The half-life of potassium-40 is 1.3 billion years. What is the age of the fossil footprint? c) Were your visitors conclusions about these fossils ages correct? Explain. d) If they were not, could you explain the fact that they were found together at the bottom of the valley?

10 Wkst 4: RADIATION REVIEW GUIDE (2 pgs) 1. Nuclear Chemistry: a. What is the difference between regular elements and radioactive elements? b. How are the following two reactions different? i. NaCl Na + + Cl - ii. U Th + He 2. Half-life a. What is half life? b. Why is it beneficial that different substances have different half lives? 3. Fission a. What is fission? b. Draw a picture of U-235 atom going through fission. c. What are the key things that keep fission going? d. Which element was used in the atomic bomb named Little Boy? e. What is Critical mass? f. Why did scientists begin creation of the atomic bomb in the first place? 4. Nuclear reactors a. What is the purpose of a nuclear reactor? (What does it do?) b. What do the control rods do? How do they do the controlling? c. What do you do with the control rods if you want to increase fission? d. What do you do with the control rods if you want to decrease fission?

11 5. Chernobyl a. Why did people die right away after Chernobyl exploded? b. How did radiation reach 20 other countries? 6. Fusion a. What is fusion? b. Where does fusion commonly take place? c. Why is fusion difficult to start? 7. Write balanced nuclear equations for the following reactions: a. Radium-223 undergoes alpha decay b. Carbon-14 undergoes negative beta decay c. Fission of uranium-235 activated by the bombardment of a neutron to form tellurium-137, another large nucleus and three neutrons. 8. The half-life of cesium-137 is 30.2 years. If the initial mass of a sample of cesium-137 is 1.00 kg, how much will remain after 162 years? 9. Given that the half-life of carbon-14 is 5730 years, consider a sample of fossilized wood that, when alive, would have contained 22.5 g of carbon-14. It now contains 1.5 g of carbon-14. How old is the sample? 10. A sample of air from a basement is collected to test for the presence of radon-222, which has a half-life of 3.8 days. However, delays prevent the sample from being tested until 9.0 days have passed. Measurements indicate the presence of 6.5 micrograms of radon-222. How much radon-222 was present in the sample when it was initially collected?

Table O: Symbols Used in Nuclear Chemistry

Table O: Symbols Used in Nuclear Chemistry Packet 12: NUCLEAR CHEMISTRY STABLITY OF NUCLEI Most nuclei are stable and don t change. They are found within the belt of stability. Some nuclei are unstable and break down spontaneously giving off rays

More information

Science 10 Radioactivity Review v3

Science 10 Radioactivity Review v3 Class: Date: Science 10 Radioactivity Review v3 Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. An atom

More information

Nuclear Study Packet. 1. What subatomic particles are involved in nuclear reactions? 2. What subatomic particles are involved in chemical reactions?

Nuclear Study Packet. 1. What subatomic particles are involved in nuclear reactions? 2. What subatomic particles are involved in chemical reactions? Name Period Nuclear Study Packet Set 1 1. What subatomic particles are involved in nuclear reactions? 2. What subatomic particles are involved in chemical reactions? 3. If an atom undergoes a reaction

More information

UNIT 13: NUCLEAR CHEMISTRY

UNIT 13: NUCLEAR CHEMISTRY UNIT 13: NUCLEAR CHEMISTRY REVIEW: ISOTOPE NOTATION An isotope notation is written as Z A X, where X is the element, A is the mass number (sum of protons and neutrons), and Z is the atomic number. For

More information

Radioactivity is the spontaneous disintegration of nuclei. The first radioactive. elements discovered were the heavy atoms thorium and uranium.

Radioactivity is the spontaneous disintegration of nuclei. The first radioactive. elements discovered were the heavy atoms thorium and uranium. Chapter 16 What is radioactivity? Radioactivity is the spontaneous disintegration of nuclei. The first radioactive elements discovered were the heavy atoms thorium and uranium. These heavy atoms and others

More information

the properties of that element

the properties of that element Name Date Due Atomic Structure and the Periodic Table: Unit Objective Study Guide Part 1 Directions: Write your answers to the following questions in the space provided. For problem solving, all of the

More information

Chapter 7 Review. Block: Date:

Chapter 7 Review. Block: Date: Science 10 Chapter 7 Review Name: KEY Block: Date: 1. Radioactivity is the release of high-energy particles and rays from a substance as a result of changes in the nuclei of its atoms.. _Natural background

