Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Size: px
Start display at page:

Download "Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc."

Transcription

1 Lecture Presentation Chapter 21, Inc. James F. Kirby Quinnipiac University Hamden, CT

2 Energy: Chemical vs. Chemical energy is associated with making and breaking chemical bonds. energy is enormous in comparison. energy is due to changes in the nucleus of atoms changing them into different atoms. 13% of worldwide energy use comes from nuclear energy.

3 The Nucleus Remember that the nucleus is composed of the two nucleons, protons and neutrons. The number of protons is the atomic number. The number of protons and neutrons together is the mass number.

4 Isotopes Not all atoms of the same element have the same mass, due to different numbers of neutrons in those atoms. There are, for example, three naturally occurring isotopes of uranium: Uranium-234 Uranium-235 Uranium-238

5 21.1 Radioactivity and Equations 948 Radioactivity It is not uncommon for some nuclides of an element to be unstable, or radioactive. We refer to these as radionuclides. There are several ways radionuclides can decay into a different nuclide. We use nuclear equations to show how these nuclear reactions occur.

6 Equations In chemical equations, atoms and charges need to balance. In nuclear equations, atomic number and mass number need to balance. This is a way of balancing charge (atomic number) and mass (mass number) on an atomic scale.

7 Most Common Kinds of Radiation Emitted by a Radionuclide

8 Types of Radioactive Decay Alpha decay Beta decay Gamma emission Positron emission Electron capture

9 Alpha Decay Alpha decay is the loss of an α-particle (He-4 nucleus, two protons and two neutrons): 4 He U Th He Note how the equation balances: atomic number: 92 = mass number: 238 =

10 Beta Decay Beta decay is the loss of a β-particle (a highspeed electron emitted by the nucleus): 0 β 0 e 1 or I 131 Xe e Balancing: atomic number: 53 = 54 + ( 1) mass number: 131 =

11 Gamma Emission Gamma emission is the loss of a γ-ray, which is high-energy radiation that almost always accompanies the loss of a nuclear particle: 0 γ 0

12 Positron Emission Some nuclei decay by emitting a positron, a particle that has the same mass as, but an opposite charge to, that of an electron: 11 C 6 0 e 1 11 B e 1 Balancing: atomic number: 6 = mass number: 11 =

13 Electron Capture (K-Capture) An electron from the surrounding electron cloud is absorbed into the nucleus during electron capture. 81 Rb e 1 81 Kr 36 Balancing: atomic number: 37 + ( 1) = 36 mass number: = 81

14 Sources of Some Particles Beta particles: Positrons: What happens with electron capture?

15 Sample Exercise 21.1 Predicting the Product of a Reaction What product is formed when radium-226 undergoes alpha decay? Solution Analyze We are asked to determine the nucleus that results when radium-226 loses an alpha particle. Plan We can best do this by writing a balanced nuclear reaction for the process. Solve The periodic table shows that radium has an atomic number of 88. The complete chemical symbol for radium-226 is therefore An alpha particle is a helium-4 nucleus, and so its symbol is The alpha particle is a product of the nuclear reaction, and so the equation is of the form where A is the mass number of the product nucleus and Z is its atomic number. Mass numbers and atomic numbers must balance, so and 226 = A = Z + 2

16 Sample Exercise 21.1 Predicting the Product of a Reaction Continued Hence, A = 222 and Z = 86 Again, from the periodic table, the element with Z = 86 is radon (Rn). The product, therefore, is nuclear equation is and the Practice Exercise 1 The plutonium-238 that is shown in the chapter-opening photograph undergoes alpha decay. What product forms when this radionuclide decays? (a) Plutonium-234 (b) Uranium-234 (c) Uranium-238 (d) Thorium-236 (e) Neptunium-237 Practice Exercise 2 Which element undergoes alpha decay to form lead-208?

17 Sample Exercise 21.2 Writing Equations Write nuclear equations for (a) mercury-201 undergoing electron capture; (b) thorium-231 decaying to protactinium-231. Solution Analyze We must write balanced nuclear equations in which the masses and charges of reactants and products are equal. Plan We can begin by writing the complete chemical symbols for the nuclei and decay particles that are given in the problem. Solve (a) The information given in the question can be summarized as The mass numbers must have the same sum on both sides of the equation: = A Thus, the product nucleus must have a mass number of 201. Similarly, balancing the atomic numbers gives 80 1 = Z

18 Sample Exercise 21.2 Writing Equations Continued Thus, the atomic number of the product nucleus must be 79, which identifies it as gold (Au): (b) In this case we must determine what type of particle is emitted in the course of the radioactive decay: From 231 = A and 90 = 91 + Z, we deduce A = 0 and Z = 1. According to Table 21.2, the particle with these characteristics is the beta particle (electron). We therefore write

19 Sample Exercise 21.2 Writing Equations Continued Practice Exercise 1 The radioactive decay of thorium-232 occurs in multiple steps, called a radioactive decay chain. The second product produced in this chain is actinium-228. Which of the following processes could lead to this product starting with thorium-232? (a) Alpha decay followed by beta emission (b) Beta emission followed by electron capture (c) Positron emission followed by alpha decay (d) Electron capture followed by positron emission (e) More than one of the above is consistent with the observed transformation Practice Exercise 2 Write a balanced nuclear equation for the reaction in which oxygen-15 undergoes positron emission.

20 21.2 Patterns of Stability 952 Stability Any atom with more than one proton (anything but H) will have repulsions between the protons in the nucleus. Strong nuclear force helps keep the nucleus together. Neutrons play a key role stabilizing the nucleus, so the ratio of neutrons to protons is an important factor.

21 Neutron Proton Ratios For smaller nuclei (Z 20), stable nuclei have a neutron-to-proton ratio close to 1:1. As nuclei get larger, it takes a larger number of neutrons to stabilize the nucleus. The shaded region in the figure is called the belt of stability; it shows what nuclides would be stable.

22 Unstable Nuclei Compare a nucleus to the belt of stability. Nuclei above this belt have too many neutrons, so they tend to decay by emitting beta particles. Nuclei below the belt have too many protons, so they tend to become more stable by positron emission or electron capture.

23 Alpha Emission There are no stable nuclei with an atomic number greater than 83. Nuclei with such large atomic numbers tend to decay by alpha emission.

24 Radioactive Decay Chain Some radioactive nuclei cannot stabilize by undergoing only one nuclear transformation. They undergo a series of decays until they form a stable nuclide (often a nuclide of lead).

25 Stable Nuclei Magic numbers of 2, 8, 20, 28, 50, or 82 protons or 2, 8, 20, 28, 50, 82, or 126 neutrons result in more stable nuclides. Nuclei with an even number of protons and neutrons tend to be more stable than those with odd numbers.

26 Sample Exercise 21.3 Predicting Modes of Decay Predict the mode of decay of (a) carbon-14, (b) xenon-118. Solution Analyze We are asked to predict the modes of decay of two nuclei. Plan To do this, we must locate the respective nuclei in Figure 21.2 and determine their positions with respect to the belt of stability in order to predict the most likely mode of decay.