More information

Isotopes Atoms of an element (same # p+) that differ in their number of neutrons

Isotopes Atoms of an element (same # p+) that differ in their number of neutrons Isotopes Atoms of an element (same # p+) that differ in their number of neutrons Radio-isotopes Isotope of an element that is UNSTABLE. They spontaneously emit particles (energy) in order to achieve a

More information

The previous images display some of our hopes and fears associated with nuclear radiation. We know the images, and some of the uses, but what is Nuclear Radiation and where does it come from? Nuclide In

More information

Atomic Notation (or Nuclear Symbol): Shorthand for keeping track of protons and neutrons in the nucleus

Atomic Notation (or Nuclear Symbol): Shorthand for keeping track of protons and neutrons in the nucleus Name Section CHM52LL: Nuclear Chemistry: Radioactivity, Decay, Dating, and Other Hazards There is no prelab assignment this week I. Radioactive Isotopes and Nuclear Equations Atoms are composed of three

More information

Unit 13: Nuclear Practice Packet Regents Chemistry: Practice Packet: Unit 13 Nuclear Chemistry

Unit 13: Nuclear Practice Packet Regents Chemistry: Practice Packet: Unit 13 Nuclear Chemistry Unit 13: Nuclear Practice Packet Regents Chemistry: Practice Packet: Unit 13 Nuclear Chemistry 1 Unit 13: Nuclear Practice Packet Lesson 1: Radioactive Decay Objective: Construct nuclear equations for

More information

fission and fusion and classify a nuclear reaction as either a fission or fusion reaction.

fission and fusion and classify a nuclear reaction as either a fission or fusion reaction. Chemistry HP Unit 11 Nuclear Chemistry Learning Targets (Your exam at the end of Unit 11 will assess the following:) 11. Nuclear Chemistry 11-1. Write the nuclide symbol for a given isotope. 11-2. Describe

More information

Atoms and Nuclear Chemistry. Atoms Isotopes Calculating Average Atomic Mass Radioactivity

Atoms and Nuclear Chemistry. Atoms Isotopes Calculating Average Atomic Mass Radioactivity Atoms and Nuclear Chemistry Atoms Isotopes Calculating Average Atomic Mass Radioactivity Atoms An atom is the smallest particle of an element that has all of the properties of that element. Composition

More information

Radioactivity Review (Chapter 7)

Radioactivity Review (Chapter 7) Science 10 Radioactivity Review (Chapter 7) 1. The alpha decay of radon-222 will yield which of the following? a. bismuth-220 c. astatine-222 b. francium-222 d. polonium-218 2. Which of the following types

More information

Radioactivity and Balancing Nuclear Reactions: Balancing Nuclear Reactions and Understanding which Particles are Involves

Radioactivity and Balancing Nuclear Reactions: Balancing Nuclear Reactions and Understanding which Particles are Involves General Chemistry II Jasperse Nuclear Chemistry. Extra Practice Problems Radioactivity and Balancing Nuclear Reactions: Balancing Nuclear Reactions and Understanding which Particles are Involved he Stability

More information

Ch Radioactivity. Henry Becquerel, using U-238, discovered the radioactive nature of elements in 1896.

Ch Radioactivity. Henry Becquerel, using U-238, discovered the radioactive nature of elements in 1896. Ch. 10 - Radioactivity Henry Becquerel, using U-238, discovered the radioactive nature of elements in 1896. Radioactivity the process in which an unstable atomic nucleus emits charged particles and energy

More information

Chapter 21 Nuclear Chemistry

Chapter 21 Nuclear Chemistry Chapter 21 Nuclear Chemistry The Nucleus Remember that the nucleus is comprised of the two nucleons, protons and neutrons. The number of protons is the atomic number. The number of protons and neutrons

More information

Nuclear Chemistry - HW

Nuclear Chemistry - HW Nuclear Chemistry - HW PSI AP Chemistry Name 1) In balancing the nuclear reaction 238 92U 234 90E + 4 2He, the identity of element E is. A) Pu B) Np C) U D) Pa E) Th 2) This reaction is an example of.

More information

NOTES: 25.2 Nuclear Stability and Radioactive Decay

NOTES: 25.2 Nuclear Stability and Radioactive Decay NOTES: 25.2 Nuclear Stability and Radioactive Decay Why does the nucleus stay together? STRONG NUCLEAR FORCE Short range, attractive force that acts among nuclear particles Nuclear particles attract one

More information

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes St Ninian s High School Chemistry Department National 5 Chemistry Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes Name Learning Outcomes After completing this topic you should be able to :

More information

Nuclear Chemistry. Chapter 24

Nuclear Chemistry. Chapter 24 Nuclear Chemistry Chapter 24 Radioactivity Radioisotopes are isotopes that have an unstable nucleus. They emit radiation to attain more stable atomic configurations in a process called radioactive decay.

More information

Chapter 25. Nuclear Chemistry. Types of Radiation

Chapter 25. Nuclear Chemistry. Types of Radiation Chapter 25 Nuclear Chemistry Chemical Reactions 1. Bonds are broken and formed 2. Atoms may rearrange, but remain unchanged 3. Involve only valence electrons 4. Small energy changes 5. Reaction rate is

More information

Regents review Nuclear Chemistry

Regents review Nuclear Chemistry 2011-2012 1. Given the nuclear equation: 14 7N + X 16 8O + 2 1H What is particle X? A) an alpha particle B) a beta particle C) a deuteron D) a triton 2. The nucleus of a radium-226 atom is unstable, which

More information

Chem 1A Chapter 5 and 21 Practice Test Grosser ( )

Chem 1A Chapter 5 and 21 Practice Test Grosser ( ) Class: Date: Chem A Chapter 5 and 2 Practice Test Grosser (203-204) Multiple Choice Identify the choice that best completes the statement or answers the question.. The periodic law states that the properties

More information

Chapter 4. Atomic Structure

Chapter 4. Atomic Structure Chapter 4 Atomic Structure Warm Up We have not discussed this material, what do you know already?? What is an atom? What are electron, neutrons, and protons? Draw a picture of an atom from what you know

More information

Friday, 05/06/16 6) HW QUIZ MONDAY Learning Target (NEW)

Friday, 05/06/16 6) HW QUIZ MONDAY Learning Target (NEW) Friday, 05/06/16 1) Warm-up: If you start with 100g of a radioactive substance, how much will be left after 3 half-lives? 2) Review HW & Nuclear Notes 3) Complete Modeling Energy Investigation 4) Complete:

More information

Notes: Unit 13 Nuclear Chemistry

Notes: Unit 13 Nuclear Chemistry Name: Regents Chemistry: Notes: Unit 13 Nuclear Chemistry Name: KEY IDEAS: Stability of isotopes is based in the ratio of neutrons and protons in its nucleus. Although most nuclei are stable, some are

More information

The Electromagnetic Spectrum. 7.1 Atomic Theory and Radioactive Decay. Isotopes. 19K, 19K, 19K Representing Isotopes

The Electromagnetic Spectrum. 7.1 Atomic Theory and Radioactive Decay. Isotopes. 19K, 19K, 19K Representing Isotopes 7.1 Atomic Theory and Radioactive Decay Natural background radiation exists all around us. Radioactivity is the release of high energy particles or waves When atoms lose high energy particles and waves,

More information

Chapter 10. Section 10.1 What is Radioactivity?

Chapter 10. Section 10.1 What is Radioactivity? Chapter 10 Section 10.1 What is Radioactivity? What happens when an element undergoes radioactive decay? How does radiation affect the nucleus of an unstable isotope? How do scientists predict when an

More information

What does rate of reaction mean?

What does rate of reaction mean? 1 of 39 What does rate of reaction mean? 2 of 39 The speed of different chemical reactions varies hugely. Some reactions are very fast and others are very slow. The speed of a reaction is called the rate

More information

1. This question is about the Rutherford model of the atom.

1. This question is about the Rutherford model of the atom. 1. This question is about the Rutherford model of the atom. (a) Most alpha particles used to bombard a thin gold foil pass through the foil without a significant change in direction. A few alpha particles

More information

Key Question: What role did the study of radioactivity play in learning more about atoms?

Key Question: What role did the study of radioactivity play in learning more about atoms? Name Chemistry Essential question: How were the parts of the atom determined? Key Question: What role did the study of radioactivity play in learning more about atoms? Vocabulary: alpha particle fusion

More information

Nuclear Chemistry. The Nucleus. Isotopes. Slide 1 / 43. Slide 2 / 43. Slide 3 / 43

Nuclear Chemistry. The Nucleus. Isotopes. Slide 1 / 43. Slide 2 / 43. Slide 3 / 43 Slide 1 / 43 Nuclear Chemistry The Nucleus Slide 2 / 43 Remember that the nucleus is comprised of the two nucleons, protons and neutrons. The number of protons is the atomic number. The number of protons

More information

Nonrenewable Energy: Nuclear. Energy Part 2

Nonrenewable Energy: Nuclear. Energy Part 2 Nonrenewable Energy: Nuclear Energy Part 2 What do you know about Nuclear Chemistry? http://ed.ted.com/lessons/radioactivity-expect-the-unexpected-steveweatherall I. Radiation Radiation = any movement

More information

RADIOACTIVITY: spontaneous disintegration of the nucleus of certain atoms accompanied by the emission (release) of particles and/or energy

RADIOACTIVITY: spontaneous disintegration of the nucleus of certain atoms accompanied by the emission (release) of particles and/or energy RADIOACTIVITY: spontaneous disintegration of the nucleus of certain atoms accompanied by the emission (release) of particles and/or energy ~ TRANSMUTATION: the change of one element into another due to

More information

D) g. 2. In which pair do the particles have approximately the same mass?