27 Sample Exercise 21.3 Predicting Modes of Decay Continued Solve (a) Carbon is element 6. Thus, carbon-14 has 6 protons and 14 6 = 8 neutrons, giving it a neutron-to-proton ratio of Elements with Z < 20 normally have stable nuclei that contain approximately equal numbers of neutrons and protons (n/p = 1). Thus, carbon-14 is located above the belt of stability and we expect it to decay by emitting a beta particle to decrease the n/p ratio: This is indeed the mode of decay observed for carbon-14, a reaction that lowers the n/p ratio from 1.25 to 1.0. (b) Xenon is element 54. Thus, xenon-118 has 54 protons and = 64 neutrons, giving it an n/p ratio of According to Figure 21.2, stable nuclei in this region of the belt of stability have higher neutron-to-proton ratios than xenon-118. The nucleus can increase this ratio by either positron emission or electron capture: In this case both modes of decay are observed. Comment Keep in mind that our guidelines do not always work. For example, thorium-233, which we might expect to undergo alpha decay, actually undergoes beta emission. Furthermore, a few radioactive nuclei lie within the belt of stability. Both and for example, are stable and lie in the belt of stability. however, which lies between them, is radioactive.

28 Sample Exercise 21.3 Predicting Modes of Decay Continued Practice Exercise 1 Which of the following radioactive nuclei is most likely to decay via emission of a β particle? (a) nitrogen-13 (b) magnesium-23 (c) rubidium-83 (d) iodine-131 (e) neptunium-237 Practice Exercise 2 Predict the mode of decay of (a) plutonium-239, (b) indium-120.

29 21.3 Transmutations 956 Transmutations transmutations can be induced by accelerating a particle to collide it with the nuclide. Particle accelerators ( atom smashers ) are enormous, having circular tracks with radii that are miles long.

30 Other Transmutations Use of neutrons: Most synthetic isotopes used in medicine are prepared by bombarding neutrons at a particle, which won t repel the neutral particle. Transuranium elements: Elements immediately after uranium were discovered by bombarding isotopes with neutrons. Larger elements (atomic number higher than 110) were made by colliding large atoms with nuclei of light elements with high energy.

31 1) or 2) Writing Equations for Transmutations equations that represent nuclear transmutations are written two ways:

32 Sample Exercise 21.4 Writing a Balanced Equation Write the balanced nuclear equation for the process summarized as Solution Analyze We must go from the condensed descriptive form of the reaction to the balanced nuclear equation. Plan We arrive at the balanced equation by writing n and α, each with its associated subscripts and superscripts. Solve The n is the abbreviation for a neutron and a represents an alpha particle The neutron is the bombarding particle, and the alpha particle is a product. Therefore, the nuclear equation is Practice Exercise 1 Consider the following nuclear transmutation: What is the identity of nucleus X? Practice Exercise 2 Write the condensed version of the nuclear reaction

33 21.4 Rates of Radioactive Decay 958 Kinetics of Radioactive Decay Radioactive decay is a first-order process. The kinetics of such a process obey this equation: ln N t N 0 = kt

34 Half-Life The half-life of such a process is k = t 1/2 Half-life is the time required for half of a radionuclide sample to decay.

35 Radiometric Dating Applying first-order kinetics and half-life information, we can date objects using a nuclear clock. Carbon dating works: the half-life of C-14 is 5700 yr. It is limited to objects up to about 50,000 yr old; after this time there is too little radioactivity left to measure. Other isotopes can be used (U-238:Pb-206 in rock).

36 Measuring Radioactivity: Units Activity is the rate at which a sample decays. The units used to measure activity are as follows: Becquerel (Bq): one disintegration per second Curie (Ci): disintegrations per second, which is the rate of decay of 1 g of radium.

37 Measuring Radioactivity: Some Instruments Film badges Geiger counter Phosphors (scintillation counters)

38 Sample Exercise 21.5 Calculation Involving Half-Lives The half-life of cobalt-60 is 5.27 yr. How much of a mg sample of cobalt-60 is left after yr? Solution Analyze We are given the half-life for cobalt-60 and asked to calculate the amount of cobalt-60 remaining from an initial mg sample after yr. Plan We will use the fact that the amount of a radioactive substance decreases by 50% for every half-life that passes. Solve Because = 15.81, yr is three half-lives for cobalt-60. At the end of one half-life, mg of cobalt-60 remains, mg at the end of two half-lives, and mg at the end of three half-lives. Practice Exercise 1 A radioisotope of technetium is useful in medical imaging techniques. A sample initially contains 80.0 mg of this isotope. After 24.0 h, only 5.0 mg of the technetium isotope remains. What is the half-life of the isotope? (a) 3.0 h (b) 6.0 h (c) 12.0 h (d) 16.0 h (e) 24.0 h Practice Exercise 2 Carbon-11, used in medical imaging, has a half-life of 20.4 min. The carbon-11 nuclides are formed, and the carbon atoms are then incorporated into an appropriate compound. The resulting sample is injected into a patient, and the medical image is obtained. If the entire process takes five half-lives, what percentage of the original carbon-11 remains at this time?

39 Sample Exercise 21.6 Calculating the Age of Objects Using Radioactive Decay A rock contains mg of lead-206 for every milligram of uranium-238. The half-life for the decay of uranium-238 to lead-206 is yr. How old is the rock? Solution Analyze We are told that a rock sample has a certain amount of lead-206 for every unit mass of uranium-238 and asked to estimate the age of the rock. Plan Lead-206 is the product of the radioactive decay of uranium-238. We will assume that the only source of lead-206 in the rock is from the decay of uranium-238, with a known half-life. To apply first-order kinetics expressions (Equations and 21.20) to calculate the time elapsed since the rock was formed, we first need to calculate how much initial uranium-238 there was for every 1 mg that remains today. Solve Let s assume that the rock currently contains mg of uranium-238 and therefore mg of lead-206. The amount of uranium-238 in the rock when it was first formed therefore equals mg plus the quantity that has decayed to lead-206. Because the mass of lead atoms is not the same as the mass of uranium atoms, we cannot just add mg and mg. We have to multiply the present mass of lead-206 (0.257 mg) by the ratio of the mass number of uranium to that of lead, into which it has decayed. Therefore, the original mass of was

40 Sample Exercise 21.6 Calculating the Age of Objects Using Radioactive Decay Continued Using Equation 21.20, we can calculate the decay constant for the process from its half-life: Rearranging Equation to solve for time, t, and substituting known quantities gives Comment To check this result, you could use the fact that the decay of uranium-235 to lead-207 has a half-life of yr and measure the relative amounts of uranium-235 and lead-207 in the rock. Practice Exercise 1 Cesium-137, which has a half-life of 30.2 yr, is a component of the radioactive waste from nuclear power plants. If the activity due to cesium-137 in a sample of radioactive waste has decreased to 35.2% of its initial value, how old is the sample? (a) 1.04 yr (b) 15.4 yr (c) 31.5 yr (d) 45.5 yr (e) 156 yr

41 Sample Exercise 21.6 Calculating the Age of Objects Using Radioactive Decay Continued Practice Exercise 2 A wooden object from an archeological site is subjected to radiocarbon dating. The activity due to 14 C is measured to be 11.6 disintegrations per second. The activity of a carbon sample of equal mass from fresh wood is 15.2 disintegrations per second. The half-life of 14 C is 5700 yr. What is the age of the archeological sample?