D) g. 2. In which pair do the particles have approximately the same mass? 1. A student constructs a model for comparing the masses of subatomic particles. The student selects a small, metal sphere with a mass of gram to represent an electron. A sphere with which mass would be

More information

Isotopes and Radioactive Decay

Isotopes and Radioactive Decay NAME PERIOD DATE CHAPTER 4 NOTES: ISOTOPES Isotopes and Radioactive Decay ISOTOPES: Atoms that contain the same number of protons but a different number of neutrons. Isotopes containing more neutrons have

More information

RADIOACTIVITY: spontaneous disintegration of the nucleus of certain atoms accompanied by the emission (release) of particles and/or energy

RADIOACTIVITY: spontaneous disintegration of the nucleus of certain atoms accompanied by the emission (release) of particles and/or energy RADIOACTIVITY: spontaneous disintegration of the nucleus of certain atoms accompanied by the emission (release) of particles and/or energy ~ TRANSMUTATION: the change of one element into another due to

More information

RADIOACTIVITY & HALF-LIFE Part 2

RADIOACTIVITY & HALF-LIFE Part 2 RADIOACTIVITY & HALF-LIFE Part 2 Radioactivity Radioactivity: Results from radioactive decay, which is the process whereby unstable atomic nuclei transform and emit radiation. Has existed longer than the

More information

Name Date Class NUCLEAR RADIATION. alpha particle beta particle gamma ray

Name Date Class NUCLEAR RADIATION. alpha particle beta particle gamma ray 25.1 NUCLEAR RADIATION Section Review Objectives Explain how an unstable nucleus releases energy Describe the three main types of nuclear radiation Vocabulary radioisotopes radioactivity radiation alpha

More information

Unit 1 Test A Atomic Theory & Nuclear Decay 1. Which of these BEST describes any two atoms of the same element? a. same number of protons

Unit 1 Test A Atomic Theory & Nuclear Decay 1. Which of these BEST describes any two atoms of the same element? a. same number of protons 1. Which of these BEST describes any two atoms of the same element? same number of protons same number of chemical bonds same number of neutrons same number of particles in the nucleus Self Assessment

More information

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc. Lecture Presentation Chapter 21, Inc. James F. Kirby Quinnipiac University Hamden, CT Energy: Chemical vs. Chemical energy is associated with making and breaking chemical bonds. energy is enormous in comparison.

More information

Nuclear 14.notebook. January 26, Radioactivity and Half Life

Nuclear 14.notebook. January 26, Radioactivity and Half Life Radioactivity and Half Life All elements with more than 82 protons have unstable nuclei (i.e. Bi and beyond!) and are said to be radioactive. This is because there are too many protons in too small a volume

More information

Chemistry 19 Prep Test - Nuclear Processes

Chemistry 19 Prep Test - Nuclear Processes Chapter 9 Prep-Test Chemistry 9 Prep Test - Nuclear Processes Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.. Which of the illustrations above

More information

Nuclear Chemistry. Proposal: build a nuclear power plant in Broome County. List the pros & cons

Nuclear Chemistry. Proposal: build a nuclear power plant in Broome County. List the pros & cons Nuclear Chemistry Proposal: build a nuclear power plant in Broome County. List the pros & cons 1 Nuclear Chemistry Friend or Fiend 2 The Nucleus What is in the nucleus? How big is it vs. the atom? How

More information

Half Life Practice Problems #3

Half Life Practice Problems #3 Half Life Practice Problems #3 1. The half life of Cs-137 is 30.2 years. If the initial mass of the sample is 1.00kg, how much will remain after 151 years? 2. Carbon-14 has a half life of 5730 years. Consider

More information

Unit 13: Nuclear Chemistry

Unit 13: Nuclear Chemistry Name Unit 13: Nuclear Chemistry Skills: 1. Review Atomic Structure 2. Determining Nuclear Stability 3. Naming and Drawing Hydrocarbons 4. Using N + O to Write Decay Equations Period 5. Solve Various Half

More information

There are no stable isotopes of elements above atomic number 83.