42 Sample Exercise 21.7 Calculations Involving Radioactive Decay and Time If we start with g of strontium-90, g will remain after 2.00 yr. (a) What is the half-life of strontium-90? (b) How much strontium-90 will remain after 5.00 yr? (c) What is the initial activity of the sample in becquerels and curies? Solution (a) Analyze We are asked to calculate a half-life, t 1/2, based on data that tell us how much of a radioactive nucleus has decayed in a time interval t = 2.00 yr and the information N 0 = g, N t = g. Plan We first calculate the rate constant for the decay, k, and then use that to compute t 1/2. Solve Equation is solved for the decay constant, k, and then Equation is used to calculate half-life, t 1/2 :

43 Sample Exercise 21.7 Calculations Involving Radioactive Decay and Time Continued (b) Analyze We are asked to calculate the amount of a radionuclide remaining after a given period of time. Plan We need to calculate N t, the amount of strontium present at time t, using the initial quantity, N 0, and the rate constant for decay, k, calculated in part (a). Solve Again using Equation 21.19, with k = yr 1, we have N t /N 0 is calculated from ln(n t /N 0 ) = using the e x or INV LN function of a calculator: Because N 0 = g, we have N t = (0.887)N 0 = (0.887)(1.000 g) = g

44 Sample Exercise 21.7 Calculations Involving Radioactive Decay and Time Continued (c) Analyze We are asked to calculate the activity of the sample in becquerels and curies. Plan We must calculate the number of disintegrations per atom per second and then multiply by the number of atoms in the sample. Solve The number of disintegrations per atom per second is given by the decay constant, k: To obtain the total number of disintegrations per second, we calculate the number of atoms in the sample. We multiply this quantity by k, where we express k as the number of disintegrations per atom per second, to obtain the number of disintegrations per second:

45 Sample Exercise 21.7 Calculations Involving Radioactive Decay and Time Continued Because 1 Bq is one disintegration per second, the activity is Bq. The activity in curies is given by We have used only two significant figures in products of these calculations because we do not know the atomic weight of 90 Sr to more than two significant figures without looking it up in a special source. Practice Exercise 1 As mentioned in the previous Practice Exercise 1, cesium-137, a component of radioactive waste, has a half-life of 30.2 yr. If a sample of waste has an initial activity of 15.0 Ci due to cesium-137, how long will it take for the activity due to cesium-137 to drop to Ci? (a) yr (b) 60.4 yr (c) 78.2 yr (d) 124 yr (e) 178 yr Practice Exercise 2 A sample to be used for medical imaging is labeled with 18 F, which has a half-life of 110 min. What percentage of the original activity in the sample remains after 300 min?

46 21.5 Detection of Radioactivity 964 Film Badges Radioactivity was first discovered by Henri Becquerel because it fogged up a photographic plate. Film has been used to detect radioactivity since more exposure to radioactivity means darker spots on the developed film. Film badges are used by people who work with radioactivity to measure their own exposure over time.

47 Geiger Counter A Geiger counter measures the amount of activity present in a radioactive sample. Radioactivity enters a window and creates ions in a gas; the ions result in an electric current that is measured and recorded by the instrument.

48 Phosphors Some substances absorb radioactivity and emit light. They are called phosphors. An instrument commonly used to measure the amount of light emitted by a phosphor is a scintillation counter. It converts the light to an electronic response for measurement.

49 Radiotracers Radiotracers are radioisotopes used to study a chemical reaction. An element can be followed through a reaction to determine its path and better understand the mechanism of a chemical reaction.

50 Medical Application of Radiotracers Radiotracers have found wide diagnostic use in medicine. Radioisotopes are administered to a patient (usually intravenously) and followed. Certain elements collect more in certain tissues, so an organ or tissue type can be studied based on where the radioactivity collects.

51 Positron Emission Tomography (PET Scan) A compound labeled with a positron emitter is injected into a patient. Blood flow, oxygen and glucose metabolism, and other biological functions can be studied. Labeled glucose is used to study the brain, as seen in the figure to the right.

52 21.6 Energy Changes in Reactions 967 Energy in Reactions There is a tremendous amount of energy stored in nuclei. Einstein s famous equation, E = mc 2, relates directly to the calculation of this energy.

53 Energy in Reactions To show the enormous difference in energy for nuclear reactions, the mass change associated with the α-decay of 1 mol of U-238 to Th-234 is g. The change in energy, ΔE, is then ΔE = (Δm)c 2 E = ( kg)( m/s) 2 E = J (Note: the negative sign means heat is released.)

54 Mass Defect Where does this energy come from? The masses of nuclei are always less than those of the individual parts. This mass difference is called the mass defect. The energy needed to separate a nucleus into its nucleons is called the nuclear binding energy.

55 Effects of Binding Energy on Processes Dividing the binding energy by the number of nucleons gives a value that can be compared. Heavy nuclei gain stability and give off energy when they split into two smaller nuclei. This is fission. Lighter nuclei emit great amounts of energy by being combined in fusion.

56 Sample Exercise 21.8 Calculating Mass Change in a Reaction How much energy is lost or gained when 1 mol of cobalt-60 undergoes beta decay, The mass of a atom is amu, and that of a atom is amu. Solution Analyze We are asked to calculate the energy change in a nuclear reaction. Plan We must first calculate the mass change in the process. We are given atomic masses, but we need the masses of the nuclei in the reaction. We calculate these by taking account of the masses of the electrons that contribute to the atomic masses. Solve A atom has 27 electrons. The mass of an electron is amu. (See the list of fundamental constants in the back inside cover.) We subtract the mass of the 27 electrons from the mass of the atom to find the mass of the nucleus: amu (27)( amu) = amu (or g/mol) Likewise, for, the mass of the nucleus is amu (28)( amu) = amu (or g/mol)

57 Sample Exercise 21.8 Calculating Mass Change in a Reaction Continued The mass change in the nuclear reaction is the total mass of the products minus the mass of the reactant: Thus, when a mole of cobalt-60 decays, Δm = g Because the mass decreases (Δm < 0), energy is released (ΔE < 0). The quantity of energy released per mole of cobalt-60 is calculated using Equation 21.22:

58 Sample Exercise 21.8 Calculating Mass Change in a Reaction Continued Practice Exercise 1 The nuclear reaction that powers the radioisotope thermoelectric generator shown in the chapter-opening photograph is The atomic masses of plutonium-238 and uranium-234 are amu and amu, respectively. The mass of an alpha particle is amu. How much energy in kj is released when 1.00 g of plutonium-238 decays to uranium-234? (a) kj (b) kj (c) kj (d) kj (e) kj Practice Exercise 2 Positron emission from occurs with release of J per mole of 11 C. What is the mass change per mole of 11 C in this nuclear reaction? The masses of 11 B and 11 C are and amu, respectively.

59 21.7 Power: Fission 970 Fission Commercial nuclear power plants use fission. Heavy nuclei can split in many ways. The equations below show two ways U-235 can split after bombardment with a neutron.

60 Fission Bombardment of the radioactive nuclide with a neutron starts the process. Neutrons released in the transmutation strike other nuclei, causing their decay and the production of more neutrons. This process continues in what we call a nuclear chain reaction.

61 Fission The minimum mass that must be present for a chain reaction to be sustained is called the critical mass. If more than critical mass is present (supercritical mass), an explosion will occur. Weapons were created by causing smaller amounts to be forced together to create this mass.

62 Reactors In nuclear reactors, the heat generated by the reaction is used to produce steam that turns a turbine connected to a generator. Otherwise, the plant is basically the same as any power plant.

63 Reactors The reactor core consists of fuel rods, control rods, moderators, and coolant. The control rods block the paths of some neutrons, keeping the system from reaching a dangerous supercritical mass.

64 Waste Reactors must be stopped periodically to replace or reprocess the nuclear fuel. They are stored in pools at the reactor site. The original intent was that this waste would then be transported to reprocessing or storage sites. Political opposition to storage site location and safety challenges for reprocessing have led this to be a major social problem.

65 21.8 Power: Fusion 975 Fusion When small atoms are combined, much energy is released. If it were possible to easily produce energy by this method, it would be a preferred source of energy. However, extremely high temperatures and pressures are needed to cause nuclei to fuse. This was achieved using an atomic bomb to initiate fusion in a hydrogen bomb. Obviously, this is not an acceptable approach to producing energy.

66 21.9 Radiation in the Environment and Living Systems 976 Radiation in the Environment We are constantly exposed to radiation. Ionizing radiation is more harmful to living systems than nonionizing radiation, such as radiofrequency electromagnetic radiation. Since most living tissue is ~70% water, ionizing radiation is that which causes water to ionize. This creates unstable, very reactive OH radicals, which result in much cell damage.

67 Damage to Cells The damage to cells depends on the type of radioactivity, the length of exposure, and whether the source is inside or outside the body. Outside the body, gamma rays are most dangerous. Inside the body, alpha radiation can cause most harm.

68 Exposure We are constantly exposed to radiation. What amount is safe? Setting standards for safety is difficult. Low-level, long-term exposure can cause health issues. Damage to the growth-regulation mechanism of cells results in cancer.

69 Radiation Dose Two units are commonly used to measure exposure to radiation: Gray (Gy): absorption of 1 J of energy per kg of tissue Rad (for radiation absorbed dose): absorption of 0.01 J of energy per kg of tissue (100 rad = 1 Gy) Not all forms of radiation harm tissue equally. A relative biological effectiveness (RBE) is used to show how much biological effect there is. The effective dose is called the rem (SI unit Sievert; 1 Sv = 100 rem) # of rem = (# of rad) (RBE)

70 Short-Term Exposure 600 rem is fatal to most humans. Average exposure per year is about 360 mrem.

71 Radon Radon-222 is a decay product of uranium-238, which is found in rock formations and soil. Most of the decay products of uranium remain in the soil, but radon is a gas. When breathed in, it can cause much harm, since it produces alpha particles, which have a high RBE. It is estimated to contribute to 10% of all lung cancer deaths in the United States.

72 Sample Integrative Exercise Putting Concepts Together Potassium ion is present in foods and is an essential nutrient in the human body. One of the naturally occurring isotopes of potassium, potassium-40, is radioactive. Potassium-40 has a natural abundance of % and a half-life t 1/2 = yr. It undergoes radioactive decay in three ways: 98.2% is by electron capture, 1.35% is by beta emission, and 0.49% is by positron emission. (a) Why should we expect 40 K to be radioactive? (b) Write the nuclear equations for the three modes by which 40 K decays. (c) How many 40 K + ions are present in 1.00 g of KCl? (d) How long does it take for 1.00% of the 40 K in a sample to undergo radioactive decay? Solution (a) The 40 K nucleus contains 19 protons and 21 neutrons. There are very few stable nuclei with odd numbers of both protons and neutrons (Section 21.2). (b) Electron capture is capture of an inner-shell electron by the nucleus: Beta emission is loss of a beta particle by the nucleus: Positron emission is loss of a positron by the nucleus:

73 Sample Integrative Exercise Putting Concepts Together Continued (c) The total number of K + ions in the sample is Of these, % are 40 K + ions:

74 Sample Integrative Exercise Putting Concepts Together Continued (d) The decay constant (the rate constant) for the radioactive decay can be calculated from the half-life, using Equation 21.20: The rate equation, Equation 21.19, then allows us to calculate the time required: That is, it would take 18.6 million years for just 1.00% of the 40 K in a sample to decay.

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc. Lecture Presentation Chapter 21, Inc. James F. Kirby Quinnipiac University Hamden, CT Energy: Chemical vs. Chemical energy is associated with making and breaking chemical bonds. energy is enormous in comparison.

More information

Nuclear Chemistry. The Nucleus. Isotopes. Slide 1 / 43. Slide 2 / 43. Slide 3 / 43

Nuclear Chemistry. The Nucleus. Isotopes. Slide 1 / 43. Slide 2 / 43. Slide 3 / 43 Slide 1 / 43 Nuclear Chemistry The Nucleus Slide 2 / 43 Remember that the nucleus is comprised of the two nucleons, protons and neutrons. The number of protons is the atomic number. The number of protons

More information

U (superscript is mass number, subscript atomic number) - radionuclides nuclei that are radioactive - radioisotopes atoms containing radionuclides

U (superscript is mass number, subscript atomic number) - radionuclides nuclei that are radioactive - radioisotopes atoms containing radionuclides Chapter : Nuclear Chemistry. Radioactivity nucleons neutron and proton all atoms of a given element have the same number of protons, atomic number isotopes atoms with the same atomic number but different

More information

Chapter 21. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Chapter 21. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten , The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 21 John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall, Inc. The

More information

Chapter 21. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Chapter 21. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten , The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 21 John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall, Inc. The

More information

Chapter. Nuclear Chemistry

Chapter. Nuclear Chemistry Chapter Nuclear Chemistry Nuclear Reactions 01 Chapter 22 Slide 2 Chapter 22 Slide 3 Alpha Decay: Loss of an α-particle (a helium nucleus) 4 2 He 238 92 U 234 4 U He 90 + 2 Chapter 22 Slide 4 Beta Decay:

More information

Nuclear Chemistry. In this chapter we will look at two types of nuclear reactions.

Nuclear Chemistry. In this chapter we will look at two types of nuclear reactions. 1 1 Nuclear Chemistry In this chapter we will look at two types of nuclear reactions. Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off radiation. Nuclear bombardment

More information

Chemistry: The Central Science. Chapter 21: Nuclear Chemistry

Chemistry: The Central Science. Chapter 21: Nuclear Chemistry Chemistry: The Central Science Chapter 21: Nuclear Chemistry A nuclear reaction involves changes in the nucleus of an atom Nuclear chemistry the study of nuclear reactions, with an emphasis in their uses

More information

Nuclear Chemistry. Radioactivity. In this chapter we will look at two types of nuclear reactions.

Nuclear Chemistry. Radioactivity. In this chapter we will look at two types of nuclear reactions. 1 Nuclear Chemistry In this chapter we will look at two types of nuclear reactions. Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off radiation. Nuclear bombardment

More information

Chapter 20: Phenomena. Chapter 20: The Nucleus: A Chemist s View. Nuclear Decay. Nuclear Decay. Nuclear Decay. Nuclear Decay

Chapter 20: Phenomena. Chapter 20: The Nucleus: A Chemist s View. Nuclear Decay. Nuclear Decay. Nuclear Decay. Nuclear Decay Chapter 20: Phenomena Phenomena: Below is a list of stable isotopes of different elements. Examine the data and see what patterns you can identify. The mass of a electron is 0.00055 u, the mass of a proton

More information

Chapter 21 Nuclear Chemistry

Chapter 21 Nuclear Chemistry Chapter 21 Nuclear Chemistry The Nucleus Remember that the nucleus is comprised of the two nucleons, protons and neutrons. The number of protons is the atomic number. The number of protons and neutrons

More information

Nuclear Chemistry AP Chemistry Lecture Outline

Nuclear Chemistry AP Chemistry Lecture Outline Nuclear Chemistry AP Chemistry Lecture Outline Name: involve changes with electrons. involve changes in atomic nuclei. Spontaneously-changing nuclei emit and are said to be. Radioactivity nucleons: mass

More information

Chapter 21 Nuclear Chemistry: the study of nuclear reactions

Chapter 21 Nuclear Chemistry: the study of nuclear reactions Chapter 2 Nuclear Chemistry: the study of nuclear reactions Learning goals and key skills: Write balanced nuclear equations Know the difference between fission and fusion Predict nuclear stability in terms

More information

Chapter 21. Preview. Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions

Chapter 21. Preview. Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions Preview Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions Section 1 The Nucleus Lesson Starter Nuclear reactions result in much larger energy

More information

Number of protons. 2. What is the nuclear symbol for a radioactive isotope of copper with a mass number of 60? A) Cu

Number of protons. 2. What is the nuclear symbol for a radioactive isotope of copper with a mass number of 60? A) Cu Chapter 5 Nuclear Chemistry Practice Problems 1. Fill in the missing information in the chart: Medical Use Atomic Mass symbol number Heart imaging 201 Tl 81 Number of protons Number of neutrons Abdominal

More information

Nuclear Radiation. Natural Radioactivity. A person working with radioisotopes wears protective clothing and gloves and stands behind a shield.