There are no stable isotopes of elements above atomic number 83. Nuclear Chemistry Stability of isotopes is based on the ratio of neutrons and protons in its nucleus. Although most nuclei are stable, some are unstable and spontaneously decay, emitting radiation. All

More information

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Radioactivity Test Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Radioactive s have unstable a. electrons. c. protons. b. nuclei.

More information

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of?

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? Nuclear Physics Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

Nuclear Chemistry or Radiochemistrv

Nuclear Chemistry or Radiochemistrv Nuclear Chemistry or Radiochemistrv -Know basic vocabulary -2 types of transmutations -4 nuclear decay emissions -Write nuclear decay reactions -Calculate y^ lives -know how nuclear powerplants work -Know

More information

Atomic Structure. INSIDE the Nucleus: OUTSIDE the Nucleus:

Atomic Structure. INSIDE the Nucleus: OUTSIDE the Nucleus: Nuclear Chemistry 1 Atomic Structure INSIDE the Nucleus: Protons (+) Neutrons (no charge) 99.9% of the mass of the atom (Rutherford central dense nucleus) OUTSIDE the Nucleus: Electrons (-) Little mass

More information

Science 10. Unit 4:Physics. Block: Name: Book 3: radioactivty

Science 10. Unit 4:Physics. Block: Name: Book 3: radioactivty Science 10 Unit 4:Physics Book 3: radioactivty Name: Block: 1 5.1 : Radioactivity & Nuclear Equations Isotopes are versions of an element with the same but Because the number of protons is the same for,

More information

Name Date Class NUCLEAR CHEMISTRY

Name Date Class NUCLEAR CHEMISTRY 25 NUCLEAR CHEMISTRY SECTION 25.1 NUCLEAR RADIATION (pages 799 802) This section describes the nature of radioactivity and the process of radioactive decay. It characterizes alpha, beta, and gamma radiation

More information

Radioactivity & Nuclear. Chemistry. Mr. Matthew Totaro Legacy High School. Chemistry

Radioactivity & Nuclear. Chemistry. Mr. Matthew Totaro Legacy High School. Chemistry Radioactivity & Nuclear Chemistry Mr. Matthew Totaro Legacy High School Chemistry The Discovery of Radioactivity Antoine-Henri Becquerel designed an experiment to determine if phosphorescent minerals also

More information

A. Identify the highly penetrating radioactive emission that exposed the photographic plates.

A. Identify the highly penetrating radioactive emission that exposed the photographic plates. Name Unit 3: Nuclear Chemistry Date Part 2 Questions 1. In 1896, Antoine H. Becquerel discovered that a uranium compound could expose a photographic plate wrapped in heavy paper in the absence of light.

More information

Ch05. Radiation. Energy and matter that comes from the nucleus of an atom. version 1.6

Ch05. Radiation. Energy and matter that comes from the nucleus of an atom. version 1.6 Ch05 Radiation Energy and matter that comes from the nucleus of an atom. version 1.6 Nick DeMello, PhD. 2007-2016 Ch05 Radiation The Discovery of Radioactivity Phosphorescence Radioactive history Antoine

More information

Nuclear processes: Vocabulary: Radioactive decay Isotope Alpha particle Beta particle Transmutation Strong Nuclear Force Fusion fission

Nuclear processes: Vocabulary: Radioactive decay Isotope Alpha particle Beta particle Transmutation Strong Nuclear Force Fusion fission Nuclear processes: Students will develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive

More information

Nuclear Chemistry. Name: Period: Date: 1) = a general term for any type of energy that emanates or radiates outward in all directions

Nuclear Chemistry. Name: Period: Date: 1) = a general term for any type of energy that emanates or radiates outward in all directions Nuclear Chemistry Name: Period: Date: Part I: ELECTROMAGNETIC RADIATION 1) = a general term for any type of energy that emanates or radiates outward in all directions 2) (ER) = radiation moving at the

More information

NOTES: 25.3 Nuclear Fission & Fusion

NOTES: 25.3 Nuclear Fission & Fusion NOTES: 25.3 Nuclear Fission & Fusion Nuclear Fission: The splitting of a heavy nucleus into lighter nuclei FISSION: a heavy nucleus splits into 2 lighter nuclei some elements undergo fission spontaneously

More information

HOMEWORK 22-1 (pp )