Nuclear Radiation. Natural Radioactivity. A person working with radioisotopes wears protective clothing and gloves and stands behind a shield. Nuclear Radiation Natural Radioactivity A person working with radioisotopes wears protective clothing and gloves and stands behind a shield. 1 Radioactive Isotopes A radioactive isotope has an unstable

More information

Differentiating Chemical Reactions from Nuclear Reactions

Differentiating Chemical Reactions from Nuclear Reactions Differentiating Chemical Reactions from Nuclear Reactions 1 CHEMICAL Occurs when bonds are broken or formed. Atoms remained unchanged, though may be rearranged. Involves valence electrons Small energy

More information

Nuclear Chemistry. Nuclear Terminology

Nuclear Chemistry. Nuclear Terminology Nuclear Chemistry Up to now, we have been concerned mainly with the electrons in the elements the nucleus has just been a positively charged things that attracts electrons The nucleus may also undergo

More information

Interaction of the radiation with a molecule knocks an electron from the molecule. a. Molecule ¾ ¾ ¾ ion + e -

Interaction of the radiation with a molecule knocks an electron from the molecule. a. Molecule ¾ ¾ ¾ ion + e - Interaction of the radiation with a molecule knocks an electron from the molecule. radiation a. Molecule ¾ ¾ ¾ ion + e - This can destroy the delicate balance of chemical reactions in living cells. The

More information

Chapter 21

Chapter 21 Chapter 21 http://youtu.be/kwasz59f8ga Nuclear reactions involve the nucleus The nucleus opens, and protons and neutrons are rearranged. The opening of the nucleus releases a tremendous amount of energy

More information

Name Date Class NUCLEAR CHEMISTRY

Name Date Class NUCLEAR CHEMISTRY 25 NUCLEAR CHEMISTRY SECTION 25.1 NUCLEAR RADIATION (pages 799 802) This section describes the nature of radioactivity and the process of radioactive decay. It characterizes alpha, beta, and gamma radiation

More information

Nuclear Chemistry. Proposal: build a nuclear power plant in Broome County. List the pros & cons

Nuclear Chemistry. Proposal: build a nuclear power plant in Broome County. List the pros & cons Nuclear Chemistry Proposal: build a nuclear power plant in Broome County. List the pros & cons 1 Nuclear Chemistry Friend or Fiend 2 The Nucleus What is in the nucleus? How big is it vs. the atom? How

More information

Chapter 18 Nuclear Chemistry

Chapter 18 Nuclear Chemistry Chapter 8 Nuclear Chemistry 8. Discovery of radioactivity 895 Roentgen discovery of radioactivity X-ray X-ray could penetrate other bodies and affect photographic plates led to the development of X-ray

More information

1ST SEM MT CHAP 22 REVIEW

1ST SEM MT CHAP 22 REVIEW 1ST SEM MT CHAP 22 REVIEW Multiple Choice Identify the choice that best completes the statement or answers the question. (CAPITAL LETTERS ONLY PLEASE) 1. Mass defect is the difference between the mass

More information

Unit 12: Nuclear Chemistry

Unit 12: Nuclear Chemistry Unit 12: Nuclear Chemistry 1. Stability of isotopes is based on the ratio of neutrons and protons in its nucleus. Although most nuclei are stable, some are unstable and spontaneously decay, emitting radiation.

More information

Chapter 18. Nuclear Chemistry

Chapter 18. Nuclear Chemistry Chapter 18 Nuclear Chemistry The energy of the sun comes from nuclear reactions. Solar flares are an indication of fusion reactions occurring at a temperature of millions of degrees. Introduction to General,

More information

Ch Radioactivity. Henry Becquerel, using U-238, discovered the radioactive nature of elements in 1896.

Ch Radioactivity. Henry Becquerel, using U-238, discovered the radioactive nature of elements in 1896. Ch. 10 - Radioactivity Henry Becquerel, using U-238, discovered the radioactive nature of elements in 1896. Radioactivity the process in which an unstable atomic nucleus emits charged particles and energy

More information

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided. CHAPTER 21 REVIEW Nuclear Chemistry SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Based on the information about the three elementary particles in the text, which has

More information

Name Date Class NUCLEAR CHEMISTRY. Standard Curriculum Core content Extension topics

Name Date Class NUCLEAR CHEMISTRY. Standard Curriculum Core content Extension topics 28 NUCLEAR CHEMISTRY Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

More information

Name Date Class NUCLEAR RADIATION. alpha particle beta particle gamma ray

Name Date Class NUCLEAR RADIATION. alpha particle beta particle gamma ray 25.1 NUCLEAR RADIATION Section Review Objectives Explain how an unstable nucleus releases energy Describe the three main types of nuclear radiation Vocabulary radioisotopes radioactivity radiation alpha

More information

Chapter 21 Nuclear Chemistry

Chapter 21 Nuclear Chemistry Chapter 21 Nuclear Chemistry The chemical energy: we have discussed thus far originates in the making and breaking of chemical bonds, which result from the interaction of electrons between atoms. In this

More information

Review A Z. a particle. proton. neutron. electron e -1. positron. e +1. Mass Number Atomic Number. Element Symbol

Review A Z. a particle. proton. neutron. electron e -1. positron. e +1. Mass Number Atomic Number. Element Symbol Nuclear Chemistry 1 Review Atomic number (Z) = number of protons in nucleus Mass number (A) = number of protons + number of neutrons = atomic number (Z) + number of neutrons Mass Number Atomic Number A

More information

Radioactivity & Nuclear. Chemistry. Mr. Matthew Totaro Legacy High School. Chemistry

Radioactivity & Nuclear. Chemistry. Mr. Matthew Totaro Legacy High School. Chemistry Radioactivity & Nuclear Chemistry Mr. Matthew Totaro Legacy High School Chemistry The Discovery of Radioactivity Antoine-Henri Becquerel designed an experiment to determine if phosphorescent minerals also

More information

Chemistry 201: General Chemistry II - Lecture

Chemistry 201: General Chemistry II - Lecture Chemistry 201: General Chemistry II - Lecture Dr. Namphol Sinkaset Chapter 21 Study Guide Concepts 1. There are several modes of radioactive decay: (1) alpha (α) decay, (2) beta (β) decay, (3) gamma (γ)

More information

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY teacher version www.toppr.com Contents (a) Types of Radiation (b) Properties of Radiation (c) Dangers of Radiation (d) Rates of radioactive decay (e) Nuclear

More information

Chapter 10. Section 10.1 What is Radioactivity?