HOMEWORK 22-1 (pp ) CHAPTER 22 HOMEWORK 22-1 (pp. 701 702) Define. 1. nucleons 2. nuclide 3. mass defect 4. nuclear binding energy Solve. Use masses of 1.0087 amu for the neutron, 1.00728 amu for the proton, and 5.486 x 10

More information

Nuclear Chemistry Unit

Nuclear Chemistry Unit Nuclear Chemistry Unit January 28th HW Due Thurs. 1/30 Read pages 284 291 Define: Radioactivity Nuclear Radiation Alpha Particle Beta Particle Gamma Ray Half-Life Answer: -Questions 1-3 -Write the symbols

More information

Unit Two: Atomic Structure

Unit Two: Atomic Structure Unit Two: Atomic Structure TEKS 5: The student understands the historical development of the Periodic Table and can apply its predictive power. (b) use the Periodic Table to identify and explain the properties

More information

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY teacher version www.toppr.com Contents (a) Types of Radiation (b) Properties of Radiation (c) Dangers of Radiation (d) Rates of radioactive decay (e) Nuclear

More information

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided. CHAPTER 21 REVIEW Nuclear Chemistry SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Based on the information about the three elementary particles in the text, which has

More information

) The nucleus of an atom, when compared to the entire atom, is (Circle two).

) The nucleus of an atom, when compared to the entire atom, is (Circle two). Unit 3: The Atom Review Packet Directions: Answer the following questions WITHOUT using your notes first. This will be a great way to study for your test. Then, get out your notes and go back and fill

More information

Atomic Structure & Nuclear Chemistry Unit 3 Notes

Atomic Structure & Nuclear Chemistry Unit 3 Notes Atomic Structure & Nuclear Chemistry Unit 3 Notes Academic Chemistry Name 52 24 Cr Mass Number Symbol Atomic Number Unit #3 Test Date You can never learn less, you can only learn more. R. Buckminster Fuller

More information

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc. Lecture Presentation Chapter 21, Inc. James F. Kirby Quinnipiac University Hamden, CT Energy: Chemical vs. Chemical energy is associated with making and breaking chemical bonds. energy is enormous in comparison.

More information

Chemistry 201: General Chemistry II - Lecture

Chemistry 201: General Chemistry II - Lecture Chemistry 201: General Chemistry II - Lecture Dr. Namphol Sinkaset Chapter 21 Study Guide Concepts 1. There are several modes of radioactive decay: (1) alpha (α) decay, (2) beta (β) decay, (3) gamma (γ)

More information

Notes: Unit 14 Nuclear Chemistry

Notes: Unit 14 Nuclear Chemistry Name: Regents Chemistry: Mr. Palermo Notes: Unit 14 Nuclear Chemistry www.mrpalermo.com Name: KEY IDEAS: Stability of isotopes is based in the ratio of neutrons and protons in its nucleus. Although most

More information

14: BEHOLD THE POWER OF THE NUCLEUS!!!

14: BEHOLD THE POWER OF THE NUCLEUS!!! Name: Period: Date: UNIT 14: Nuclear Chemistry Lesson 1: Let s go nuclear! By the end of today, you will have an answer to: What does it mean to be radioactive? Do Now: Final problems related to electrochemistry

More information

Chemistry 19 Prep Test - Nuclear Processes

Chemistry 19 Prep Test - Nuclear Processes Chapter 9 Prep-Test Chemistry 9 Prep Test - Nuclear Processes Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.. Which of the illustrations above

More information

Nuclear Chemistry. Transmutations and the Creation of Elements

Nuclear Chemistry. Transmutations and the Creation of Elements Nuclear Chemistry Transmutations and the Creation of Elements Nuclear Fusion When two smaller elements are fused together to form a larger element. Fusion is Hard! There are two competing forces in an

More information

Nuclear 14.notebook. February 11, Jan 17 1:50 PM. Jan 17 1:51 PM. Jan 17 1:51 PM. Jan 17 1:52 PM. Jan 17 1:53 PM.

Nuclear 14.notebook. February 11, Jan 17 1:50 PM. Jan 17 1:51 PM. Jan 17 1:51 PM. Jan 17 1:52 PM. Jan 17 1:53 PM. Nuclear Binding Energy Radioactivity and Half Life All elements with more than 82 protons have unstable nuclei (i.e. Bi and beyond!) and are said to be radioactive. This is because there are too many protons

More information

Nuclear Chemistry Notes

Nuclear Chemistry Notes Nuclear Chemistry Notes Definitions Nucleons: Subatomic particles in the nucleus : protons and neutrons Radionuclides: Radioactive nuclei. Unstable nuclei that spontaneously emit particles and electromagnetic

More information

Chapter 21. Preview. Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions

Chapter 21. Preview. Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions Preview Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions Section 1 The Nucleus Lesson Starter Nuclear reactions result in much larger energy

More information

Nuclear fission is used in nuclear power stations to generate electricity. Nuclear fusion happens naturally in stars.

Nuclear fission is used in nuclear power stations to generate electricity. Nuclear fusion happens naturally in stars. 1 (a) Nuclear fission is used in nuclear power stations to generate electricity. Nuclear fusion happens naturally in stars. (i) Explain briefly the difference between nuclear fission and nuclear fusion.

More information

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY student version www.toppr.com Contents (a) Types of Radiation (b) Properties of Radiation (c) Dangers of Radiation (d) Rates of radioactive decay (e) Nuclear

More information

NJCTL.org 2015 AP Physics 2 Nuclear Physics

NJCTL.org 2015 AP Physics 2 Nuclear Physics AP Physics 2 Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

Nuclear processes: Vocabulary: Radioactive decay Isotope Alpha particle Beta particle Transmutation Strong Nuclear Force Fusion Fission

Nuclear processes: Vocabulary: Radioactive decay Isotope Alpha particle Beta particle Transmutation Strong Nuclear Force Fusion Fission Nuclear processes: Students will develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive

More information

Nuclear Physics and Nuclear Reactions

Nuclear Physics and Nuclear Reactions Slide 1 / 33 Nuclear Physics and Nuclear Reactions The Nucleus Slide 2 / 33 Proton: The charge on a proton is +1.6x10-19 C. The mass of a proton is 1.6726x10-27 kg. Neutron: The neutron is neutral. The

More information

Name Period. CRHS Academic Chemistry Unit 3 - Atomic Structure & Nuclear Chemistry. Homework. Due Date Assignment On-Time (100) Late (70)

Name Period. CRHS Academic Chemistry Unit 3 - Atomic Structure & Nuclear Chemistry. Homework. Due Date Assignment On-Time (100) Late (70) Name Period CRHS Academic Chemistry Unit 3 - Atomic Structure & Nuclear Chemistry Homework Due Date Assignment On-Time (100) Late (70) 3.1 3.2 3.3 3.4 Warm-Ups EC Notes, Homework, Exam Reviews and Their

More information

Chapter 18. Nuclear Chemistry

Chapter 18. Nuclear Chemistry Chapter 18 Nuclear Chemistry The energy of the sun comes from nuclear reactions. Solar flares are an indication of fusion reactions occurring at a temperature of millions of degrees. Introduction to General,

More information

1ST SEM MT CHAP 22 REVIEW

1ST SEM MT CHAP 22 REVIEW 1ST SEM MT CHAP 22 REVIEW Multiple Choice Identify the choice that best completes the statement or answers the question. (CAPITAL LETTERS ONLY PLEASE) 1. Mass defect is the difference between the mass

More information

Nuclear packet Check: Wednesday May 15 Nuclear packet corrections: Friday May 17 Exam Date: Friday May 17

Nuclear packet Check: Wednesday May 15 Nuclear packet corrections: Friday May 17 Exam Date: Friday May 17 Textbook: read Chapter 19 pp. 606-629 Quizlet questions: Read Chapter 3 p. 24-30 Quizlet Questions: Part A-B1 p. 27-28 #1-11, part A-B1 p. 30 # 12-22. (on scantron to be collected for quiz grade) Chapter

More information

Nuclear Chemistry. Technology Strategies for Success PO Box 1485 East Northport, NY (631) NYS-PREP

Nuclear Chemistry. Technology Strategies for Success PO Box 1485 East Northport, NY (631) NYS-PREP Nuclear Chemistry Technology Strategies for Success PO Box 1485 East Northport, NY 11725 (631)734-0115 1-888-NYS-PREP techstrategies@gmail.com Nuclear Chemistry Table of Contents 1.0 Nuclear Chemistry...3

More information

da u g ht er + radiation

da u g ht er + radiation RADIOACTIVITY The discovery of radioactivity can be attributed to several scientists. Wilhelm Roentgen discovered X-rays in 1895 and shortly after that Henri Becquerel observed radioactive behavior while