Chapter 10. Section 10.1 What is Radioactivity? Chapter 10 Section 10.1 What is Radioactivity? What happens when an element undergoes radioactive decay? How does radiation affect the nucleus of an unstable isotope? How do scientists predict when an

More information

The Nature of Radioactivity. Chapter 19 Nuclear Chemistry. The Nature of Radioactivity. Nuclear Reactions. Radioactive Series

The Nature of Radioactivity. Chapter 19 Nuclear Chemistry. The Nature of Radioactivity. Nuclear Reactions. Radioactive Series John W. Moore Conrad L. Stanitsi Peter C. Jurs http://academic.cengage.com/chemistry/moore Chapter 9 Nuclear Chemistry Stephen C. Foster Mississippi State University The Nature of Radioactivity Henri Becquerel

More information

Atomic Notation (or Nuclear Symbol): Shorthand for keeping track of protons and neutrons in the nucleus

Atomic Notation (or Nuclear Symbol): Shorthand for keeping track of protons and neutrons in the nucleus Name Section CHM52LL: Nuclear Chemistry: Radioactivity, Decay, Dating, and Other Hazards There is no prelab assignment this week I. Radioactive Isotopes and Nuclear Equations Atoms are composed of three

More information

Name Date Class. alpha particle radioactivity gamma ray radioisotope beta particles radiation X-ray radioactive decay

Name Date Class. alpha particle radioactivity gamma ray radioisotope beta particles radiation X-ray radioactive decay Name Date _ Class _ Nuclear Chemistry Section.1 Nuclear Radiation In your textbook, read about the terms used to describe nuclear changes. Use each of the terms below just once to complete the passage.

More information

Radioactivity: the process by which atoms emit energy in the form of electromagnetic waves, charged particles, or uncharged particles.

Radioactivity: the process by which atoms emit energy in the form of electromagnetic waves, charged particles, or uncharged particles. Radioactivity: the process by which atoms emit energy in the form of electromagnetic waves, charged particles, or uncharged particles. In 1896, Henri Bequerel discovered that uranium and other elements

More information

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY student version www.toppr.com Contents (a) Types of Radiation (b) Properties of Radiation (c) Dangers of Radiation (d) Rates of radioactive decay (e) Nuclear

More information

Unit 13: Nuclear Chemistry

Unit 13: Nuclear Chemistry Name Unit 13: Nuclear Chemistry Skills: 1. Review Atomic Structure 2. Determining Nuclear Stability 3. Naming and Drawing Hydrocarbons 4. Using N + O to Write Decay Equations Period 5. Solve Various Half

More information

Notes: Part 1 - Nuclear Chemistry

Notes: Part 1 - Nuclear Chemistry Notes: Part 1 - Nuclear Chemistry NUCLEAR REACTIONS: NUCLEAR FISSION: NUCLEAR FUSION: NUCLIDES: -most nuclides have even # of protons and neutrons the neutron-to-proton ratio determines the stability of

More information

Chapter 37. Nuclear Chemistry. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved.

Chapter 37. Nuclear Chemistry. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved. Chapter 37 Nuclear Chemistry Copyright (c) 2 by Michael A. Janusa, PhD. All rights reserved. 37. Radioactivity Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off

More information

Nuclear forces and Radioactivity. Two forces are at work inside the nucleus of an atom

Nuclear forces and Radioactivity. Two forces are at work inside the nucleus of an atom Nuclear forces and Radioactivity Two forces are at work inside the nucleus of an atom Forces act in opposing directions Electrostatic repulsion: pushes protons apart Strong nuclear force: pulls protons

More information

Notes: Unit 13 Nuclear Chemistry

Notes: Unit 13 Nuclear Chemistry Name: Regents Chemistry: Notes: Unit 13 Nuclear Chemistry Name: KEY IDEAS: Stability of isotopes is based in the ratio of neutrons and protons in its nucleus. Although most nuclei are stable, some are

More information

There are no stable isotopes of elements above atomic number 83.

There are no stable isotopes of elements above atomic number 83. Nuclear Chemistry Stability of isotopes is based on the ratio of neutrons and protons in its nucleus. Although most nuclei are stable, some are unstable and spontaneously decay, emitting radiation. All

More information

PS-21 First Spring Institute say : Teaching Physical Science. Radioactivity

PS-21 First Spring Institute say : Teaching Physical Science. Radioactivity PS-21 First Spring Institute say 2012-2013: Teaching Physical Science Radioactivity What Is Radioactivity? Radioactivity is the release of tiny, highenergy particles or gamma rays from the nucleus of an

More information

Chapter 20 Nuclear Chemistry. 1. Nuclear Reactions and Their Characteristics

Chapter 20 Nuclear Chemistry. 1. Nuclear Reactions and Their Characteristics Chapter 2 Nuclear Chemistry 1. Nuclear Reactions and Their Characteristics Nuclear reactions involve the particles located in the nucleus of the atom: nucleons:. An atom is characterized by its atomic

More information

Atoms and Nuclear Chemistry. Atoms Isotopes Calculating Average Atomic Mass Radioactivity

Atoms and Nuclear Chemistry. Atoms Isotopes Calculating Average Atomic Mass Radioactivity Atoms and Nuclear Chemistry Atoms Isotopes Calculating Average Atomic Mass Radioactivity Atoms An atom is the smallest particle of an element that has all of the properties of that element. Composition

More information

WHAT IS IONIZING RADIATION

WHAT IS IONIZING RADIATION WHAT IS IONIZING RADIATION Margarita Saraví National Atomic Energy Commission - Argentina Workshop on Ionizing Radiation SIM Buenos Aires 10 November 2011 What is ionizing radiation? What is ionizing radiation?

More information

D) g. 2. In which pair do the particles have approximately the same mass?

D) g. 2. In which pair do the particles have approximately the same mass? 1. A student constructs a model for comparing the masses of subatomic particles. The student selects a small, metal sphere with a mass of gram to represent an electron. A sphere with which mass would be

More information

Chem 1A Chapter 5 and 21 Practice Test Grosser ( )

Chem 1A Chapter 5 and 21 Practice Test Grosser ( ) Class: Date: Chem A Chapter 5 and 2 Practice Test Grosser (203-204) Multiple Choice Identify the choice that best completes the statement or answers the question.. The periodic law states that the properties

More information

Regents review Nuclear Chemistry

Regents review Nuclear Chemistry 2011-2012 1. Given the nuclear equation: 14 7N + X 16 8O + 2 1H What is particle X? A) an alpha particle B) a beta particle C) a deuteron D) a triton 2. The nucleus of a radium-226 atom is unstable, which

More information

Lecture 11. Half-Lives of Various Nuclides. Radioactive decays are all first order processes. Professor Hicks Inorganic Chemistry (CHE152)

Lecture 11. Half-Lives of Various Nuclides. Radioactive decays are all first order processes. Professor Hicks Inorganic Chemistry (CHE152) Lecture 11 Professor Hicks Inorganic Chemistry (CHE152) Radioactive decays are all first order processes Half-Lives of Various Nuclides Nuclide Half-Life Type of Decay Th-232 1.4 x 10 10 yr alpha U-238

More information

Chapter 3. Radioactivity. Table of Contents

Chapter 3. Radioactivity. Table of Contents Radioactivity Table of Contents Introduction 1. Radioactivity 2. Types of Radioactive Decays 3. Natural Radioactivity 4. Artificial Radioactivity 5. The Rate of Radioactive Decay 6. The Effects of Radiation

More information

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes St Ninian s High School Chemistry Department National 5 Chemistry Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes Name Learning Outcomes After completing this topic you should be able to :

More information

Particles involved proton neutron electron positron gamma ray 1

Particles involved proton neutron electron positron gamma ray 1 TOPIC : Nuclear and radiation chemistry Nuclide - an atom with a particular mass number and atomic number Isotopes - nuclides with the same atomic number (Z) but different mass numbers (A) Notation A Element

More information

Nuclear Reactions. Nuclear Reactions

Nuclear Reactions. Nuclear Reactions Nuclear Reactions Result from transformations in the nucleus Involve protons and neutrons Often result in transmutation into more stable elements Participants: Energy Type Symbol(s) Charge Mass (g/particle)

More information

College Physics B - PHY2054C

College Physics B - PHY2054C College - PHY2054C Physics - Radioactivity 11/24/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Review Question 1 Isotopes of an element A have the same number of protons and electrons,

More information

Nuclear Chemistry - HW

Nuclear Chemistry - HW Nuclear Chemistry - HW PSI AP Chemistry Name 1) In balancing the nuclear reaction 238 92U 234 90E + 4 2He, the identity of element E is. A) Pu B) Np C) U D) Pa E) Th 2) This reaction is an example of.