More information

NUCLEAR CHEMISTRY. LAST TOPIC OF THE YEAR!! Name: CHANGING THE NUCLEUS OF AN ATOM. 1 P age

NUCLEAR CHEMISTRY. LAST TOPIC OF THE YEAR!! Name: CHANGING THE NUCLEUS OF AN ATOM. 1 P age NUCLEAR CHEMISTRY CHANGING THE NUCLEUS OF AN ATOM LAST TOPIC OF THE YEAR!! Name: 1 P age Why do unstable isotopes undergo nuclear reactions? Do Now: Draw Bohr models of three different isotopes of carbon

More information

A. Element 1. The number of protons and neutrons of an atom.

A. Element 1. The number of protons and neutrons of an atom. Unit 03: Test Review Atoms and Elements Key Term Definition A. Element 1. The number of protons and neutrons of an atom. B. Atom 2. The smallest particle of an element. C. Atomic Number 3. A primary substance

More information

Chapter 21. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Chapter 21. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten , The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 21 John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall, Inc. The

More information

Chapter 20: Phenomena. Chapter 20: The Nucleus: A Chemist s View. Nuclear Decay. Nuclear Decay. Nuclear Decay. Nuclear Decay

Chapter 20: Phenomena. Chapter 20: The Nucleus: A Chemist s View. Nuclear Decay. Nuclear Decay. Nuclear Decay. Nuclear Decay Chapter 20: Phenomena Phenomena: Below is a list of stable isotopes of different elements. Examine the data and see what patterns you can identify. The mass of a electron is 0.00055 u, the mass of a proton

More information

Number of protons. 2. What is the nuclear symbol for a radioactive isotope of copper with a mass number of 60? A) Cu

Number of protons. 2. What is the nuclear symbol for a radioactive isotope of copper with a mass number of 60? A) Cu Chapter 5 Nuclear Chemistry Practice Problems 1. Fill in the missing information in the chart: Medical Use Atomic Mass symbol number Heart imaging 201 Tl 81 Number of protons Number of neutrons Abdominal

More information

and have low penetrating power) Alpha particles are released through alpha decay. Beta Particles: An electron that comes from a nucleus through

and have low penetrating power) Alpha particles are released through alpha decay. Beta Particles: An electron that comes from a nucleus through TOPIC 13: Nuclear Chemistry 1. When the atomic nucleus of one element is changed into the nucleus of a different element, the reaction is called transmutation. Stability of a Nucleus: Any element containing

More information

Isotopes. An isotope is an atom of the same element (same number of protons) that varies in the number of neutrons.

Isotopes. An isotope is an atom of the same element (same number of protons) that varies in the number of neutrons. Nuclear Chemistry Isotopes An isotope is an atom of the same element (same number of protons) that varies in the number of neutrons. Most elements have several isotopes Some are unstable and emit radiation

More information

Isotopes. An isotope is an atoms of the same element (same number of protons) that vary in the number of neutrons.

Isotopes. An isotope is an atoms of the same element (same number of protons) that vary in the number of neutrons. Nuclear Chemistry Isotopes An isotope is an atoms of the same element (same number of protons) that vary in the number of neutrons. Most elements have several isotopes Some are unstable and emit radiation

More information

Unit 12: Nuclear Chemistry

Unit 12: Nuclear Chemistry Unit 12: Nuclear Chemistry 1. Stability of isotopes is based on the ratio of neutrons and protons in its nucleus. Although most nuclei are stable, some are unstable and spontaneously decay, emitting radiation.

More information

Unit 1 Atomic Structure

Unit 1 Atomic Structure Unit 1 Atomic Structure Defining the Atom I. Atomic Theory A. Modern Atomic Theory 1. All matter is made up of very tiny particles called atoms 2. Atoms of the same element are chemically alike 3. Individual

More information

Name Date Class NUCLEAR CHEMISTRY. Standard Curriculum Core content Extension topics

Name Date Class NUCLEAR CHEMISTRY. Standard Curriculum Core content Extension topics 28 NUCLEAR CHEMISTRY Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

More information

Chemistry: The Central Science. Chapter 21: Nuclear Chemistry

Chemistry: The Central Science. Chapter 21: Nuclear Chemistry Chemistry: The Central Science Chapter 21: Nuclear Chemistry A nuclear reaction involves changes in the nucleus of an atom Nuclear chemistry the study of nuclear reactions, with an emphasis in their uses

More information

Radioactivity One of the pieces of evidence for the fact that atoms are made of smaller particles came from the work of Marie Curie

Radioactivity One of the pieces of evidence for the fact that atoms are made of smaller particles came from the work of Marie Curie 1 Nuclear Chemistry Radioactivity 2 One of the pieces of evidence for the fact that atoms are made of smaller particles came from the work of Marie Curie (1876-1934). She discovered radioactivity or radioactive

More information