More information

fission and fusion and classify a nuclear reaction as either a fission or fusion reaction.

fission and fusion and classify a nuclear reaction as either a fission or fusion reaction. Chemistry HP Unit 11 Nuclear Chemistry Learning Targets (Your exam at the end of Unit 11 will assess the following:) 11. Nuclear Chemistry 11-1. Write the nuclide symbol for a given isotope. 11-2. Describe

More information

Chapter 11 Nuclear Chemistry

Chapter 11 Nuclear Chemistry Chapter 11 Nuclear Chemistry 11.1 Nuclear Reactions Nuclear reactions involve the particles located in the nucleus of the atom: The nucleus contains: An atom is characterized by: X A Z - Z the gives the

More information

CH 222 Chapter Twenty-one Concept Guide

CH 222 Chapter Twenty-one Concept Guide CH 222 Chapter Twenty-one Concept Guide 1. Terminology Alpha Radiation (α): Beta Radiation (β): Gamma Radiation (γ): Nuclear Reaction: Nucleons: Radioactive Decay Series: Positrons: Nuclear Binding Energy:

More information

Chapter 2. Atomic Structure and Nuclear Chemistry. Atomic Structure & Nuclear Chemistry page 1

Chapter 2. Atomic Structure and Nuclear Chemistry. Atomic Structure & Nuclear Chemistry page 1 Chapter 2 Atomic Structure and Nuclear Chemistry Atomic Structure & Nuclear Chemistry page 1 Atoms & Elements Part 0: Atomic Structure An Introduction Electrostatics an underlying force throughout chemistry

More information

Radioactivity and Balancing Nuclear Reactions: Balancing Nuclear Reactions and Understanding which Particles are Involves

Radioactivity and Balancing Nuclear Reactions: Balancing Nuclear Reactions and Understanding which Particles are Involves General Chemistry II Jasperse Nuclear Chemistry. Extra Practice Problems Radioactivity and Balancing Nuclear Reactions: Balancing Nuclear Reactions and Understanding which Particles are Involved he Stability

More information

Nuclear Reactions. Nuclear Reactions

Nuclear Reactions. Nuclear Reactions Nuclear Reactions Result from transformations in the nucleus Involve protons and neutrons Often result in transmutation into more stable elements Participants: Energy Type Symbol(s) Charge Mass (g/particle)

More information

Science 10 Radioactivity Review v3

Science 10 Radioactivity Review v3 Class: Date: Science 10 Radioactivity Review v3 Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. An atom

More information

Journal 14. What is so dangerous about nuclear energy?

Journal 14. What is so dangerous about nuclear energy? Journal 14 What is so dangerous about nuclear energy? Nuclear Chemistry Nuclear Chemistry Bravo 15,000 kilotons Discovery of Radiation Wilhelm Conrad Roentgen had discovered X rays Pierre & Marie Curie

More information

Alta Chemistry CHAPTER 25. Nuclear Chemistry: Radiation, Radioactivity & its Applications

Alta Chemistry CHAPTER 25. Nuclear Chemistry: Radiation, Radioactivity & its Applications CHAPTER 25 Nuclear Chemistry: Radiation, Radioactivity & its Applications Nuclear Chemistry Nuclear Chemistry deals with changes in the nucleus The nucleus of an atom contains Protons Positively Charged

More information

Fiesta Ware. Nuclear Chemistry. 2009, Prentice-Hall, Inc.

Fiesta Ware. Nuclear Chemistry. 2009, Prentice-Hall, Inc. Fiesta Ware 2009, Prentice-Hall, Inc. Measuring Radioactivity One can use a device like this Geiger counter to measure the amount of activity present in a radioactive sample. The ionizing radiation creates

More information

ZX or X-A where X is chemical symbol of element. common unit: [unified mass unit = u] also known as [atomic mass unit = amu] or [Dalton = Da]

ZX or X-A where X is chemical symbol of element. common unit: [unified mass unit = u] also known as [atomic mass unit = amu] or [Dalton = Da] 1 Part 5: Nuclear Physics 5.1. The Nucleus = atomic number = number of protons N = neutron number = number of neutrons = mass number = + N Representations: X or X- where X is chemical symbol of element

More information

Nuclear Chemistry Notes

Nuclear Chemistry Notes Nuclear Chemistry Notes Definitions Nucleons: Subatomic particles in the nucleus : protons and neutrons Radionuclides: Radioactive nuclei. Unstable nuclei that spontaneously emit particles and electromagnetic

More information

Nuclear Chemistry. Background Radiation. Three-fourths of all exposure to radiation comes from background radiation.

Nuclear Chemistry. Background Radiation. Three-fourths of all exposure to radiation comes from background radiation. Chapter 11 Nuclear Chemistry Background Radiation Three-fourths of all exposure to radiation comes from background radiation. Most of the remaining one-fourth comes from medical irradiation such as X-rays.

More information

Nicholas J. Giordano. Chapter 30. Nuclear Physics. Marilyn Akins, PhD Broome Community College

Nicholas J. Giordano.   Chapter 30. Nuclear Physics. Marilyn Akins, PhD Broome Community College Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 30 Nuclear Physics Marilyn Akins, PhD Broome Community College Atomic Nuclei Rutherford s discovery of the atomic nucleus caused scientists

More information

Radioactivity One of the pieces of evidence for the fact that atoms are made of smaller particles came from the work of Marie Curie

Radioactivity One of the pieces of evidence for the fact that atoms are made of smaller particles came from the work of Marie Curie 1 Nuclear Chemistry Radioactivity 2 One of the pieces of evidence for the fact that atoms are made of smaller particles came from the work of Marie Curie (1876-1934). She discovered radioactivity or radioactive

More information

UNIT 13: NUCLEAR CHEMISTRY

UNIT 13: NUCLEAR CHEMISTRY UNIT 13: NUCLEAR CHEMISTRY REVIEW: ISOTOPE NOTATION An isotope notation is written as Z A X, where X is the element, A is the mass number (sum of protons and neutrons), and Z is the atomic number. For

More information

Nuclear Spectroscopy: Radioactivity and Half Life

Nuclear Spectroscopy: Radioactivity and Half Life Particle and Spectroscopy: and Half Life 02/08/2018 My Office Hours: Thursday 1:00-3:00 PM 212 Keen Building Outline 1 2 3 4 5 Some nuclei are unstable and decay spontaneously into two or more particles.

More information

The previous images display some of our hopes and fears associated with nuclear radiation. We know the images, and some of the uses, but what is Nuclear Radiation and where does it come from? Nuclide In

More information

ABC Math Student Copy

ABC Math Student Copy Page 1 of 17 Physics Week 16(Sem. ) Name The Nuclear Chapter Summary Nuclear Structure Atoms consist of electrons in orbit about a central nucleus. The electron orbits are quantum mechanical in nature.

More information

Nuclear Chemistry Lecture Notes: I Radioactive Decay A. Type of decay: See table. B. Predicting Atomic Stability

Nuclear Chemistry Lecture Notes: I Radioactive Decay A. Type of decay: See table. B. Predicting Atomic Stability Nuclear Chemistry Lecture Notes: I Radioactive Decay A. Type of decay: See table Type Symbol Charge Mass (AMU) Effect on Atomic # Alpha α +2 4 decrease by 2 Beta β- -1 0 increase electron by 1 Beta β+

More information

Radioactivity is the emission of high energy released when the of atoms change. Radioactivity can be or.

Radioactivity is the emission of high energy released when the of atoms change. Radioactivity can be or. Chapter 19 1 RADIOACTIVITY Radioactivity is the emission of high energy released when the of atoms change. Radioactivity can be or. TYPES OF RADIATION OR EMITTED ENERGY IN NUCLEAR CHANGES Radiation is

More information

Nuclear Chemistry. The nuclei of some unstable isotopes change by releasing energy and particles, collectively known as radiation

Nuclear Chemistry. The nuclei of some unstable isotopes change by releasing energy and particles, collectively known as radiation Nuclear Chemistry The nuclei of some unstable isotopes change by releasing energy and particles, collectively known as radiation Spontaneous nuclear reactions - five kinds: ) Emission of α-particles: 4

More information

Nuclear Physics and Nuclear Reactions

Nuclear Physics and Nuclear Reactions Slide 1 / 33 Nuclear Physics and Nuclear Reactions The Nucleus Slide 2 / 33 Proton: The charge on a proton is +1.6x10-19 C. The mass of a proton is 1.6726x10-27 kg. Neutron: The neutron is neutral. The

More information

Ch 17 Radioactivity & Nuc. Chemistry Study Guide Accelerated Chemistry SCANTRON

Ch 17 Radioactivity & Nuc. Chemistry Study Guide Accelerated Chemistry SCANTRON Ch 17 Radioactivity & Nuc. Chemistry Study Guide Accelerated Chemistry SCANTRON Name No-Calculators Allowed /65 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers

More information

The Electromagnetic Spectrum. 7.1 Atomic Theory and Radioactive Decay. Isotopes. 19K, 19K, 19K Representing Isotopes

The Electromagnetic Spectrum. 7.1 Atomic Theory and Radioactive Decay. Isotopes. 19K, 19K, 19K Representing Isotopes 7.1 Atomic Theory and Radioactive Decay Natural background radiation exists all around us. Radioactivity is the release of high energy particles or waves When atoms lose high energy particles and waves,

More information

Chapter 10. Table of Contents. Section 1 What Is Radioactivity? Section 2 Nuclear Fission and Fusion. Section 3 Nuclear Radiation Today

Chapter 10. Table of Contents. Section 1 What Is Radioactivity? Section 2 Nuclear Fission and Fusion. Section 3 Nuclear Radiation Today Nuclear Chemistry Table of Contents Section 1 What Is Radioactivity? Section 2 Nuclear Fission and Fusion Section 3 Nuclear Radiation Today Section 1 What Is Radioactivity? Bellringer Before studying about

More information

RADIOACTIVITY: spontaneous disintegration of the nucleus of certain atoms accompanied by the emission (release) of particles and/or energy

RADIOACTIVITY: spontaneous disintegration of the nucleus of certain atoms accompanied by the emission (release) of particles and/or energy RADIOACTIVITY: spontaneous disintegration of the nucleus of certain atoms accompanied by the emission (release) of particles and/or energy ~ TRANSMUTATION: the change of one element into another due to

More information

Chemistry 52 Chapter 11 ATOMIC STRUCTURE. The general designation for an atom is shown below:

Chemistry 52 Chapter 11 ATOMIC STRUCTURE. The general designation for an atom is shown below: ATOMIC STRUCTURE An atom is composed of a positive nucleus surrounded by negatively charged electrons. The nucleus is composed of protons and neutrons. The protons and neutrons in a nucleus are referred

More information

General, Organic, and Biological Chemistry, 3e (Frost) Chapter 2 Atoms and Radioactivity. 2.1 Multiple-Choice

General, Organic, and Biological Chemistry, 3e (Frost) Chapter 2 Atoms and Radioactivity. 2.1 Multiple-Choice General, Organic, and Biological Chemistry, 3e (Frost) Chapter 2 Atoms and Radioactivity 2.1 Multiple-Choice 1) The smallest particle of an element that can be identified as that element is: A) a proton

More information

Atomic Structure. INSIDE the Nucleus: OUTSIDE the Nucleus:

Atomic Structure. INSIDE the Nucleus: OUTSIDE the Nucleus: Nuclear Chemistry 1 Atomic Structure INSIDE the Nucleus: Protons (+) Neutrons (no charge) 99.9% of the mass of the atom (Rutherford central dense nucleus) OUTSIDE the Nucleus: Electrons (-) Little mass

More information

1. This question is about the Rutherford model of the atom.

1. This question is about the Rutherford model of the atom. 1. This question is about the Rutherford model of the atom. (a) Most alpha particles used to bombard a thin gold foil pass through the foil without a significant change in direction. A few alpha particles

More information

RADIOACTIVITY: spontaneous disintegration of the nucleus of certain atoms accompanied by the emission (release) of particles and/or energy

RADIOACTIVITY: spontaneous disintegration of the nucleus of certain atoms accompanied by the emission (release) of particles and/or energy RADIOACTIVITY: spontaneous disintegration of the nucleus of certain atoms accompanied by the emission (release) of particles and/or energy ~ TRANSMUTATION: the change of one element into another due to

More information

Chapter 19 - Nuclear Chemistry Nuclear Stability and Modes of Decay

Chapter 19 - Nuclear Chemistry Nuclear Stability and Modes of Decay Chapter 19 - Nuclear Chemistry Nuclear Stability and Modes of Decay History and Discovery of Radioactivity The Discovery of Radioactivity (1896) Antoine-Henri Bequerel designed experiment to determine

More information

Nonrenewable Energy: Nuclear. Energy Part 2

Nonrenewable Energy: Nuclear. Energy Part 2 Nonrenewable Energy: Nuclear Energy Part 2 What do you know about Nuclear Chemistry? http://ed.ted.com/lessons/radioactivity-expect-the-unexpected-steveweatherall I. Radiation Radiation = any movement

More information

Notes: Unit 14 Nuclear Chemistry

Notes: Unit 14 Nuclear Chemistry Name: Regents Chemistry: Mr. Palermo Notes: Unit 14 Nuclear Chemistry www.mrpalermo.com Name: KEY IDEAS: Stability of isotopes is based in the ratio of neutrons and protons in its nucleus. Although most

More information

Chapter 25. Nuclear Chemistry. Types of Radiation

Chapter 25. Nuclear Chemistry. Types of Radiation Chapter 25 Nuclear Chemistry Chemical Reactions 1. Bonds are broken and formed 2. Atoms may rearrange, but remain unchanged 3. Involve only valence electrons 4. Small energy changes 5. Reaction rate is

More information

Ch05. Radiation. Energy and matter that comes from the nucleus of an atom. version 1.6

Ch05. Radiation. Energy and matter that comes from the nucleus of an atom. version 1.6 Ch05 Radiation Energy and matter that comes from the nucleus of an atom. version 1.6 Nick DeMello, PhD. 2007-2016 Ch05 Radiation The Discovery of Radioactivity Phosphorescence Radioactive history Antoine

More information

Nuclear Chemistry. Transmutations and the Creation of Elements

Nuclear Chemistry. Transmutations and the Creation of Elements Nuclear Chemistry Transmutations and the Creation of Elements Nuclear Fusion When two smaller elements are fused together to form a larger element. Fusion is Hard! There are two competing forces in an

More information

Chapter 17. Radioactivity and Nuclear Chemistry

Chapter 17. Radioactivity and Nuclear Chemistry Chapter 17 Radioactivity and Nuclear Chemistry The Discovery of Radioactivity (1896) Antoine-Henri Bequerel designed experiment to determine whether phophorescent minerals also gave off X-rays. Bequerel

More information